1
|
Kapri A, Singh D, Onteru SK. Deciphering Aflatoxin B1 affected critical molecular pathways governing cancer: A bioinformatics study using CTD and PANTHER databases. Mycotoxin Res 2025; 41:93-111. [PMID: 39417919 DOI: 10.1007/s12550-024-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Aflatoxin B1 (AFB1) is a fungal toxin consistently found as a contaminant in food products such as cereals, nuts, spices, and oilseeds. AFB1 exposure can lead to hepatotoxicity, cancer, immune suppression, reproductive deficiency, nutritional dysfunction, and growth impairment. AFB1 has also been listed as one of the most potent human carcinogens by the International Agency for Research on Cancer. Although the correlation between AFB1 exposure and cancer initiation and progression is already reported in the literature, very little information is available about what molecular pathways are affected during cancer development. Considering this, we first selected AFB1-responsive genes involved in five deadliest cancer types including lung, colorectal, liver, stomach, and breast cancers from the Comparative Toxicogenomics Database (CTD). Then, using the PANTHER database, a statistical overrepresentation test was performed to identify the significantly affected pathways in each cancer type. The gonadotropin-releasing hormone receptor (GnRHR) pathway, the CCKR signaling pathway, and angiogenesis were found to be the most affected pathways in lung, breast, liver, and stomach cancers. In addition, AFB1 toxicity majorly impacted apoptosis and Wnt signaling pathways in liver and stomach cancers, respectively. Moreover, the most affected pathways in colorectal cancer were the Wnt, CCKR, and GnRHR pathways. Furthermore, gene analysis was also performed for the most affected pathways associated with each cancer and identified thirteen key genes (e.g., FOS, AKT1) that may serve as biological markers for a particular type of AFB1-induced cancer as well as for in vitro AFB1 toxicological studies using specific cancer cell lines.
Collapse
Affiliation(s)
- Ankita Kapri
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
2
|
Xia Y, Wang X, Lin J, Li Y, Dong L, Liang X, Wang HY, Ding X, Wang Q. Gastric cancer fibroblasts affect the effect of immunotherapy and patient prognosis by inducing micro-vascular production. Front Immunol 2024; 15:1375013. [PMID: 39040110 PMCID: PMC11260615 DOI: 10.3389/fimmu.2024.1375013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Immunotherapy is critical for treating many cancers, and its therapeutic success is linked to the tumor microenvironment. Although anti-angiogenic drugs are used to treat gastric cancer (GC), their efficacy remains limited. Cancer-associated fibroblast (CAF)-targeted therapies complement immunotherapy; however, the lack of CAF-specific markers poses a challenge. Therefore, we developed a CAF angiogenesis prognostic score (CAPS) system to evaluate prognosis and immunotherapy response in patients with GC, aiming to improve patient stratification and treatment efficacy. Methods We assessed patient-derived GC CAFs for promoting angiogenesis using EdU, cell cycle, apoptosis, wound healing, and angiogenesis analysis. Results We then identified CAF-angiogenesis-associated differentially-expressed genes, leading to the development of CAPS, which included THBS1, SPARC, EDNRA, and VCAN. We used RT-qPCR to conduct gene-level validation, and eight GEO datasets and the HPA database to validate the CAPS system at the gene and protein levels. Six independent GEO datasets were utilized for validation. Overall survival time was shorter in the high- than the low-CAPS group. Immune microenvironment and immunotherapy response analysis showed that the high-CAPS group had a greater tendency toward immune escape and reduced immunotherapy efficacy than the low-CAPS group. Discussion CAPS is closely associated with GC prognosis and immunotherapy outcomes. It is therefore an independent predictor of GC prognosis and immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Xia
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lidan Dong
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Liang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huai-Yu Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Wang
