1
|
Procaci VR, Hora RPCD, Barsottini OGP, Pedroso JL. Tremulous SCA3: The Complex Connection between the Cerebellum and Basal Ganglia. CEREBELLUM (LONDON, ENGLAND) 2025; 24:62. [PMID: 40087249 DOI: 10.1007/s12311-025-01817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Affiliation(s)
- Victor Rebelo Procaci
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | | | | | - José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Fomenko A, Vetkas A, Davidson B, Cho N, Kalia SK. Stereotactic Frame-Based Targeting of the Posterior Fossa: A Systematic Workflow for the Leksell G Frame. Stereotact Funct Neurosurg 2024; 103:126-131. [PMID: 39675345 DOI: 10.1159/000543013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/02/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Cerebellar deep brain stimulation (DBS) is gaining traction as a potential treatment for movement disorders and stroke, and there is renewed interest in the cerebellum as a target for neuromodulation. Despite the safety and accuracy of frame-based approaches to the posterior fossa, unconventional stereotactic frame placement may be necessary to allow for low posterior fossa trajectories. Current literature lacks a comprehensive protocol detailing inverted frame placement and targeting. METHODS Preoperative imaging was acquired prone. An inverted Leksell G frame was applied along with an open-topped CT fiducial box, followed by a prone CT with the scanner set to the "legs first, nose up" configuration. Target coordinates were extracted from navigation software after image fusion. Intraoperatively, the patient was positioned prone, and the stereotactic arc was mounted in the lateral-right orientation, with inverted arc supports. Confirmatory stereotaxy to a scalp staple was performed, and the DBS leads were then inserted. CONCLUSION Our standardized protocol provides a flexible platform for posterior fossa DBS, allowing for low trajectories and multiple electrodes. Unlike conventional upright frame placement, an inverted frame permits an unobstructed view of suboccipital entry sites and incision placement. A conventional frame and regular planning software are sufficient, with no additional mathematical calculations required.
Collapse
Affiliation(s)
- Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada,
| | - Artur Vetkas
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Benjamin Davidson
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Newton Cho
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, Canada
- KITE, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Orrù G, Baroni M, Conversano C, Gemignani A. Exploring the therapeutic potential of tDCS, TMS and DBS in overcoming tobacco use disorder: an umbrella review. AIMS Neurosci 2024; 11:449-467. [PMID: 39801797 PMCID: PMC11712234 DOI: 10.3934/neuroscience.2024027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 01/03/2025] Open
Abstract
The purpose of the present study was to investigate the effects of neuromodulation techniques, including transcranial direct current stimulation, transcranial magnetic stimulation, and deep brain stimulation, on the treatments of nicotine dependence. Specifically, our objective was to assess the existing evidence by conducting an umbrella review of systematic reviews. The quality of the included studies was evaluated using the standardized tools designed to evaluate systematic reviews. The PubMed/MEDLINE database was queried for systematic reviews, and yielded 7 systematic reviews with a substantial sample size (N = 4,252), some of which included meta-analyses. A significant finding across these studies was the effectiveness of neuromodulation techniques to reduce nicotine cravings and consumption, through the evidence remains not yet conclusive. A significant efficacy of transcranial direct current stimulation and repetitive transcranial magnetic stimulation that targeted the dorsolateral prefrontal cortex was found, as well as the lateral prefrontal cortex and insula bilaterally, on smoking frequency and craving. Moreover, smoking behaviors may also be positively affected by the use of deep brain stimulation (DBS) targeting the nucleus accumbens. In conclusion, neuromodulation approaches hold promise as effective treatments for tobacco use disorder. Nonetheless, further research is required to comprehensively understand their effectiveness and to determine if combining them with other treatments can aid individuals to successfully quit smoking.
