1
|
Motwani M. 2022 Artificial intelligence primer for the nuclear cardiologist. J Nucl Cardiol 2023; 30:2441-2453. [PMID: 35854041 DOI: 10.1007/s12350-022-03049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
Driven by advances in computing power, the past decade has seen rapid developments in artificial intelligence (AI) which now offers potential enhancements to every aspect of nuclear cardiology workflow including acquisition, reconstruction, segmentation, direct image analysis, and interpretation; as well as facilitating clinical and imaging big-data integration for superior personalized risk stratification. To understand the relevance and potential of AI in their field, this review provides a primer for nuclear cardiologists in 2022. The aim is to explain terminology and provide a summary of key current implementations, challenges, and future aspirations of AI-based enhancements to nuclear cardiology.
Collapse
Affiliation(s)
- Manish Motwani
- Department of Cardiology, Manchester Heart Institute, Manchester Royal Infirmary, Manchester Heart Centre, Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK.
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Duff LM, Scarsbrook AF, Ravikumar N, Frood R, van Praagh GD, Mackie SL, Bailey MA, Tarkin JM, Mason JC, van der Geest KSM, Slart RHJA, Morgan AW, Tsoumpas C. An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images. Biomolecules 2023; 13:343. [PMID: 36830712 PMCID: PMC9953018 DOI: 10.3390/biom13020343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A-RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C-Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
Collapse
Affiliation(s)
- Lisa M. Duff
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew F. Scarsbrook
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Nishant Ravikumar
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Center for Computational Imaging and Simulation Technologies in Biomedicine, University of Leeds, Leeds LS2 9JT, UK
| | - Russell Frood
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Radiology, St. James University Hospital, Leeds LS9 7TF, UK
| | - Gijs D. van Praagh
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sarah L. Mackie
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Marc A. Bailey
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds LS2 9NS, UK
| | - Jason M. Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Justin C. Mason
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Ann W. Morgan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre and NIHR Leeds MedTech and In Vitro Diagnostics Co-Operative, Leeds Teaching Hospitals NHS Trust, Leeds LS7 4SA, UK
| | - Charalampos Tsoumpas
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Duff L, Scarsbrook AF, Mackie SL, Frood R, Bailey M, Morgan AW, Tsoumpas C. A methodological framework for AI-assisted diagnosis of active aortitis using radiomic analysis of FDG PET-CT images: Initial analysis. J Nucl Cardiol 2022; 29:3315-3331. [PMID: 35322380 PMCID: PMC9834376 DOI: 10.1007/s12350-022-02927-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of this study was to explore the feasibility of assisted diagnosis of active (peri-)aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. METHODS The aorta was manually segmented on FDG PET-CT in 50 patients with aortitis and 25 controls. Radiomic features (RF) (n = 107), including SUV (Standardized Uptake Value) metrics, were extracted from the segmented data and harmonized using the ComBat technique. Individual RFs and groups of RFs (i.e., signatures) were used as input in Machine Learning classifiers. The diagnostic utility of these classifiers was evaluated with area under the receiver operating characteristic curve (AUC) and accuracy using the clinical diagnosis as the ground truth. RESULTS Several RFs had high accuracy, 84% to 86%, and AUC scores 0.83 to 0.97 when used individually. Radiomic signatures performed similarly, AUC 0.80 to 1.00. CONCLUSION A methodological framework for a radiomic-based approach to support diagnosis of aortitis was outlined. Selected RFs, individually or in combination, showed similar performance to the current standard of qualitative assessment in terms of AUC for identifying active aortitis. This framework could support development of a clinical decision-making tool for a more objective and standardized assessment of aortitis.
Collapse
Affiliation(s)
- Lisa Duff
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK.
- Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK.
| | - Andrew F Scarsbrook
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Sarah L Mackie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Russell Frood
- Leeds Institute of Medical Research - St James's, University of Leeds, Leeds, UK
- Department of Radiology, St. James University Hospital, Leeds, UK
| | - Marc Bailey
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- The Leeds Vascular Institute, Leeds General Infirmary, Leeds, UK
| | - Ann W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Leeds Teaching Hospitals NHS Trust, Biomedical Research Centre, NIHR Leeds, Leeds, UK
| | - Charalampos Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, 8.49b Worsley Building, Clarendon Way, Leeds, LS2 9JT, UK
- Icahn School of Medicine at Mount Sinai, Biomedical Engineering and Imaging Institute, New York, USA
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center of Groningen, University of Groningen, 9700 RB, Groningen, Netherlands
| |
Collapse
|
4
|
Motwani M. Are You a Robot?: Please Select the Images Containing Unstable Plaque. JACC Cardiovasc Imaging 2022; 15:872-874. [PMID: 35512958 DOI: 10.1016/j.jcmg.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Manish Motwani
- Manchester Heart Institute, Manchester University NHS Foundation Trust, Manchester, United Kingdom; Institute of Cardiovascular Science, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
5
|
Edalat-Javid M, Shiri I, Hajianfar G, Abdollahi H, Arabi H, Oveisi N, Javadian M, Shamsaei Zafarghandi M, Malek H, Bitarafan-Rajabi A, Oveisi M, Zaidi H. Cardiac SPECT radiomic features repeatability and reproducibility: A multi-scanner phantom study. J Nucl Cardiol 2021; 28:2730-2744. [PMID: 32333282 DOI: 10.1007/s12350-020-02109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/12/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this work was to assess the robustness of cardiac SPECT radiomic features against changes in imaging settings, including acquisition, and reconstruction parameters. METHODS Four commercial SPECT and SPECT/CT cameras were used to acquire images of a static cardiac phantom mimicking typical myorcardial perfusion imaging using 185 MBq of 99mTc. The effects of different image acquisition and reconstruction parameters, including number of views, view matrix size, attenuation correction, as well as image reconstruction related parameters (algorithm, number of iterations, number of subsets, type of post-reconstruction filter, and its associated parameters, including filter order and cut-off frequency) were studied. In total, 5,063 transverse views were reconstructed by varying the aforementioned factors. Eighty-seven radiomic features including first-, second-, and high-order textures were extracted from these images. To assess reproducibility and repeatability, the coefficient of variation (COV), as a widely adopted metric, was measured for each of the radiomic features over the different imaging settings. RESULTS The Inverse Difference Moment Normalized (IDMN) and Inverse Difference Normalized (IDN) features from the Gray Level Co-occurrence Matrix (GLCM), Run Percentage (RP) from the Gray Level Co-occurrence Matrix (GLRLM), Zone Entropy (ZE) from the Gray Level Size Zone Matrix (GLSZM), and Dependence Entropy (DE) from the Gray Level Dependence Matrix (GLDM) feature sets were the only features that exhibited high reproducibility (COV ≤ 5%) against changes in all imaging settings. In addition, Large Area Low Gray Level Emphasis (LALGLE), Small Area Low Gray Level Emphasis (SALGLE) and Low Gray Level Zone Emphasis (LGLZE) from GLSZM, and Small Dependence Low Gray Level Emphasis (SDLGLE) from GLDM feature sets turned out to be less reproducible (COV > 20%) against changes in imaging settings. The GLRLM (31.88%) and GLDM feature set (54.2%) had the highest (COV < 5%) and lowest (COV > 20%) number of the reproducible features, respectively. Matrix size had the largest impact on feature variability as most of the features were not repeatable when matrix size was modified with 82.8% of them having a COV > 20%. CONCLUSION The repeatability and reproducibility of SPECT/CT cardiac radiomic features under different imaging settings is feature-dependent. Different image acquisition and reconstruction protocols have variable effects on radiomic features. The radiomic features exhibiting low COV are potential candidates for future clinical studies.
Collapse
Affiliation(s)
- Mohammad Edalat-Javid
- Department of Energy Engineering and Physics, Amir Kabir University of Technology, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Hamid Abdollahi
- Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University, Kerman, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland
| | - Niki Oveisi
- School of Population and Public Health, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mohammad Javadian
- Department of Computer Engineering, Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
| | | | - Hadi Malek
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Bitarafan-Rajabi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, 1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, 1205, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|