1
|
Groarke JD, Divakaran S, Nohria A, Killoran JH, Dorbala S, Dunne RM, Hainer J, Taqueti VR, Blankstein R, Mamon HJ, Di Carli MF. Coronary vasomotor dysfunction in cancer survivors treated with thoracic irradiation. J Nucl Cardiol 2021; 28:2976-2987. [PMID: 32691348 PMCID: PMC7855471 DOI: 10.1007/s12350-020-02255-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND We sought to test the hypothesis that thoracic radiation therapy (RT) is associated with impaired myocardial flow reserve (MFR), a measure of coronary vasomotor dysfunction. METHODS We retrospectively studied thirty-five consecutive patients (71% female, mean ± standard deviation (SD) age: 66 ± 11 years) referred clinically for positron emission tomography/computed tomography (PET/CT) myocardial perfusion imaging at a median (interquartile range, IQR) interval of 4.3 (2.1, 9.7) years following RT for a variety of malignancies. Radiation dose-volume histograms were generated for the heart and coronary arteries for each patient. RESULTS The median (IQR) of mean cardiac radiation doses was 12.0 (1.2, 24.2) Gray. There were significant inverse correlations between mean radiation dose and global MFR (MFRGlobal) and MFR in the left anterior descending artery territory (MFRLAD): Pearson's correlation coefficient = - .37 (P = .03) and - .38 (P = .03), respectively. For every one Gray increase in mean cardiac radiation dose, there was a mean ± standard error decrease of .02 ± .01 in MFRGlobal (P = .04) and MFRLAD (P = .03) after adjustment. CONCLUSIONS In patients with a history of RT clinically referred for cardiac stress PET, we found an inverse correlation between mean cardiac radiation dose and coronary vasomotor function.
Collapse
Affiliation(s)
- John D Groarke
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sanjay Divakaran
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anju Nohria
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph H Killoran
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharmila Dorbala
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruth M Dunne
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jon Hainer
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ron Blankstein
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harvey J Mamon
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo F Di Carli
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Lee YS, Kim HJ, Kim JS. Improved Quantification of 18F-FDG PET during 131I-Rituximab Therapy on Mouse Lymphoma Models after 131I Prompt Emission Correction. Diagnostics (Basel) 2019; 9:diagnostics9040144. [PMID: 31597334 PMCID: PMC6963650 DOI: 10.3390/diagnostics9040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022] Open
Abstract
18F-FDG Positron Emission Tomography (PET) is used to monitor tumor response to 131I-therapy, but is confounded by prompt emissions (284, 364, 637, and 723 keV) from 131I, particularly in animal PET imaging. We propose a method for correcting this emission in 18F-FDG PET. The 131I prompt emission effect was assessed within various energy windows and various activities. We applied a single gamma correction method to a phantom and in vivo mouse model. The 131I prompt emission fraction was 12% when 300 µCi of 131I and 100 µCi of FDG were administered, and increased exponentially with escalating 131I activity for all energy windows. The difference in spill-over ratio was reduced to <5% after 131I prompt emission correction. In the mouse model, the standard uptake value (SUV) did not differ significantly between FDG PET only (gold standard) and FDG PET after 131I prompt emission-correction, whereas it was overestimated by 38% before correction. Contrast was improved by 18% after 131I prompt emission correction. We first found that count contamination on 18F-FDG follow-up scans due to 131I spilled-over count after 131I rituximab tumor targeted therapy. Our developed 131I prompt emission-correction method increased accuracy during measurement of standard uptake values on 18F-FDG PET.
Collapse
Affiliation(s)
- Young Sub Lee
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Korea;
- Division of Radiation Regulation, Department of Medical Radiation Safety, Korea Institute of Nuclear Safety, Daejeon 34142, Korea
| | - Hee-Joung Kim
- Department of Radiation Convergence Engineering and Research Institute of Health Science, Yonsei University, Wonju 26493, Korea;
| | - Jin Su Kim
- Division of RI Application, Korea Institute Radiological and Medical Sciences, Seoul 01812, Korea;
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Seoul 01812, Korea
- Correspondence: ; Tel.: +82-2-970-1661
| |
Collapse
|
3
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019; 26:524-535. [PMID: 30603892 DOI: 10.1007/s12350-018-01558-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
In this review, we summarize key articles that have been published in the Journal of Nuclear Cardiology in 2018 pertaining to nuclear cardiology with advanced multi-modality and hybrid imaging including positron emission tomography, cardiac-computed tomography, and magnetic resonance. In an upcoming review, we will summarize key articles that relate to the progress made in the field of single-photon emission computed tomography. We hope that these sister reviews will be useful to the reader to navigate the literature in our field.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
4
|
Bendriem B, Reed J, McCullough K, Khan MR, Smith AM, Thomas D, Long M. The continual innovation of commercial PET/CT solutions in nuclear cardiology: Siemens Healthineers. J Nucl Cardiol 2018; 25:1400-1411. [PMID: 29637525 PMCID: PMC6133132 DOI: 10.1007/s12350-018-1262-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 11/30/2022]
Abstract
Cardiac PET/CT is an evolving, non-invasive imaging modality that impacts patient management in many clinical scenarios. Beyond offering the capability to assess myocardial perfusion, inflammatory cardiac pathologies, and myocardial viability, cardiac PET/CT also allows for the non-invasive quantitative assessment of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Recognizing the need for an enhanced comprehension of coronary physiology, Siemens Healthineers implemented a sophisticated solution for the calculation of MBF and MFR in 2009. As a result, each aspect of their innovative scanner and image-processing technology seamlessly integrates into an efficient, easy-to-use workflow for everyday clinical use that maximizes the number of patients who potentially benefit from this imaging modality.
Collapse
Affiliation(s)
| | - Jessie Reed
- Siemens Healthcare GmbH, MI, Knoxville, TN, USA
| | | | | | | | | | - Misty Long
- Siemens Healthcare GmbH, MI, Knoxville, TN, USA
| |
Collapse
|