- National Institute of Traditional Chinese Medicine (TCM) Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Macedo Silva V, Ferreira AI, Lima Capela T, Xavier S, Boal Carvalho P, Cotter J. BEST-J Score: Validation of a Predicting Model for Delayed Bleeding After Gastric Endoscopic Submucosal Dissection on a European Sample. Dig Dis Sci 2024; 69:1372-1379. [PMID: 38353789 DOI: 10.1007/s10620-024-08293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Delayed bleeding (DB) is a possible adverse event following gastric endoscopic submucosal dissection (ESD). The BEST-J score was created as a risk prediction model for DB following gastric ESD, but is yet to be validated in Western populations. AIMS We aimed to validate the BEST-J score on a European sample and to perform a subgroup analysis according to histological classification. METHODS Retrospective study of all consecutive patients undergoing gastric ESD on a European Endoscopic Unit. DB was defined as hemorrhage with clinical symptoms and confirmed by emergency endoscopy from the time of completion to 28 days after ESD. BEST-J score was calculated in each patient and confronted with the outcome (DB). RESULTS Final sample included 161 patients. From these, 10 (6.2%) presented DB following ESD, with a median time to bleeding of 7 days (IQR 6.8). BEST-J score presented an excellent accuracy predicting DB in our sample, with an AUC = 0.907 (95%CI 0.801-1.000; p < 0.001). Subgroup analysis by histological classification proved that the discriminative power was still excellent for each grade: low-grade dysplasia-AUC = 0.970 (p < 0.001); high-grade dysplasia-AUC = 0.874 (p < 0.001); early gastric cancer-AUC = 0.881 (p < 0.001). The optimal cut-off value to predict DB was a BEST-J score ≥ 3, which matches the cut-off value for high-risk of bleeding in the original investigation. CONCLUSIONS The BEST-J score still presents excellent accuracy in risk stratification for post-ESD bleeding in European individuals. Thus, this score may help to guide which patients benefit the most from prophylactic therapies following gastric ESD in this setting.
Collapse
Affiliation(s)
- Vítor Macedo Silva
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ana Isabel Ferreira
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Tiago Lima Capela
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sofia Xavier
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro Boal Carvalho
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - José Cotter
- Gastroenterology Department, Hospital da Senhora da Oliveira, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
4
|
Zhang G, Ji P, Xia P, Song H, Guo Z, Hu X, Guo Y, Yuan X, Song Y, Shen R, Wang D. Identification and targeting of cancer-associated fibroblast signature genes for prognosis and therapy in Cutaneous melanoma. Comput Biol Med 2023; 167:107597. [PMID: 37875042 DOI: 10.1016/j.compbiomed.2023.107597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play pivotal roles in tumor invasion and metastasis. However, studies on CAF biomarkers in Cutaneous Melanoma (CM) are still scarce. This study aimed to explore the potential CAF biomarkers in CM, propose the potential therapeutic targets, and provide new insights for targeted therapy of CAFs in CM. METHODS We utilized weighted gene co-expression network analysis to identify CAF signature genes in CM, and conducted comprehensive bioinformatics analysis on the CAF risk score established by these genes. Moreover, single-cell sequencing analysis, spatial transcriptome analysis, and cell experiments were utilized for verifying the expression and distribution pattern of signature genes. Furthermore, molecular docking was employed to screen potential target drugs. RESULTS FBLN1 and COL5A1, two crucial CAF signature genes, were screened to establish the CAF risk score. Subsequently, a comprehensive bioinformatic analysis of the CAF risk score revealed that high-risk score group was significantly enriched in pathways associated with tumor progression. Besides, CAF risk score was significantly negatively correlated with clinical prognosis, immunotherapy response, and tumor mutational burden in CM patients. In addition, FBLN1 and COL5A1 were further identified as CAF-specific biomarkers in CM by multi-omics analysis and experimental validation. Eventually, based on these two targets, Mifepristone and Dexamethasone were screened as potential anti-CAFs drugs. CONCLUSION The findings indicated that FBLN1 and COL5A1 were the CAF signature genes in CM, which were associated with the progression, treatment, and prognosis of CM. The comprehensive exploration of CAF signature genes is expected to provide new insight for clinical CM therapy.