Collapse
Affiliation(s)
- Graziella Orrù
- Department of Surgical, Medical, Molecular & Critical Area Pathology, University of Pisa, via Savi, 10, 56126, Pisa, Italy
| | | | | | | |
Collapse
|
4
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
5
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539767. [PMID: 37214855 PMCID: PMC10197583 DOI: 10.1101/2023.05.07.539767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cerebellum contributes to a diverse array of motor conditions including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
|
6
|
Kumar G, Zhou Z, Wang Z, Kwan KM, Tin C, Ma CHE. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. CNS Neurosci Ther 2024; 30:e14638. [PMID: 38488445 PMCID: PMC10941591 DOI: 10.1111/cns.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| | - Zhanhong Zhou
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Zhihua Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongHong Kong SAR
| | - Chung Tin
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Chi Him Eddie Ma
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
7
|
Cummins DD, Bernabei JM, Wang DD. Focused Ultrasound for Treatment of Movement Disorders: A Review of Non-Food and Drug Administration Approved Indications. Stereotact Funct Neurosurg 2024; 102:93-108. [PMID: 38368868 DOI: 10.1159/000535621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 02/20/2024]
Abstract
INTRODUCTION MRI-guided focused ultrasound (FUS) is an incisionless thermo-ablative procedure that may be used to treat medication-refractory movement disorders, with a growing number of potential anatomic targets and clinical applications. As of this article's publication, the only US Food and Drug Administration (FDA)-approved uses of FUS for movement disorders are thalamotomy for essential tremor (ET) and tremor-dominant Parkinson's Disease (PD), and pallidotomy for other cardinal symptoms of PD. We present a state-of-the-art review on all non-FDA approved indications of FUS for movement disorders, beyond the most well-described indications of ET and PD. Our objective was to summarize the safety and efficacy of FUS in this setting and provide a roadmap for future directions of FUS for movement disorders. METHODS A state-of-the-art review was conducted on use of FUS for non-FDA approved movement disorders. All movement disorders excluding FDA-approved uses for ET and PD were included. RESULTS A total of 25 studies on 172 patients were included. In patients with tremor plus dystonia syndromes (n = 6), ventralis intermediate nucleus of the thalamus (VIM)-FUS gave >50% tremor reduction, with no improvement in dystonia and worsened dystonia in 2/6 patients. Ventral-oralis complex (VO)-FUS gave >50% improvement for focal hand dystonia (n = 6) and 100% return to musical performance in musician's dystonia (n = 6). In patients with multiple sclerosis (MS) and tremor (n = 3), improvement in tremor was seen in 2 patients with a favorable skull density ratio; no MS disease change was noted after VIM-FUS. In patients with tremor and comorbid ataxia syndromes (n = 3), none were found to have worsened ataxia after VIM-FUS; all had clinically significant tremor improvement. Subthalamic nucleus (STN)-FUS for PD (n = 49) gave approximately 50% improvement in PD motor symptoms, with dystonia and mild dyskinesias as possible adverse effects. Cerebellothalamic tract (CTT-FUS) for ET (n = 42) gave 55-90% tremor improvement, with gait dysfunction as a rare persistent adverse effect. Pallidothalamic tract (PTT-FUS) for PD (n = 50) gave approximately 50% improvement in motor symptoms, with mild speech dysfunction as a possible adverse effect. CONCLUSION VIM-FUS appeared safe and effective for heterogenous tremor etiologies, and VO-FUS appeared most effective for isolated segmental dystonia. STN-FUS was effective for PD symptom reduction; postoperative dystonia and mild on-medication dyskinesias required medical management. Tractography-based targeting with CTT-FUS for ET and PTT-FUS for PD demonstrated promising early results. Larger prospective trials with long-term follow-up are needed to the evaluate the safety and efficacy non-FDA approved indications for FUS.
