1
|
Pergola V, Cameli M, Mattesi G, Mushtaq S, D’Andrea A, Guaricci AI, Pastore MC, Amato F, Dellino CM, Motta R, Perazzolo Marra M, Dellegrottaglie S, Pedrinelli R, Iliceto S, Nodari S, Perrone Filardi P, Pontone G, on behalf of the Cluster Imaging of Italian Society of Cardiology (SIC). Multimodality Imaging in Advanced Heart Failure for Diagnosis, Management and Follow-Up: A Comprehensive Review. J Clin Med 2023; 12:7641. [PMID: 38137711 PMCID: PMC10743799 DOI: 10.3390/jcm12247641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced heart failure (AHF) presents a complex landscape with challenges spanning diagnosis, management, and patient outcomes. In response, the integration of multimodality imaging techniques has emerged as a pivotal approach. This comprehensive review delves into the profound significance of these imaging strategies within AHF scenarios. Multimodality imaging, encompassing echocardiography, cardiac magnetic resonance imaging (CMR), nuclear imaging and cardiac computed tomography (CCT), stands as a cornerstone in the care of patients with both short- and long-term mechanical support devices. These techniques facilitate precise device selection, placement, and vigilant monitoring, ensuring patient safety and optimal device functionality. In the context of orthotopic cardiac transplant (OTC), the role of multimodality imaging remains indispensable. Echocardiography offers invaluable insights into allograft function and potential complications. Advanced methods, like speckle tracking echocardiography (STE), empower the detection of acute cell rejection. Nuclear imaging, CMR and CCT further enhance diagnostic precision, especially concerning allograft rejection and cardiac allograft vasculopathy. This comprehensive imaging approach goes beyond diagnosis, shaping treatment strategies and risk assessment. By harmonizing diverse imaging modalities, clinicians gain a panoramic understanding of each patient's unique condition, facilitating well-informed decisions. The aim is to highlight the novelty and unique aspects of recently published papers in the field. Thus, this review underscores the irreplaceable role of multimodality imaging in elevating patient outcomes, refining treatment precision, and propelling advancements in the evolving landscape of advanced heart failure management.
Collapse
Affiliation(s)
- Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy;
| | - Maria Concetta Pastore
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Filippo Amato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Carlo Maria Dellino
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | - Raffaella Motta
- Unit of Radiology, Department of Medicine, Medical School, University of Padua, 35122 Padua, Italy;
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56126 Pisa, Italy;
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Institute of Cardiology, University of Brescia, 25123 Brescia, Italy;
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
- Department of Biomedical, Surgical and Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|
2
|
Spartalis M, Spartalis E, Siasos G. Cardiac allograft vasculopathy after heart transplantation: Pathophysiology, detection approaches, prevention, and treatment management. Trends Cardiovasc Med 2022; 32:333-338. [PMID: 34303800 DOI: 10.1016/j.tcm.2021.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/06/2023]
Abstract
Cardiac allograft vasculopathy (CAV) continues to be a significant risk factor for the recipient's long-term survival following heart transplantation. Our knowledge of its etiology is constantly changing as new imaging techniques provide direct insight into the disease's natural history. CAV identification continues to be difficult since symptoms may be varied or nonexistent. Due to the irreversible nature of the disease, early diagnosis is critical to halting development. Prognostic tools and biomarkers have proliferated as a result of advancements in diagnostic techniques. Simultaneously, pharmaceutical advancements have aided in the amelioration of the disease's progressive progression.
Collapse
Affiliation(s)
- Michael Spartalis
- Division of Cardiology, San Raffaele University Hospital, 60 Via Olgettina, Milan 20132, Italy.
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, 11527 Athens, Greece
| |
Collapse
|
3
|
Miller RJH, Berman DS. Defining the role for PET myocardial blood flow early post cardiac transplant. J Nucl Cardiol 2022; 29:724-726. [PMID: 32924084 DOI: 10.1007/s12350-020-02345-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Robert J H Miller
- Department of Cardiac Sciences, University of Calgary, GAA08, 3230 Hospital Drive NW, Calgary, AB, T2N 2T9, Canada.