Collapse
Affiliation(s)
- Guokun Zhang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Pengfei Ji
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Peng Xia
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Haoyun Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Zhao Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xiaohui Hu
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanan Guo
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Xinyi Yuan
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Yanfeng Song
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Rong Shen
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China.
| | - Degui Wang
- School of Basic Medical Sciences, Lanzhou University, Gansu, 730000, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu, 730000, China.
| |
Collapse
|
5
|
Repetto O, Vettori R, Steffan A, Cannizzaro R, De Re V. Circulating Proteins as Diagnostic Markers in Gastric Cancer. Int J Mol Sci 2023; 24:16931. [PMID: 38069253 PMCID: PMC10706891 DOI: 10.3390/ijms242316931] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a highly malignant disease affecting humans worldwide and has a poor prognosis. Most GC cases are detected at advanced stages due to the cancer lacking early detectable symptoms. Therefore, there is great interest in improving early diagnosis by implementing targeted prevention strategies. Markers are necessary for early detection and to guide clinicians to the best personalized treatment. The current semi-invasive endoscopic methods to detect GC are invasive, costly, and time-consuming. Recent advances in proteomics technologies have enabled the screening of many samples and the detection of novel biomarkers and disease-related signature signaling networks. These biomarkers include circulating proteins from different fluids (e.g., plasma, serum, urine, and saliva) and extracellular vesicles. We review relevant published studies on circulating protein biomarkers in GC and detail their application as potential biomarkers for GC diagnosis. Identifying highly sensitive and highly specific diagnostic markers for GC may improve patient survival rates and contribute to advancing precision/personalized medicine.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberto Vettori
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy; (R.V.); (A.S.)
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
6
|
Gu L, Ding D, Wei C, Zhou D. Cancer-associated fibroblasts refine the classifications of gastric cancer with distinct prognosis and tumor microenvironment characteristics. Front Oncol 2023; 13:1158863. [PMID: 37404754 PMCID: PMC10316023 DOI: 10.3389/fonc.2023.1158863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/21/2023] [Indexed: 07/06/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) are essential tumoral components of gastric cancer (GC), contributing to the development, therapeutic resistance and immune-suppressive tumor microenvironment (TME) of GC. This study aimed to explore the factors related to matrix CAFs and establish a CAF model to evaluate the prognosis and therapeutic effect of GC. Methods Sample information from the multiply public databases were retrieved. Weighted gene co-expression network analysis was used to identify CAF-related genes. EPIC algorithm was used to construct and verify the model. Machine-learning methods characterized CAF risk. Gene set enrichment analysis was employed to elucidate the underlying mechanism of CAF in the development of GC. Results A three-gene (GLT8D2, SPARC and VCAN) prognostic CAF model was established, and patients were markedly divided according to the riskscore of CAF model. The high-risk CAF clusters had significantly worse prognoses and less significant responses to immunotherapy than the low-risk group. Additionally, the CAF risk score was positively associated with CAF infiltration in GC. Moreover, the expression of the three model biomarkers were significantly associated with the CAF infiltration. GSEA revealed significant enrichment of cell adhesion molecules, extracellular matrix receptors and focal adhesions in patients at a high risk of CAF. Conclusion The CAF signature refines the classifications of GC with distinct prognosis and clinicopathological indicators. The three-gene model could effectively aid in determining the prognosis, drug resistance and immunotherapy efficacy of GC. Thus, this model has promising clinical significance for guiding precise GC anti-CAF therapy combined with immunotherapy.
Collapse
Affiliation(s)
- Lei Gu
- Department of General Surgery, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dan Ding
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Cuicui Wei
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Donglei Zhou
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Monteiro JRB, Rodrigues RP, Mazzuco AC, de Cassia Ribeiro Gonçalves R, Bernardino AF, Kuster RM, Kitagawa RR. In Vitro and In Silico Evaluation of Red Algae Laurencia obtusa Anticancer Activity. Mar Drugs 2023; 21:318. [PMID: 37367643 DOI: 10.3390/md21060318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Studies estimate that nearly 2 million new cases of gastric cancer will occur worldwide during the next two decades, which will increase mortality associated with cancer and the demand for new treatments. Marine algae of the Laurencia genus have secondary metabolites known for their cytotoxic action, such as terpenes and acetogenins. The species Laurencia obtusa has demonstrated cytotoxicity against many types of tumors in previous analyses. In this study, we determined the structure of terpenes, acetogenins, and one fatty acid of Laurencia using mass spectrometry (ESI-FT-ICR/MS). In vitro cytotoxicity assays were performed with adenocarcinoma gastric cells (AGS) to select the most cytotoxic fraction of the crude extract of L. obtusa. The Hex:AcOEt fraction was the most cytotoxic, with IC50 9.23 µg/mL. The selectivity index of 15.56 shows that the Hex:AcOEt fraction is selective to cancer cells. Compounds obtained from L. obtusa were tested by the analysis of crystallographic complexes. Molecular docking calculations on the active site of the HIF-2α protein showed the highest affinity for sesquiterpene chermesiterpenoid B, identified from HEX:AcOEt fraction, reaching a score of 65.9. The results indicate that L. obtusa presents potential compounds to be used in the treatment of neoplasms, such as gastric adenocarcinoma.
