1
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Nakisli S, Fanelli K, LaComb J, Arnold LJ, Nielsen CM. CNS resident macrophages exhibit region-specific states and immunogenic responses during Rbpj-deficient brain arteriovenous malformation. Sci Rep 2025; 15:3932. [PMID: 39890825 PMCID: PMC11785973 DOI: 10.1038/s41598-025-86150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
Microglia are heterogeneous macrophage cells that serve as the central nervous system's resident immune cells. During neuro-related diseases, CNS resident macrophages change their molecular, cellular, and functional properties-that collectively define "states"-in response to specific neural perturbations. Neurovascular diseases elicit state changes, by promoting increased vascular permeability among microvessels and thus altering blood-brain barrier integrity. Here, we used a mouse model of brain arteriovenous malformation (bAVM)-mediated by endothelial loss of Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)-to investigate changes to brain resident macrophage states during neurovascular disease pathogenesis. We found increased area of Ionized calcium-binding adapter molecule 1 (Iba1) expression in Rbpj-deficient bAVM tissue, as well as Iba1 + cell hypertrophy, increased cell number, and hyperproliferation within areas of increased Iba1 + density. Hypertrophic cells had increased cell body areas and decreased process length, suggesting a transition in surveillance state. Gene expression data revealed region-specific molecular changes to Iba + cells, suggestive of altered metabolic activity. CNS resident macrophages isolated from cortical and cerebellar regions showed profiles consistent with cytokine-associated immunogenic responses and an immunovigilant pathogen-recognition response, respectively. Thus, our findings demonstrate region-specific changes to CNS resident macrophages during Rbpj-deficient bAVM.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Kayleigh Fanelli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Julia LaComb
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
| | - Lily J Arnold
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Honors Tutorial College Biological Sciences Program, Ohio University, Athens, OH, USA
| | - Corinne M Nielsen
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
| |
Collapse
|
3
|
Li D, Cao S, Chen Y, Liu Y, Huo K, Shi Z, Han S, Wang L. Distribution and functional significance of KLF15 in mouse cerebellum. Mol Brain 2025; 18:3. [PMID: 39838470 PMCID: PMC11749119 DOI: 10.1186/s13041-025-01172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Kruppel-like factor 15 (KLF15), a member of the KLF family, is closely involved in many biological processes. However, the mechanism by which KLF15 regulates neural development is still unclear. Considering the complexity and importance of neural network development, in this study, we investigated the potent regulatory role of KLF15 in neural network development. KLF15 was detected highly expressed in the cerebellum and enriched in Purkinje cells, with a significant increase in KLF15 expression between 15 and 20 days of neural development. Knockdown of KLF15 led to loss of Purkinje cells and impaired motility in mice. Therefore, our study aims to elucidate the relationship between KLF15 and Purkinje cells in mice, may provide a new research idea for the developmental mechanism of the mouse cerebellum.
Collapse
Affiliation(s)
- Dan Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Shuijing Cao
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yanrong Chen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yueyan Liu
- Department of Basic Medicine, Department of Clinical Medicine, West Anhui Health Vocational College, Liuan, Anhui, 237000, China
| | - Kugeng Huo
- Cyagen Biosciences (Guangzhou) Inc., Guangzhou, Guangdong, 510663, China
| | - Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, China.
| | - Liecheng Wang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
4
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
5
|
Adhicary S, Fanelli K, Nakisli S, Ward B, Pearce I, Nielsen CM. Rbpj Deficiency Disrupts Vascular Remodeling via Abnormal Apelin and Cdc42 (Cell Division Cycle 42) Activity in Brain Arteriovenous Malformation. Stroke 2023; 54:1593-1605. [PMID: 37051908 PMCID: PMC10213117 DOI: 10.1161/strokeaha.122.041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Brain arteriovenous malformations (bAVM) are characterized by enlarged blood vessels, which direct blood through arteriovenous shunts, bypassing the artery-capillary-vein network and disrupting blood flow. Clinically, bAVM treatments are invasive and not routinely applicable. There is critical need to understand mechanisms of bAVM pathologies and develop pharmacological therapies. METHODS We used an in vivo mouse model of Rbpj-mediated bAVM, which develops pathologies in the early postnatal period and an siRNA in vitro system to knockdown RBPJ in human brain microvascular endothelial cells (ECs). To understand molecular events regulated by endothelial Rbpj, we conducted RNA-Seq and chromatin immunoprecipitation-Seq analyses from isolated brain ECs. RESULTS Rbpj-deficient (mutant) brain ECs acquired abnormally rounded shape (with no change to cell area), altered basement membrane dynamics, and increased endothelial cell density along arteriovenous shunts, compared to controls, suggesting impaired remodeling of neonatal brain vasculature. Consistent with impaired endothelial cell dynamics, we found increased Cdc42 (cell division cycle 42) activity in isolated mutant ECs, suggesting that Rbpj regulates small GTPase (guanosine triphosphate hydrolase)-mediated cellular functions in brain ECs. siRNA-treated, RBPJ-deficient human brain ECs displayed increased Cdc42 activity, disrupted cell polarity and focal adhesion properties, and impaired migration in vitro. RNA-Seq analysis from isolated brain ECs identified differentially expressed genes in mutants, including Apelin, which encodes a ligand for G protein-coupled receptor signaling known to influence small GTPase activity. Chromatin immunoprecipitation-Seq analysis revealed chromatin loci occupied by Rbpj in brain ECs that corresponded to G-protein and Apelin signaling molecules. In vivo administration of a competitive peptide antagonist against the Apelin receptor (Aplnr/Apj) attenuated Cdc42 activity and restored endothelial cell morphology and arteriovenous connection diameter in Rbpj-mutant brain vessels. CONCLUSIONS Our data suggest that endothelial Rbpj promotes rearrangement of brain ECs during cerebrovascular remodeling, through Apelin/Apj-mediated small GTPase activity, and prevents bAVM. By inhibiting Apelin/Apj signaling in vivo, we demonstrated pharmacological prevention of Rbpj-mediated bAVM.