Collapse
Affiliation(s)
- Daniel D Cummins
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | - John M Bernabei
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| | - Doris D Wang
- Department of Neurological Surgery, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Qiu L, Xu E, Chambule S, LaTourette P, Dyer CD, Wallace CK, Donocoff R, Wilson JM, Lucas TH, Chen HI. Magnetic Resonance Imaging-Guided Frameless Stereotactic Injections of the Bilateral Cerebellar Dentate Nuclei in Nonhuman Primates: Technical Note. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01040. [PMID: 38310346 DOI: 10.1227/ons.0000000000001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Nonhuman primates (NHPs) are important preclinical models for evaluating therapeutics because of their anatomophysiological similarities to humans, and can be especially useful for testing new delivery targets. With the growing promise of cell and gene therapies for the treatment of neurological diseases, it is important to ensure the accurate and safe delivery of these agents to target structures in the brain. However, a standard guideline or method has not been developed for stereotactic targeting in NHPs. In this article, we describe the safe use of a magnetic resonance imaging-guided frameless stereotactic system to target bilateral cerebellar dentate nuclei for accurate, real-time delivery of viral vector in NHPs. METHODS Seventeen rhesus macaques (Macaca mulatta) underwent stereotactic surgery under real-time MRI guidance using the ClearPoint® system. Bilateral cerebellar dentate nuclei were targeted through a single parietal entry point with a transtentorial approach. Fifty microliters of contrast-impregnated infusate was delivered to each dentate nucleus, and adjustments were made as necessary according to real-time MRI monitoring of delivery. Perioperative clinical outcomes and postoperative volumes of distribution were recorded. RESULTS All macaques underwent bilateral surgery successfully. Superficial pin site infection occurred in 4/17 (23.5%) subjects, which resolved with antibiotics. Two episodes of transient neurological deficit (anisocoria and unilateral weakness) were recorded, which did not require additional postoperative treatment and resolved over time. Volume of distribution of infusate achieved satisfactory coverage of target dentate nuclei, and only 1 incidence (2.9%) of cerebrospinal fluid penetration was recorded. Mean volume of distribution was 161.22 ± 39.61 mm3 (left, 173.65 ± 48.29; right, 148.80 ± 23.98). CONCLUSION MRI-guided frameless stereotactic injection of bilateral cerebellar dentate nuclei in NHPs is safe and feasible. The use of this technique enables real-time modification of the surgical plan to achieve adequate target coverage and can be readily translated to clinical use.
Collapse
Affiliation(s)
- Liming Qiu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily Xu
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sydney Chambule
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip LaTourette
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Cecilia D Dyer
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chelsea K Wallace
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rachel Donocoff
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Current Affiliation: Bristol Myers Squibb, Princeton, New Jersey, USA
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy H Lucas
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Surgery, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Horisawa S, Qian B, Nonaka T, Kim K, Kawamata T, Taira T. Intermittent Ultralow-Frequency Low-Amplitude Deep Cerebellar Stimulation for Movement Disorders. Mov Disord Clin Pract 2023; 10:1683-1686. [PMID: 37982108 PMCID: PMC10654827 DOI: 10.1002/mdc3.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 11/21/2023] Open
Affiliation(s)
- Shiro Horisawa
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Bohui Qian
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Taku Nonaka
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Kilsoo Kim
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Takakazu Kawamata
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Takaomi Taira
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| |
Collapse
|
10
|
Cui Z, Lan Y, Chang Y, Liu X, Wang J, Lou X, Wang R. Case report: Short-term efficacy and changes in 18F-FDG-PET with acute multi-target stimulation in spinocerebellar ataxia type 3 (SCA3/MJD). Front Neurol 2023; 14:1246430. [PMID: 37830087 PMCID: PMC10564991 DOI: 10.3389/fneur.2023.1246430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Objective Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a rare neurodegenerative disease for which there is no specific treatment. Very few cases have been treated with single-target deep brain stimulation (DBS), and the results were not satisfactory. We applied multi-target DBS to an SCA3/MJD patient and performed positron emission computed tomography (PET) before and after DBS to explore the short-term clinical therapeutic effect. Materials and methods A 26-year-old right-hand-dominant female with a family history of SCA3/MJD suffered from cerebellar ataxia and dystonia. Genetic testing indicated an expanded CAG trinucleotide repeat in the ATXN3 gene and a diagnosis of SCA3/MJD. Conservative treatment had no obvious effect; therefore, leads were implanted in the bilateral dentate nucleus (DN) and the globus pallidus internus (GPi) and connected to an external stimulation device. The treatment effect was evaluated in a double-blind, randomized protocol in five phases (over a total of 15 days): no stimulation, GPi, DN, or sham stimulation, and combined GPi and DN stimulation. 