Collapse
Affiliation(s)
| | - Ricardo Pereira Rodrigues
- Graduate Program of Pharmaceutical Sciences, Federal University of Espirito Santo, Vitoria 29047-105, Brazil
| | - Ana Carolina Mazzuco
- Department of Oceanography and Ecology, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| | | | - Angelo Fraga Bernardino
- Department of Oceanography and Ecology, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| | - Ricardo Machado Kuster
- Graduate Program of Pharmaceutical Sciences, Federal University of Espirito Santo, Vitoria 29047-105, Brazil
- Graduate Program of Chemistry, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| | - Rodrigo Rezende Kitagawa
- Graduate Program of Pharmaceutical Sciences, Federal University of Espirito Santo, Vitoria 29047-105, Brazil
- Graduate Program of Chemistry, Federal University of Espirito Santo, Vitoria 29075-910, Brazil
| |
Collapse
|
8
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
9
|
Qu J, He X, Luo Y, Yu P, Chen Y, Liu J, Wang X, Wang C, Liang T, Bai Y, Han Y, Man L, Leng C, Zhou C, He L, Wang X, Liu Y, Qu X. Evaluation of second-line apatinib plus irinotecan as a treatment for advanced gastric adenocarcinoma or gastroesophageal conjunction adenocarcinoma: a prospective, multicenter phase II trial. Front Oncol 2023; 13:1072943. [PMID: 37168383 PMCID: PMC10166633 DOI: 10.3389/fonc.2023.1072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Objective Apatinib and irinotecan are used as systematic therapies for advanced gastric adenocarcinoma (GAC) and gastroesophageal junction adenocarcinoma (GEJA), while the evidence for their combination as second-line therapy in these patients is limited. This study aimed to evaluate the efficacy and safety of second-line apatinib plus irinotecan for the treatment of GAC and GEJA. Methods In this prospective, multicenter phase II clinical study, 28 patients with advanced GAC or GEJA who received second-line apatinib plus irinotecan were recruited. Results In total, 1 (3.6%) patient achieved complete response, 7 (25.0%) patients achieved partial response, 13 (46.4%) patients had stable disease, and 4 (14.3%) patients showed progressive disease, while clinical response was not evaluable or not assessed in 3 (10.7%) patients. The objective response rate and disease control rate were 28.6% and 75.0%, respectively. Meanwhile, the median (95% confidence interval (CI)) progression-free survival (PFS) was 4.5 (3.9-5.1) months, and the median (95% CI) overall survival (OS) was 11.3 (7.4-15.1) months. By multivariate Cox regression analysis, male sex, liver metastasis, and peritoneal metastasis were independently associated with worse PFS or OS, while treatment duration ≥5 months was independently associated with better OS. In terms of the safety profile, 89.3% of patients experienced treatment-emergent adverse events of any grade, among which 82.1% of patients had grade 1-2 adverse events and 64.3% of patients had grade 3-4 adverse events. Conclusion Apatinib plus irinotecan as second-line therapy achieves a good treatment response and satisfactory survival with tolerable safety in patients with advanced GAC or GEJA.
