1
|
Yousefzadeh F, Yazdi M, Entezarmahdi SM, Faghihi R, Ghasempoor S, Shahamiri N, Mehrizi ZA, Haghighatafshar M. SPECT-MPI iterative denoising during the reconstruction process using a two-phase learned convolutional neural network. EJNMMI Phys 2024; 11:82. [PMID: 39378001 PMCID: PMC11461437 DOI: 10.1186/s40658-024-00687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
PURPOSE The problem of image denoising in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. Although various image processing techniques have been presented, they may degrade the contrast of denoised images. The proposed idea in this study is to use a deep neural network as the denoising procedure during the iterative reconstruction process rather than the post-reconstruction phase. This method could decrease the background coefficient of variation (COV_bkg) of the final reconstructed image, which represents the amount of random noise, while improving the contrast-to-noise ratio (CNR). METHODS In this study, a generative adversarial network is used, where its generator is trained by a two-phase approach. In the first phase, the network is trained by a confined image region around the heart in transverse view. The second phase improves the network's generalization by tuning the network weights with the full image size as the input. The network was trained and tested by a dataset of 247 patients who underwent two immediate serially high- and low-noise SPECT-MPI. RESULTS Quantitative results show that compared to post-reconstruction low pass filtering and post-reconstruction deep denoising methods, our proposed method can decline the COV_bkg of the images by up to 10.28% and 12.52% and enhance the CNR by up to 54.54% and 45.82%, respectively. CONCLUSION The iterative deep denoising method outperforms 2D low-pass Gaussian filtering with an 8.4-mm FWHM and post-reconstruction deep denoising approaches.
Collapse
Affiliation(s)
- Farnaz Yousefzadeh
- Department of Computer Science and Engineering and IT, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
| | - Mehran Yazdi
- School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran.
| | | | - Reza Faghihi
- Department of Nuclear Engineering, Shiraz University, Shiraz, Iran
| | - Sadegh Ghasempoor
- Department of Nuclear Medicine, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Abuee Mehrizi
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Haghighatafshar
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Edalat-Javid M, Shiri I, Hajianfar G, Abdollahi H, Arabi H, Oveisi N, Javadian M, Shamsaei Zafarghandi M, Malek H, Bitarafan-Rajabi A, Oveisi M, Zaidi H. Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study. J Nucl Cardiol 2021; 28:2730-2744. [PMID: 32333282 DOI: 10.1007/s12350-020-02109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this work was to assess the robustness of cardiac SPECT radiomic features against changes in imaging settings, including acquisition, and reconstruction parameters. METHODS Four commercial SPECT and SPECT/CT cameras were used to acquire images of a static cardiac phantom mimicking typical myorcardial perfusion imaging using 185 MBq of 99mTc. The effects of different image acquisition and reconstruction parameters, including number of views, view matrix size, attenuation correction, as well as image reconstruction related parameters (algorithm, number of iterations, number of subsets, type of post-reconstruction filter, and its associated parameters, including filter order and cut-off frequency) were studied. In total, 5,063 transverse views were reconstructed by varying the aforementioned factors. Eighty-seven radiomic features including first-, second-, and high-order textures were extracted from these images. To assess reproducibility and repeatability, the coefficient of variation (COV), as a widely adopted metric, was measured for each of the radiomic features over the different imaging settings. RESULTS The Inverse Difference Moment Normalized (IDMN) and Inverse Difference Normalized (IDN) features from the Gray Level Co-occurrence Matrix (GLCM), Run Percentage (RP) from the Gray Level Co-occurrence Matrix (GLRLM), Zone Entropy (ZE) from the Gray Level Size Zone Matrix (GLSZM), and Dependence Entropy (DE) from the Gray Level Dependence Matrix (GLDM) feature sets were the only features that exhibited high reproducibility (COV ≤ 5%) against changes in all imaging settings. In addition, Large Area Low Gray Level Emphasis (LALGLE), Small Area Low Gray Level Emphasis (SALGLE) and Low Gray Level Zone Emphasis (LGLZE) from GLSZM, and Small Dependence Low Gray Level Emphasis (SDLGLE) from GLDM feature sets turned out to be less reproducible (COV > 20%) against changes in imaging settings. The GLRLM (31.88%) and GLDM feature set (54.2%) had the highest (COV < 5%) and lowest (COV > 20%) number of the reproducible features, respectively. Matrix size had the largest impact on feature variability as most of the features were not repeatable when matrix size was modified with 82.8% of them having a COV > 20%. CONCLUSION The repeatability and reproducibility of SPECT/CT cardiac radiomic features under different imaging settings is feature-dependent. Different image acquisition and reconstruction protocols have variable effects on radiomic features. The radiomic features exhibiting low COV are potential candidates for future clinical studies.