18F-fluoro-2-deoxy-d-glucose and dopamine transporter PET, Scale for the Assessment and Rating of Ataxia, Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM), Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and SF-36 quality of life scores were compared before and after DBS. Results The Total Scale for the Assessment and Rating of Ataxia scores improved by ~42% (from 24 to 14). The BFMDRS movement scores improved by ~30% (from 40.5 to 28.5). The BFMDRS disability scores improved by ~12.5% (from 16 to 14). Daily living activities were not noticeably improved. Compared with the findings in pre-DBS imaging, 18F-fluoro-2-deoxy-d-glucose uptake increased in the cerebellum, while according to dopamine transporter imaging, there were no significant differences in the bilateral caudate nucleus and putamen. Conclusion Multi-target acute stimulation (DN DBS and GPi DBS) in SCA3/MJD can mildly improve cerebellar ataxia and dystonia and increase cerebellar metabolism.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yina Lan
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Chang
- Department of Nuclear Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xinyun Liu
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ruimin Wang
- Department of Nuclear Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Huang H, Shakkottai VG. Targeting Ion Channels and Purkinje Neuron Intrinsic Membrane Excitability as a Therapeutic Strategy for Cerebellar Ataxia. Life (Basel) 2023; 13:1350. [PMID: 37374132 DOI: 10.3390/life13061350] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In degenerative neurological disorders such as Parkinson's disease, a convergence of widely varying insults results in a loss of dopaminergic neurons and, thus, the motor symptoms of the disease. Dopamine replacement therapy with agents such as levodopa is a mainstay of therapy. Cerebellar ataxias, a heterogeneous group of currently untreatable conditions, have not been identified to have a shared physiology that is a target of therapy. In this review, we propose that perturbations in cerebellar Purkinje neuron intrinsic membrane excitability, a result of ion channel dysregulation, is a common pathophysiologic mechanism that drives motor impairment and vulnerability to degeneration in cerebellar ataxias of widely differing genetic etiologies. We further propose that treatments aimed at restoring Purkinje neuron intrinsic membrane excitability have the potential to be a shared therapy in cerebellar ataxia akin to levodopa for Parkinson's disease.
Collapse
Affiliation(s)
- Haoran Huang
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Vikram G Shakkottai
- Department of Neurology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Figueroa KP, Anderson CJ, Paul S, Dansithong W, Gandelman M, Scoles DR, Pulst SM. Slc9a6 mutation causes Purkinje cell loss and ataxia in the shaker rat. Hum Mol Genet 2023; 32:1647-1659. [PMID: 36621975 PMCID: PMC10162436 DOI: 10.1093/hmg/ddad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
The shaker rat carries a naturally occurring mutation leading to progressive ataxia characterized by Purkinje cell (PC) loss. We previously reported on fine-mapping the shaker locus to the long arm of the rat X chromosome. In this work, we sought to identify the mutated gene underlying the shaker phenotype and confirm its identity by functional complementation. We fine-mapped the candidate region and analyzed cerebellar transcriptomes, identifying a XM_217630.9 (Slc9a6):c.[191_195delinsA] variant in the Slc9a6 gene that segregated with disease. We generated an adeno-associated virus (AAV) targeting Slc9a6 expression to PCs using the mouse L7-6 (L7) promoter. We administered the AAV prior to the onset of PC degeneration through intracerebroventricular injection and found that it reduced the shaker motor, molecular and cellular phenotypes. Therefore, Slc9a6 is mutated in shaker and AAV-based gene therapy may be a viable therapeutic strategy for Christianson syndrome, also caused by Slc9a6 mutation.
Collapse
Affiliation(s)
- Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Collin J Anderson
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
- School of Medical Sciences, University of Sydney, Camperdown NSW 2006, Australia
- School of Biomedical Engineering University of Sydney, Darlington NSW 2008, Australia
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Warunee Dansithong
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
13
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
14
|
Radmard S, Zesiewicz TA, Kuo SH. Evaluation of Cerebellar Ataxic Patients. Neurol Clin 2023; 41:21-44. [PMID: 36400556 PMCID: PMC10354692 DOI: 10.1016/j.ncl.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cerebellar ataxia results from damage to the cerebellum and presents as movement incoordination and variability, gait impairment, and slurred speech. Patients with cerebellar ataxia can also have cognitive and mood changes. Although the identification of causes for cerebellar ataxia can be complex, age of presentation, chronicity, family history, and associated movement disorders may provide diagnostic clues. There are many genetic causes for cerebellar ataxia, and the common autosomal dominant and recessive ataxia are due to genetic repeat expansions. Step-by-step approach will lead to the identification of the causes. Symptomatic and potential disease-modifying therapies may benefit patients with cerebellar ataxia.