Collapse
Affiliation(s)
- Jinglei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
| | - Xin He
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
| | - Ying Luo
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
| | - Ping Yu
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
| | - Ying Chen
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Chang Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Man
- Department of Medical Oncology, Anshan Cancer Hospital, Anshan, China
| | - Chuanchun Leng
- Department of Medical Oncology, The Central Hospital of Anshan, Anshan, China
| | - Caiyun Zhou
- The Fourth Oncology Departments, Huludao Central Hospital, Huludao, China
| | - Lijie He
- Department of Medical Oncology, People’s Hospital of Liaoning Province, Shenyang, China
| | - Xin Wang
- Department of Medical Oncology, General Hospital of Benxi Iron and Steel Industry Group of Liaoning Health Industry Group, Benxi, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiujuan Qu, ; Yunpeng Liu,
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, China
- *Correspondence: Xiujuan Qu, ; Yunpeng Liu,
| |
Collapse
|
10
|
The FOXO family of transcription factors: key molecular players in gastric cancer. J Mol Med (Berl) 2022; 100:997-1015. [PMID: 35680690 DOI: 10.1007/s00109-022-02219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed cancer worldwide and the third leading cause of cancer-related death with an oncological origin. Despite its decline in incidence and mortality in recent years, GC remains a global public problem that seriously threatens patients' health and lives. The forkhead box O proteins (FOXOs) are a family of evolutionarily conserved transcription factors (TFs) with crucial roles in cell fate decisions. In mammals, the FOXO family consists of four members FOXO1, 3a, 4, and 6. FOXOs play crucial roles in a variety of biological processes, such as development, metabolism, and stem cell maintenance, by regulating the expression of their target genes in space and time. An accumulating amount of evidence has shown that the dysregulation of FOXOs is involved in GC progression by affecting multiple cellular processes, including proliferation, apoptosis, invasion, metastasis, cell cycle progression, carcinogenesis, and resistance to chemotherapeutic drugs. In this review, we systematically summarize the recent findings on the regulatory mechanisms of FOXO family expression and activity and elucidate its roles in GC progression. Moreover, we also highlight the clinical implications of FOXOs in GC treatment.
Collapse
|
11
|
Iwasa S, Bando H, Piao Y, Yoshizawa K, Yamaguchi K. The clinical position of ramucirumab-containing regimens for advanced gastric cancer: a review of clinical trial data. Future Oncol 2022; 18:2709-2721. [PMID: 35703103 DOI: 10.2217/fon-2022-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite the availability of multiple treatment options, the prognosis for advanced gastric cancer (AGC) remains poor and more effective treatment options are needed. Ramucirumab is an established and recommended second-line treatment for AGC. In recently completed and ongoing clinical trials, ramucirumab has been investigated in combination with new therapeutics and in new clinical settings to address the unmet treatment needs of AGC. In this review, the findings of recent clinical trials are discussed. The aims of this review are to present the current picture of ramucirumab-containing regimens in AGC and offer practical guidance on the clinical position and target populations of ramucirumab-containing regimens in light of emerging therapeutic developments.
Collapse
Affiliation(s)
- Satoru Iwasa
- Gastrointestinal Medical Oncology Division, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Hideaki Bando
- Department of Gastroenterology & Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, 277-0882, Japan
| | - Yongzhe Piao
- Medicines Development Unit-Japan, Eli Lilly Japan K.K., Kobe, 651-0086, Japan
| | | | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 135-0063, Japan
- Department of Gastroenterology, Saitama Cancer Center, Saitama, 362-0806, Japan
| |
Collapse
|
12
|
Ooki A, Yamaguchi K. The dawn of precision medicine in diffuse-type gastric cancer. Ther Adv Med Oncol 2022; 14:17588359221083049. [PMID: 35281349 PMCID: PMC8908406 DOI: 10.1177/17588359221083049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The histology- and morphology-based Lauren classification of GC has been widely used for over 50 years in clinical practice. The Lauren classification divides GC into intestinal and diffuse types, which have distinct etiology, molecular profiles, and clinicopathological features. Diffuse-type GC (DGC) accounts for approximately 30% of GCs. Tumor cells lack adhesion and infiltrate the stroma as single cells or small subgroups, leading to easy dissemination in the abdominal cavity. Clinically, DGC has aggressive traits with a high risk of recurrence and metastasis, which results in unfavorable prognosis. Although systemic