1
|
Ng W, Pathmaraj K, Kovaleva N, Poon A, Kench P, Meikle S, Scott A, Boktor R. Single- Versus Dual-Time-Point Imaging for Transthyretin Cardiac Amyloid Using 99mTc-Pyrophosphate. J Nucl Med Technol 2025:jnmt.124.269395. [PMID: 40262826 DOI: 10.2967/jnmt.124.269395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/20/2025] [Indexed: 04/24/2025] Open
Abstract
Nuclear medicine scintigraphy using 99mTc-pyrophosphate has proven valuable in the diagnosis of cardiac transthyretin amyloidosis in recent years. However, there is still confusion over the optimal imaging time points. The American Society of Nuclear Cardiology has recommended different imaging time points over the last decade. We aimed to determine whether single- or dual-time-point imaging is required for reporting purposes and which time point would be the most appropriate if a single time point was to be considered. Methods: Cardiac amyloid scans using 99mTc-pyrophosphate acquired from 2017 to 2023 were retrieved from our Picture Archiving and Communications System. Scans with static views and SPECT/CT images of the chest for both imaging time points, at 1 h (early) and 3 h (delayed) after injection, were included. Each study was independently read by 3 nuclear medicine physicians. Original clinical reports using both imaging time points were used as a reference to calculate the accuracy of a single time point. Results: In total, 70 patients were included in this study. Reports of cardiac amyloid studies using any single-time-point imaging were highly sensitive, accurate, and specific. There was agreement among all readers. Of the 140 datasets reported by each reader, 4 scans were classified as equivocal, requiring more imaging for confident reporting. Conclusion: Single-time-point imaging showed an accuracy comparable to the dual-time-point imaging in diagnosing cardiac transthyretin amyloidosis. This was further validated by agreement among the 3 readers. Early time-point imaging is preferred, and additional delayed imaging can be acquired when the early result is equivocal.
Collapse
Affiliation(s)
- Wesley Ng
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia;
- Discipline of Medical Imaging Science, University of Sydney, Sydney, New South Wales, Australia
| | - Kunthi Pathmaraj
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Natalia Kovaleva
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Aurora Poon
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
| | - Peter Kench
- Discipline of Medical Imaging Science, University of Sydney, Sydney, New South Wales, Australia
| | - Steven Meikle
- Discipline of Medical Imaging Science, University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, University of Sydney; and
| | - Andrew Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Raef Boktor
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Pernice HF, Knorz AL, Wetzel PJ, Herrmann C, Muratovic H, Rieber F, Asaad E, Fiß G, Barzen G, Blüthner E, Knebel F, Spethmann S, Messroghli D, Heidecker B, Brand A, Wetz C, Tschöpe C, Hahn K. Neurological affection and serum neurofilament light chain in wild type transthyretin amyloidosis. Sci Rep 2024; 14:10111. [PMID: 38698025 PMCID: PMC11066119 DOI: 10.1038/s41598-024-60025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
In contrast to inherited transthyretin amyloidosis (A-ATTRv), neuropathy is not a classic leading symptom of wild type transthyretin amyloidosis (A-ATTRwt). However, neurological symptoms are increasingly relevant in A-ATTRwt as well. To better understand the role of neurological symptoms in A-ATTRwt, A-ATTRwt patients were prospectively characterized at Amyloidosis Center Charité Berlin (ACCB) between 2018 and 2023 using detailed neurological examination, quality of life questionnaires, and analysis of age- and BMI-adapted serum neurofilament light chain (NFL) levels. 16 out of 73 (21.9%) patients presented with a severe neuropathy which we defined by a Neuropathy Impairment Score (NIS) of 20 or more. In this group, quality of life was reduced, peripheral neuropathy was more severe, and spinal stenosis and joint replacements were frequent. Age- and BMI matched serum NFL levels were markedly elevated in patients with a NIS ≥ 20. We therefore conclude that highly abnormal values in neuropathy scores such as the NIS occur in A-ATTRwt, and have an important impact on quality of life. Both peripheral neuropathy and spinal canal stenosis are likely contributors. Serum NFL may serve as a biomarker for neurological affection in patients with A-ATTRwt. It will be important to consider neurological aspects of A-ATTRwt for diagnosis, clinical follow-up, and future treatment development.