Collapse
Affiliation(s)
- Sara Radmard
- Department of Neurology, Columbia University Irving Medical Center, 710 West 168th Street, Floor 3, New York, NY 10032, USA.
| | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida (USF), USF Ataxia Research Center, Tampa, FL, USA; James A Haley Veteran's Hospital, Tampa, FL, USA
| | - Sheng-Han Kuo
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, 650 West 168th Street, Room 305, New York, NY 10032, USA.
| |
Collapse
|
15
|
Loeffler MA, Synofzik M, Cebi I, Klocke P, Hormozi M, Gasser T, Gharabaghi A, Weiss D. Case Report: Deep brain stimulation improves tremor in FGF-14 associated spinocerebellar ataxia. Front Neurol 2022; 13:1048530. [PMID: 36588880 PMCID: PMC9795845 DOI: 10.3389/fneur.2022.1048530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Objectives Spinocerebellar ataxia 27 (SCA 27) is a rare heredodegenerative disorder caused by mutations in the fibroblast growth factor 14 (FGF14) and characterized by early-onset tremor and progressive ataxia later during the disease course. We investigated the effect of deep brain stimulation (DBS) of the ventralis intermedius nucleus of the thalamus (VIM) and subthalamic projections on tremor and ataxia. Methods At baseline, we studied the effects of high-frequency VIM stimulation and low-frequency stimulation of subthalamic projections on tremor and ataxia. The patient then adopted the best individual high-frequency stimulation programme at daytime and either 30 Hz-stimulation of the subthalamic contacts or StimOFF at night during two separate 5-weeks follow-up intervals. Both patient and rater were blinded to the stimulation settings. Results High-frequency stimulation of the VIM effectively attenuated tremor. At follow-up, intermittent 30 Hz-stimulation at night resulted in a superior tremor response compared to StimOFF at night. Ataxia was not affected. Discussion Stimulation of the VIM and adjacent subthalamic projections effectively attenuated tremor in a patient with confirmed SCA 27. Cycling between daytime high-frequency and night-time low-frequency stimulation led to a more sustained tremor response. This suggests to study in future if low-frequency stimulation of the subthalamic projection fibers may help overcome tolerance of tremor that is observed as a long-term limitation of VIM-DBS.
Collapse
Affiliation(s)
- Moritz A. Loeffler
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,Moritz A. Loeffler
| | - Matthis Synofzik
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Idil Cebi
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Philipp Klocke
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mohammad Hormozi
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases, Centre for Neurology University Hospital and University of Tübingen, Tübingen, Germany,Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany,*Correspondence: Daniel Weiss
| |
Collapse
|
16
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|
17
|
Oliveira JBL, Martinez ARM, França MC. Pharmacotherapy for the management of the symptoms of Machado-Joseph Disease. Expert Opin Pharmacother 2022; 23:1687-1694. [PMID: 36254604 DOI: 10.1080/14656566.2022.2135432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Machado-Joseph disease or spinocerebellar ataxia type 3 (SCA3/MJD) is the leading cause of autosomal dominant ataxia worldwide. This is a slowly progressive, but very disabling disorder. Ataxia is the main clinical feature, but additional motor and non-motor manifestations may be found. Many of these manifestations are amenable to pharmacological treatments, which may impact the quality of life of affected subjects. AREAS COVERED Authors review available literature on both disease-modifying and symptomatic pharmacological therapies for SCA3/MJD. Discussion is stratified into motor (ataxic and non-ataxic syndromes) and non-motor manifestations. Ongoing clinical trials and future perspectives are also discussed in the manuscript. EXPERT OPINION Symptomatic treatment is the mainstay of clinical care and should be tailored for each patient with SCA3/MJD. Management of ataxia is still a challenging task, but relief (at least partial) of dystonia, pain/cramps, fatigue, and sleep disorders is an achievable goal for many patients. Even though there are no disease-modifying treatments so far, recent advances in understanding the biology of disease and international collaborations of clinical researchers are now paving the way for a new era where more clinical trials will be available for this devastating disorder.
Collapse
Affiliation(s)
| | - Alberto R M Martinez
- Department of Neurology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | | |
Collapse
|
18
|
Khatoun A, Asamoah B, Boogers A, Mc Laughlin M. Epicranial Direct Current Stimulation Suppresses Harmaline Tremor in Rats. Neuromodulation 2022:S1094-7159(22)01223-5. [DOI: 10.1016/j.neurom.2022.08.448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
|
19
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|