| | - Daniel S Berman
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Clinical Utility of SPECT in the Heart Transplant Population: Analysis From a Single Large-volume Center. Transplantation 2022; 106:623-632. [PMID: 33901107 PMCID: PMC8528902 DOI: 10.1097/tp.0000000000003791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Survival after heart transplant has greatly improved, with median survival now over 12 years. Cardiac allograft vasculopathy (CAV) has become a major source of long-term morbidity and mortality. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is used for CAV surveillance, but there is limited data on its prognostic utility. METHODS We retrospectively identified patients undergoing SPECT MPI for CAV surveillance at a single, large-volume center. Images were assessed with semiquantitative visual scoring (summed stress score [SSS] and summed rest score) and quantitatively with total perfusion defect (TPD). RESULTS We studied 503 patients (mean age 62.5, 69.3% male) at a median of 9.0 years post-transplant. During mean follow-up of 5.1 ± 2.5 years, 114 (22.6%) patients died. The diagnostic accuracy for significant CAV (ISHLT grade 2 or 3) was highest for SSS with an area under the curve of 0.650 and stress TPD (area under the curve, 0.648), with no significant difference between SSS and stress TPD (P = 0.061). Stress TPD (adjusted hazard ratio, 1.07; P = 0.018) was independently associated with all-cause mortality, while SSS was not (P = 0.064). The prognostic accuracy of quantitative assessment of perfusion tended to be higher compared with semiquantitative assessment, with the highest accuracy for stress TPD (area under the receiver operating curve 0.584). CONCLUSIONS While SPECT MPI identified a cohort of higher risk patients, with quantitative analysis of perfusion demonstrating higher prognostic accuracy. However, the overall prognostic accuracy was modest and alternative noninvasive modalities may be more suitable for CAV surveillance.
Collapse
|
5
|
CT-derived fractional flow reserve (FFRct) for functional coronary artery evaluation in the follow-up of patients after heart transplantation. Eur Radiol 2021; 32:1843-1852. [PMID: 34523009 PMCID: PMC8831350 DOI: 10.1007/s00330-021-08246-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Invasively measured fractional flow reserve (FFR) is associated with outcome in heart transplant (HTx) patients. Coronary computed tomography angiography (CCTA)-derived FFR (FFRct) provides additional functional information from anatomical CT images. We describe the first use of FFRct in HTx patients. METHODS HTx patients underwent CCTA with FFRct to screen for cardiac allograft vasculopathy. FFRct was measured distal to each coronary stenosis > 30% and FFRct ≤ 0.8 indicated hemodynamically significant stenosis. FFRct was also measured at the most distal location of each vessel. Overall distal FFRct was calculated as the mean of the distal values in the left, right, and circumflex coronary artery in each patient. RESULTS Seventy-three patients (age 56 (42-65) years, 63% males) at 11 (8-16) years after HTx were included. Eighteen (25%) patients had a focal hemodynamically significant stenosis (stenosis > 30% with FFRct ≤ 0.8). In the 55 patients without a hemodynamically significant focal FFRct stenosis (FFRct > 0.80), the distal left anterior descending artery FFRct was < 0.90 in 74% of the patients and 10 (18%) patients had ≥ 1 coronary artery with a distal FFRct ≤ 0.8, including 1 with a distal FFRct ≤ 0.8 in all coronaries. Overall distal FFRct in patients without focal stenosis was 0.88 (0.86-0.91), 0.87 (0.86-0.90), and 0.88 (0.86-0.91) (median with 25th-75th percentile) at 5-9, 10-14, or ≥ 15 years post-transplantation, respectively (p = 0.93). CONCLUSIONS FFRct performed on CCTA scans of HTx patients demonstrated that 25% of patients had a focal coronary stenosis with FFRct ≤ 0.8. Even without a focal stenosis, FFRct values are often abnormal in HTx patients. KEY POINTS • This is the first report describing the use of FFRct in in heart transplant patients. • FFRct identifies patients after heart transplantation with hemodynamically significant coronary stenosis. • Even without a focal stenosis, FFRct values are often abnormal in heart transplant patients.
Collapse
|
6
|
Sciaccaluga C, Ghionzoli N, Mandoli GE, Sisti N, D'Ascenzi F, Focardi M, Bernazzali S, Vergaro G, Emdin M, Valente S, Cameli M. The role of non-invasive imaging modalities in cardiac allograft vasculopathy: an updated focus on current evidences. Heart Fail Rev 2021; 27:1235-1246. [PMID: 34383194 PMCID: PMC9197817 DOI: 10.1007/s10741-021-10155-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
Cardiac allograft vasculopathy (CAV) is an obliterative and diffuse form of vasculopathy affecting almost 50% of patients after 10 years from heart transplant and represents the most common cause of long-term cardiovascular mortality among heart transplant recipients. The gold standard diagnostic technique is still invasive coronary angiography, which however holds potential for complications, especially contrast-related kidney injury and procedure-related vascular lesions. Non-invasive and contrast-sparing imaging techniques have been advocated and investigated over the past decades, in order to identify those that could replace coronary angiography or at least reach comparable accuracy in CAV detection. In addition, they could help the clinician in defining optimal timing for invasive testing. This review attempts to examine the currently available non-invasive imaging techniques that may be used in the follow-up of heart transplant patients, spanning from echocardiography to nuclear imaging, cardiac magnetic resonance and cardiac computed tomography angiography, weighting their advantages and disadvantages.