Collapse
Affiliation(s)
- Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, OH
| | - Kayleigh Fanelli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
| | - Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
| | - Brittney Ward
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
- Honors Tutorial College, Ohio University, Athens, OH
| | - Isaac Pearce
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH
- Molecular and Cellular Biology Program, Ohio University, Athens, OH
| |
Collapse
|
6
|
Nielsen CM, Zhang X, Raygor K, Wang S, Bollen AW, Wang RA. Endothelial Rbpj deletion normalizes Notch4-induced brain arteriovenous malformation in mice. J Exp Med 2022; 220:213722. [PMID: 36441145 PMCID: PMC9700524 DOI: 10.1084/jem.20211390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Upregulation of Notch signaling is associated with brain arteriovenous malformation (bAVM), a disease that lacks pharmacological treatments. Tetracycline (tet)-regulatable endothelial expression of constitutively active Notch4 (Notch4*tetEC) from birth induced bAVMs in 100% of mice by P16. To test whether targeting downstream signaling, while sustaining the causal Notch4*tetEC expression, induces AVM normalization, we deleted Rbpj, a mediator of Notch signaling, in endothelium from P16, by combining tet-repressible Notch4*tetEC with tamoxifen-inducible Rbpj deletion. Established pathologies, including AV connection diameter, AV shunting, vessel tortuosity, intracerebral hemorrhage, tissue hypoxia, life expectancy, and arterial marker expression were improved, compared with Notch4*tetEC mice without Rbpj deletion. Similarly, Rbpj deletion from P21 induced advanced bAVM regression. After complete AVM normalization induced by repression of Notch4*tetEC, virtually no bAVM relapsed, despite Notch4*tetEC re-expression in adults. Thus, inhibition of endothelial Rbpj halted Notch4*tetEC bAVM progression, normalized bAVM abnormalities, and restored microcirculation, providing proof of concept for targeting a downstream mediator to treat AVM pathologies despite a sustained causal molecular lesion.
Collapse
Affiliation(s)
- Corinne M. Nielsen
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Xuetao Zhang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Kunal Raygor
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Shaoxun Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Andrew W. Bollen
- Department of Pathology, University of California, San Francisco, San Francisco, CA
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Department of Surgery, University of California, San Francisco, San Francisco, CA,Correspondence to Rong A. Wang:
| |
Collapse
|
7
|
Selhorst S, Nakisli S, Kandalai S, Adhicary S, Nielsen CM. Pathological pericyte expansion and impaired endothelial cell-pericyte communication in endothelial Rbpj deficient brain arteriovenous malformation. Front Hum Neurosci 2022; 16:974033. [PMID: 36147294 PMCID: PMC9485665 DOI: 10.3389/fnhum.2022.974033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Pericytes, like vascular smooth muscle cells, are perivascular cells closely associated with blood vessels throughout the body. Pericytes are necessary for vascular development and homeostasis, with particularly critical roles in the brain, where they are involved in regulating cerebral blood flow and establishing the blood-brain barrier. A role for pericytes during neurovascular disease pathogenesis is less clear—while some studies associate decreased pericyte coverage with select neurovascular diseases, others suggest increased pericyte infiltration in response to hypoxia or traumatic brain injury. Here, we used an endothelial loss-of-function Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)/Notch mediated mouse model of brain arteriovenous malformation (AVM) to investigate effects on pericytes during neurovascular disease pathogenesis. We tested the hypothesis that pericyte expansion, via morphological changes, and Platelet-derived growth factor B/Platelet-derived growth factor receptor β (Pdgf-B/Pdgfrβ)-dependent endothelial cell-pericyte communication are affected, during the pathogenesis of Rbpj mediated brain AVM in mice. Our data show that pericyte coverage of vascular endothelium expanded pathologically, to maintain coverage of vascular abnormalities in brain and retina, following endothelial deletion of Rbpj. In Rbpj-mutant brain, pericyte expansion was likely attributed to cytoplasmic process extension and not to increased pericyte proliferation. Despite expanding overall area of vessel coverage, pericytes from Rbpj-mutant brains showed decreased expression of Pdgfrβ, Neural (N)-cadherin, and cluster of differentiation (CD)146, as compared to controls, which likely affected Pdgf-B/Pdgfrβ-dependent communication and appositional associations between endothelial cells and pericytes in Rbpj-mutant brain microvessels. By contrast, and perhaps by compensatory mechanism, endothelial cells showed increased expression of N-cadherin. Our data identify cellular and molecular effects on brain pericytes, following endothelial deletion of Rbpj, and suggest pericytes as potential therapeutic targets for Rbpj/Notch related brain AVM.
Collapse
Affiliation(s)
- Samantha Selhorst
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Shruthi Kandalai
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Honors Tutorial College, Ohio University, Athens, OH, United States
| | - Subhodip Adhicary
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Translational Biomedical Sciences Program, Ohio University, Athens, OH, United States
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- *Correspondence: Corinne M. Nielsen,
| |
Collapse
|