chemotherapy is the main therapeutic approach for recurrent or metastatic GC patients, clinical benefits are limited for patients with DGC. Therefore, it is urgent to develop effective therapeutic strategies for DGC patients. Considerable research studies have characterized the molecular and genomic landscape of DGC, of which tight junction protein claudin-18 isoform 2 (CLDN18.2) and fibroblast growing factors receptor-2 isoform IIIb (FGFR2-IIIb) are the most attractive targets because of their close association with DGC. Recently, the impressive results of two phase II FAST and FIGHT trials demonstrate proof-of-concept, suggesting that anti-CLDN18.2 antibody (zolbetuximab) and FGFR2-IIIb antibody (bemarituzumab) are promising approaches for patients with CLDN18.2-positive and FGFR2-IIIb-positive GC, respectively. In this review, we summarize the clinicopathological features and molecular profiles of DGC and highlight a potential therapeutic target based on the findings of pivotal clinical trials.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
13
|
Senchukova MA. Issues of origin, morphology and clinical significance of tumor microvessels in gastric cancer. World J Gastroenterol 2021; 27:8262-8282. [PMID: 35068869 PMCID: PMC8717017 DOI: 10.3748/wjg.v27.i48.8262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the structure of mortality from malignant neoplasms. Improving treatment outcomes for this pathology largely depends on understanding the pathogenesis and biological characteristics of GC, including the identification and characterization of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that the main cause of death from malignant neoplasms and GC, in particular, is tumor metastasis. Given that angiogenesis is a critical process for tumor growth and metastasis, it is now considered an important marker of disease prognosis and sensitivity to anticancer therapy. In the presented review, modern concepts of the mechanisms of tumor vessel formation and the peculiarities of their morphology are considered; data on numerous factors influencing the formation of tumor microvessels and their role in GC progression are summarized; and various approaches to the classification of tumor vessels, as well as the methods for assessing angiogenesis activity in a tumor, are highlighted. Here, results from studies on the prognostic and predictive significance of tumor microvessels in GC are also discussed, and a new classification of tumor microvessels in GC, based on their morphology and clinical significance, is proposed for consideration.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460021, Russia
| |
Collapse
|
14
|
Curcumin Administered in Combination with Glu-GNPs Induces Radiosensitivity in Transplanted Tumor MDA-MB-231-luc Cells in Nude Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9262453. [PMID: 34825004 PMCID: PMC8610687 DOI: 10.1155/2021/9262453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Curcumin is a type of plant polyphenol extracted from Curcuma longa L. rhizome, which demonstrates antitumor activity in breast cancer cells in vitro. To investigate the combined effect and possible mechanism of curcumin and glucose-gold nanoparticles (Glu-GNPs), the radiosensitivity of breast carcinoma xenografts was assessed in nude mice. MDA-MB-231 cells labeled with firefly luciferase were inoculated into the mammary fatty pads of nude mice to establish a transplantation tumor model of human breast cancer. The tumor-bearing mice were treated with different drugs (curcumin, Glu-GNPs, and cisplatin) for 3 weeks prior to radiotherapy. The body weights and tumor volumes of the mice were measured in regular intervals. Tumor bioluminescence intensity was determined in real-time using an in vivo bioluminescence imaging system to monitor tumor growth. Transplanted tumor tissue samples were taken for hematoxylin and eosin (HE) staining, and the expression of VEGF, HSP90, HIF-1α, and MMP9 was evaluated via reverse transcription-quantitative PCR or immunohistochemistry. The results revealed that the breast tumor-bearing nude mouse model was successfully established, as evidenced by a stable expression of luciferase. Curcumin inhibited the growth of tumors without causing significant weight loss in mice. Furthermore, additive inhibition was demonstrated when curcumin was administered in combination with Glu-GNPs and irradiation. Tumor bioluminescence intensity was decreased in the model group following curcumin, Glu-GNPs, and irradiation treatment. HE staining demonstrated that transplanted tumors were malignant, with necrotic tissue exhibited centrally. It was concluded that curcumin administered in combination with Glu-GNPs and X-ray irradiation could reduce the protein expression of VEGF, HSP90, HIF-1α, and MMP9 in tumor tissue when compared with the model group. Curcumin and Glu-GNPs administered with X-ray irradiation significantly inhibited tumor growth and induced radiosensitivity, which may be associated with the inhibition of angiogenesis in tumor tissue.