Collapse
Affiliation(s)
- Mohammad Edalat-Javid
- Department of Energy Engineering and Physics, Amir Kabir University of Technology, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University, Kerman, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Niki Oveisi
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Javadian
- Department of Computer Engineering, Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
| | | | - Hadi Malek
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Bitarafan-Rajabi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, 1205, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
3
|
Deep learning-based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance. Eur J Nucl Med Mol Imaging 2021; 49:1508-1522. [PMID: 34778929 PMCID: PMC8940834 DOI: 10.1007/s00259-021-05614-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Purpose This work was set out to investigate the feasibility of dose reduction in SPECT myocardial perfusion imaging (MPI) without sacrificing diagnostic accuracy. A deep learning approach was proposed to synthesize full-dose images from the corresponding low-dose images at different dose reduction levels in the projection space. Methods Clinical SPECT-MPI images of 345 patients acquired on a dedicated cardiac SPECT camera in list-mode format were retrospectively employed to predict standard-dose from low-dose images at half-, quarter-, and one-eighth-dose levels. To simulate realistic low-dose projections, 50%, 25%, and 12.5% of the events were randomly selected from the list-mode data through applying binomial subsampling. A generative adversarial network was implemented to predict non-gated standard-dose SPECT images in the projection space at the different dose reduction levels. Well-established metrics, including peak signal-to-noise ratio (PSNR), root mean square error (RMSE), and structural similarity index metrics (SSIM) in addition to Pearson correlation coefficient analysis and clinical parameters derived from Cedars-Sinai software were used to quantitatively assess the predicted standard-dose images. For clinical evaluation, the quality of the predicted standard-dose images was evaluated by a nuclear medicine specialist using a seven-point (− 3 to + 3) grading scheme. Results The highest PSNR (42.49 ± 2.37) and SSIM (0.99 ± 0.01) and the lowest RMSE (1.99 ± 0.63) were achieved at a half-dose level. Pearson correlation coefficients were 0.997 ± 0.001, 0.994 ± 0.003, and 0.987 ± 0.004 for the predicted standard-dose images at half-, quarter-, and one-eighth-dose levels, respectively. Using the standard-dose images as reference, the Bland–Altman plots sketched for the Cedars-Sinai selected parameters exhibited remarkably less bias and variance in the predicted standard-dose images compared with the low-dose images at all reduced dose levels. Overall, considering the clinical assessment performed by a nuclear medicine specialist, 100%, 80%, and 11% of the predicted standard-dose images were clinically acceptable at half-, quarter-, and one-eighth-dose levels, respectively. Conclusion The noise was effectively suppressed by the proposed network, and the predicted standard-dose images were comparable to reference standard-dose images at half- and quarter-dose levels. However, recovery of the underlying signals/information in low-dose images beyond a quarter of the standard dose would not be feasible (due to very poor signal-to-noise ratio) which will adversely affect the clinical interpretation of the resulting images. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05614-7.
Collapse
|
4
|
Ramon AJ, Yang Y, Pretorius PH, Johnson KL, King MA, Wernick MN. Improving Diagnostic Accuracy in Low-Dose SPECT Myocardial Perfusion Imaging With Convolutional Denoising Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2893-2903. [PMID: 32167887 PMCID: PMC9472754 DOI: 10.1109/tmi.2020.2979940] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Lowering the administered dose in SPECT myocardial perfusion imaging (MPI) has become an important clinical problem. In this study we investigate the potential benefit of applying a deep learning (DL) approach for suppressing the elevated imaging noise in low-dose SPECT-MPI studies. We adopt a supervised learning approach to train a neural network by using image pairs obtained from full-dose (target) and low-dose (input) acquisitions of the same patients. In the experiments, we made use of acquisitions from 1,052 subjects and demonstrated the approach for two commonly used reconstruction methods in clinical SPECT-MPI: 1) filtered backprojection (FBP), and 2) ordered-subsets expectation-maximization (OSEM) with corrections for attenuation, scatter and resolution. We evaluated the DL output for the clinical task of perfusion-defect detection at a number of successively reduced dose levels (1/2, 1/4, 1/8, 1/16 of full dose). The results indicate that the proposed DL approach can achieve substantial noise reduction and lead to improvement in the diagnostic accuracy of low-dose data. In particular, at 1/2 dose, DL yielded an area-under-the-ROC-curve (AUC) of 0.799, which is nearly identical to the AUC = 0.801 obtained by OSEM at full-dose ( p -value = 0.73); similar results were also obtained for FBP reconstruction. Moreover, even at 1/8 dose, DL achieved AUC = 0.770 for OSEM, which is above the AUC = 0.755 obtained at full-dose by FBP. These results indicate that, compared to conventional reconstruction filtering, DL denoising can allow for additional dose reduction without sacrificing the diagnostic accuracy in SPECT-MPI.
Collapse
|
5
|
Pagnanelli R, Borges-Neto S. How low can we go? J Nucl Cardiol 2020; 27:573-574. [PMID: 30569410 DOI: 10.1007/s12350-018-01559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Affiliation(s)
| | - Salvador Borges-Neto
- Division of Nuclear Medicine, Duke University School of Medicine, Duke University Health System, Durham, USA.
| |
Collapse
|