Collapse
Affiliation(s)
- C Sciaccaluga
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy.
| | - N Ghionzoli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - G E Mandoli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - N Sisti
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - F D'Ascenzi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - M Focardi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - S Bernazzali
- Department of Cardiac Surgery, University Hospital of Siena, Siena, Italy
| | - G Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - M Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - S Valente
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - M Cameli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Abstract
Heart transplantation (HTx) remains the optimal treatment for selected patients with end-stage advanced heart failure. However, survival is limited early by acute rejection and long term by cardiac allograft vasculopathy (CAV). Even though the diagnosis of rejection is based on histology, cardiac imaging provides a pivotal role for early detection and severity assessment of these hazards. The present review focuses on the use and reliability of different invasive and non-invasive imaging modalities to detect and monitor CAV and rejection after HTx. Coronary angiography remains the corner stone in routine CAV surveillance. However, angiograms are invasive and underestimates the CAV severity especially in the early phase. Intravascular ultrasound and optical coherence tomography are invasive methods for intracoronary imaging that detects early CAV lesions not evident by angiograms. Non-invasive imaging can be divided into myocardial perfusion imaging, anatomical/structural imaging and myocardial functional imaging. The different non-invasive imaging modalities all provide clinical and prognostic information and may have a gatekeeper role for invasive monitoring. Acute rejection and CAV are still significant clinical problems after HTx. No imaging modality provides complete information on graft function, coronary anatomy and myocardial perfusion. However, a combination of invasive and non-invasive modalities at different stages following HTx should be considered for optimal personalized surveillance and risk stratification.
Collapse
Affiliation(s)
| | | | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Denmark
| |
Collapse
|
8
|
Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Single-photon emission computed tomography. J Nucl Cardiol 2020; 27:1171-1179. [PMID: 32410057 DOI: 10.1007/s12350-020-02167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
In 2019, the Journal of Nuclear Cardiology published excellent articles pertaining to imaging in patients with cardiovascular disease. In this review, we will summarize a selection of these articles to provide a concise review of the main advancements that have recently occurred in the field and provide the reader with an opportunity to review a wide selection of articles. In the first article of this 2-part series, we focused on publications dealing with positron emission tomography, computed tomography, and magnetic resonance. This review will place emphasis on myocardial perfusion imaging using single-photon emission computed tomography summarizing advances in the field including in diagnosis and prognosis, non-perfusion variables, safety of testing, imaging in patients with heart failure and renal disease.
Collapse
Affiliation(s)
- Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Lyons Harrison Research Building 306, 1900 University BLVD, Birmingham, AL, 35294, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| | - Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| |
Collapse
|
9
|
Lee JC, Better N. Cardiovascular outcomes in heart transplant recipients. J Nucl Cardiol 2020; 27:1047. [PMID: 31385221 DOI: 10.1007/s12350-019-01836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Joseph C Lee
- Department of Medical Imaging, The Prince Charles Hospital, Chermside, QLD, 4032, Australia.
- Faculty of Medicine, University of Queensland, Herston, Australia.
| | - Nathan Better
- Department of Nuclear Medicine, Royal Melbourne Hospital, Grattan St, Melbourne, VIC, 3000, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Acharya D, Rajapreyar I. Myocardial perfusion imaging for cardiac allograft vasculopathy assessment: Evidence grows, but questions remain. J Nucl Cardiol 2019; 26:853-856. [PMID: 29116561 DOI: 10.1007/s12350-017-1116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Deepak Acharya
- Section of Advanced Heart Failure Transplantation, and Mechanical Circulatory Support, University of Alabama at Birmingham, 1900 University Blvd, THT 321, Birmingham, AL, 35294, USA.
| | - Indranee Rajapreyar
- Section of Advanced Heart Failure Transplantation, and Mechanical Circulatory Support, University of Alabama at Birmingham, 1900 University Blvd, THT 321, Birmingham, AL, 35294, USA
| |
Collapse
|