Collapse
|
15
|
Zheng H, Liu H, Li H, Dou W, Wang X. Weighted Gene Co-expression Network Analysis Identifies a Cancer-Associated Fibroblast Signature for Predicting Prognosis and Therapeutic Responses in Gastric Cancer. Front Mol Biosci 2021; 8:744677. [PMID: 34692770 PMCID: PMC8531434 DOI: 10.3389/fmolb.2021.744677] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Cancer-associated fibroblasts (CAFs) are the most prominent cellular components in gastric cancer (GC) stroma that contribute to GC progression, treatment resistance, and immunosuppression. This study aimed at exploring stromal CAF-related factors and developing a CAF-related classifier for predicting prognosis and therapeutic effects in GC. Methods: We downloaded mRNA expression and clinical information of 431 GC samples from Gene Expression Omnibus (GEO) and 330 GC samples from The Cancer Genome Atlas (TCGA) databases. CAF infiltrations were quantified by the estimate the proportion of immune and cancer cells (EPIC) method, and stromal scores were calculated via the Estimation of STromal and Immune cells in MAlignant Tumors using Expression data (ESTIMATE) algorithm. Stromal CAF-related genes were identified by weighted gene co-expression network analysis (WGCNA). A CAF risk signature was then developed using the univariate and least absolute shrinkage and selection operator method (LASSO) Cox regression model. We applied the Spearman test to determine the correlation among CAF risk score, CAF markers, and CAF infiltrations (estimated via EPIC, xCell, microenvironment cell populations-counter (MCP-counter), and Tumor Immune Dysfunction and Exclusion (TIDE) algorithms). The TIDE algorithm was further used to assess immunotherapy response. Gene set enrichment analysis (GSEA) was applied to clarify the molecular mechanisms. Results: The 4-gene (COL8A1, SPOCK1, AEBP1, and TIMP2) prognostic CAF model was constructed. GC patients were classified into high– and low–CAF-risk groups in accordance with their median CAF risk score, and patients in the high–CAF-risk group had significant worse prognosis. Spearman correlation analyses revealed the CAF risk score was strongly and positively correlated with stromal and CAF infiltrations, and the four model genes also exhibited positive correlations with CAF markers. Furthermore, TIDE analysis revealed high–CAF-risk patients were less likely to respond to immunotherapy. GSEA revealed that epithelial–mesenchymal transition (EMT), TGF-β signaling, hypoxia, and angiogenesis gene sets were significantly enriched in high–CAF-risk group patients. Conclusion: The present four-gene prognostic CAF signature was not only reliable for predicting prognosis but also competent to estimate clinical immunotherapy response for GC patients, which might provide significant clinical implications for guiding tailored anti-CAF therapy in combination with immunotherapy for GC patients.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
16
|
Tyczyńska M, Kędzierawski P, Karakuła K, Januszewski J, Kozak K, Sitarz M, Forma A. Treatment Strategies of Gastric Cancer-Molecular Targets for Anti-angiogenic Therapy: a State-of-the-art Review. J Gastrointest Cancer 2021; 52:476-488. [PMID: 33761051 PMCID: PMC8131337 DOI: 10.1007/s12029-021-00629-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Purpose Recent studies have suggested that molecular targets for the anti-angiogenic therapy might constitute a basis for additional therapy in gastric cancer treatment. A vast number of molecules, receptors, pathways, specific interactions, and thus strategies that target gastric cancer angiogenesis specifically have been reported in numerous research articles and clinical trials. Methods We conducted a systematic literature review of molecularly targeted treatment strategies in gastric cancer on the following databases—PubMed, Google Scholar, and Scopus—on September 20, 2020. Multiple articles and evaluations were searched for studies reporting newly found and promising molecular anti-angiogenic therapy pathways. Eventually, 39 articles regarding the anti-angiogenic therapy in gastric cancer were included in the final analysis. Results As a consequence of the release of the pro-angiogenic molecules from the tumour cells, gastric cancer presents high angiogenic capability. Therefore, potential schemes for future treatment strategies include the decrease of the process ligands as well as the expression of their receptors. Moreover, the increase in the angiogenic inhibitor levels and direct aim for the inner walls of the endothelial cells appear as a promising therapeutic strategy. Beyond that, angiogenesis process inhibition seems to indirectly exaggerate the effects of chemotherapy in the considered patients. Conclusions The anti-angiogenic treatment in gastric cancer patients evaluates its significance especially in the early stages of the malignancy. The studies conducted so far show that most of the meaningful angiogenic factors and receptors with the potential molecular pathways should be further evaluated since they could potentially play a substantial role in future therapies.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Kędzierawski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kaja Karakuła
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
17
|
Histomorphological Characteristics and Pathological Types of Hyperproliferation of Gastric Surface Epithelial Cells. Gastroenterol Res Pract 2021; 2021:8828326. [PMID: 33777138 PMCID: PMC7969108 DOI: 10.1155/2021/8828326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Objective To investigate the histomorphological characteristics and pathological types of hyperproliferation of gastric surface epithelial cells. Methods Hematoxylin and Eosin, Periodic acid–Schiff, and immunohistochemical staining were performed on biopsy specimens obtained from 723 patients with hyperproliferation of gastric surface epithelial cells and/or hyperplasia of gastric pits. Follow-up gastroscopic reexaminations were performed on 475 patients included. Improvement probability was analyzed using Kaplan-Meyer as well as Cox proportional hazards models. Results Seven different histomorphologies and clinicopathologies of hyperproliferation of gastric surface epithelial cells were identified: (1) common hyperplasia of gastric epithelial cells, which was characterized by focal glandular epithelial hyperplasia of gastric pits with chronic inflammation; (2) drug-induced hyperplasia of gastric epithelial cells, which was characterized by increased hyperplasia of gastric pits and cells arranged in a monolayer; (3) Helicobacter pylori (Hp) infection-induced hyperplasia of gastric epithelial cells, which was characterized by the disappearance of oval, spherical, and bounded membrane-enclosed mucus-containing granules in the cytoplasm and on the nucleus together with cytoplasmic swelling and vacuolation; (4) metaplastic hyperplasia of gastric epithelial cells, which was characterized by the coexistence of intestinal metaplastic cells with hyperplastic gastric epithelial cells; (5) atrophic hyperplasia of gastric epithelial cells, which was characterized by the mucosal atrophy accompanied with hyperplasia of gastric pits; (6) low-grade neoplasia of epithelial cells, which was characterized by the mild to moderate dysplasia of gastric epithelial cells; and (7) high-grade neoplasia of epithelial cells, which was characterized by the evident dysplasia of hyperplastic epithelial cells and losses of cell polarity. The different pathological types are associated with different improvement probabilities. Conclusions This study demonstrated the histomorphological characteristics and pathological types, which might guide clinicians to track malignant cell transformation, perform precise treatment, predict the clinical prognosis, and control the development of gastric cancer.
Collapse
|
18
|
Giuppi M, La Salvia A, Evangelista J, Ghidini M. The Role and Expression of Angiogenesis-Related miRNAs in Gastric Cancer. BIOLOGY 2021; 10:biology10020146. [PMID: 33673057 PMCID: PMC7918665 DOI: 10.3390/biology10020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is the fifth most frequently diagnosed malignant tumor and the third highest cause of cancer mortality worldwide. For advanced GC, many novel drugs and combinations have been tested, but results are still disappointing, and the disease is incurable in the majority of cases. In this regard, it is critical to investigate the molecular mechanisms underlying GC development. Angiogenesis is one of the hallmarks of cancer with a fundamental role in GC growth and progression. Ramucirumab, a monoclonal antibody that binds to vascular endothelial growth factor-2 (VEGFR-2), is approved in the treatment of advanced and pretreated GC. However, no predictive biomarkers for ramucirumab have been identified so far. Micro RNAs (miRNAs) are a class of evolutionarily-conserved single-stranded non-coding RNAs that play an important role (via post-transcriptional regulation) in essentially all biologic processes, such as cell proliferation, differentiation, apoptosis, survival, invasion, and migration. In our review, we aimed to analyze the available data on the role of angiogenesis-related miRNAs in GC.
Collapse
Affiliation(s)
- Martina Giuppi
- Faculty of Medicine, CEU San Pablo University, 28003 Madrid, Spain;
| | - Anna La Salvia
- Department of Oncology, University Hospital 12 de Octubre, 28041 Madrid, Spain;
| | - Jessica Evangelista
- Thoracic Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5503-2660; Fax: +39-02-5503-2659
| |
Collapse
|
19
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|