Collapse
Affiliation(s)
- Helena F Pernice
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Adrian L Knorz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Paul J Wetzel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Carolin Herrmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Charitéplatz 1, 10117, Berlin, Germany
| | - Harisa Muratovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Finn Rieber
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
| | - Eleonora Asaad
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Gunnar Fiß
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Gina Barzen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Elisabeth Blüthner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Medical Clinic m.S. Hepatology and Gastroenterology CCM/CVK, Berlin, Germany
| | - Fabian Knebel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany
- Klinik für Innere Medizin mit Schwerpunkt Kardiologie, Sana Klinikum Lichtenberg, Berlin, Germany
| | - Sebastian Spethmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniel Messroghli
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bettina Heidecker
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Anna Brand
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Christoph Wetz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nuclear Medicine, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Carsten Tschöpe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Katrin Hahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Amyloidosis Center Charité Berlin (ACCB), Charitéplatz 1, 10117, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité (BIH)-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Cerić Andelius I, Fridriksdóttir R, Minarik D, Hedeer F, Stenvall A, Trägårdh E, Oddstig J. Verification of reprojected planar images generated from a ring-configured cadmium zinc telluride gamma camera in scintigraphy for diagnosing transthyretin cardiac amyloidosis. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2024; 2:qyae051. [PMID: 39224107 PMCID: PMC11367964 DOI: 10.1093/ehjimp/qyae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 09/04/2024]
Abstract
Aims Non-invasive diagnosis of amyloid transthyretin (ATTR) cardiac amyloidosis using planar scintigraphy and single-photon emission computed tomography-computed tomography (SPECT-CT) with [99mTc]Tc-3,3-diphosphono-1,2-propanodicarboxylic acid ([99mTc]Tc-DPD) has high specificity and sensitivity. However, the introduction of ring-configured cadmium zinc telluride (CZT) gamma cameras warrants an update in the acquisition method since these systems are not able to perform planar scintigraphy. We aimed to verify the use of reprojected planar images from SPECT-CT as a replacement for planar scintigraphy in evaluating ATTR-amyloidosis. Methods and results The study examined 30 patients referred for clinically indicated [99mTc]Tc-DPD scintigraphy who were scanned with both a conventional gamma camera and a ring-configured CZT gamma camera. Planar scintigraphy from the conventional gamma camera was compared with reprojected planar images from the ring-configured CZT gamma camera. The images were evaluated in regard to image quality and Perugini visual score in a blinded fashion by three nuclear medicine physicians. Heart-to-contralateral (H/CL) ratios were calculated. There were 27 patients who had an identical Perugini score in planar and reprojected planar images, yielding a strong level of agreement and inter-rater reliability among the three readers. The H/CL ratios showed a strong correlation ratio (r = 0.98, P < 0.0001). A shift towards lower image quality was seen for the reprojected images. Conclusion Reprojected planar images generated from a ring-configured CZT gamma camera combined with SPECT-CT can be used to score ATTR amyloidosis and extract H/CL ratios in the same way as planar images and SPECT-CT from a conventional gamma camera.
Collapse
Affiliation(s)
- Irma Cerić Andelius
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| | - Ragnheidur Fridriksdóttir
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
| | - David Minarik
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| | - Fredrik Hedeer
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
- Department of Clinical Sciences, Lund University, Sölvegatan 19, 221 84 Lund, Sweden
| | - Anna Stenvall
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
| | - Elin Trägårdh
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Entrégatan 7, 221 85 Lund/Inga Marie Nilssons gata 47, 205 02 Malmö, Sweden
| | - Jenny Oddstig
- Radiation Physics, Department of Haematology, Oncology and Radiation Physicis, Skåne University Hospital, 221 85 Lund, Sweden
- Department of Translational Medicine and Wallenberg Centre of Molecular Medicine, Lund University, Carl Bertil Laurells gata 9, 205 02 Malmö, Sweden
| |
Collapse
|
6
|
Bae S, Gil J, Paeng JC, Park EA, Lee SP, Choi H, Kang KW, Cheon GJ, Lee DS. Reliability and feasibility of visual grading systems and quantitative indexes on [ 99mTc]Tc-DPD imaging for cardiac amyloidosis. Sci Rep 2022; 12:17271. [PMID: 36241893 PMCID: PMC9568548 DOI: 10.1038/s41598-022-21603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
We aimed to evaluate the reliability and feasibility of visual grading systems and various quantitative indexes of [99mTc]Tc-DPD imaging for cardiac amyloidosis (CA). Patients who underwent [99mTc]Tc-DPD imaging with suspicion of CA were enrolled. On the planar image, myocardial uptake was visually graded using Perugini's and Dorbala's methods (PS and DS). As [99mTc]Tc-DPD indexes, heart-to-whole body ratio (H/WB) and heart-to-contralateral lung ratio (H/CL) were measured on planar image. SUVmax, SUVmean, total myocardial uptake (TMU), and C-index were measured on SPECT/CT. Inter-observer agreement of the indexes and their association with visual grading and clinical factors were evaluated. A total of 152 [99mTc]Tc-DPD images, of which 18 were positive, were analyzed. Inter-observer agreement was high for both DS (κ = 0.95) and PS (κ = 0.96). However, DS showed a higher correlation with quantitative indexes than PS. Inter-observer agreement was also high for SPECT/CT indexes, particularly SUVmax. SUVmax was significantly different between different DS groups (P = 0.014-0.036), and showed excellent correlations with H/WB and H/CL (r = 0.898 and 0.910). SUVmax also showed significant differences between normal, AL, and ATTR pathology (P = 0.022-0.037), and a significant correlation with extracellular volume on cardiac MRI (r = 0.772, P < 0.001). DS is a visual grading system for CA that is more significantly matched with quantitative indexes than PS. SUVmax is a reliable quantitative index on SPECT/CT, with a high inter-observer agreement, correlations with the visual grade, and potential association with cardiac MRI findings.
Collapse
Affiliation(s)
- Sungwoo Bae
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Joonhyung Gil
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jin Chul Paeng
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Eun-Ah Park
- grid.412484.f0000 0001 0302 820XDepartment of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Seung-Pyo Lee
- grid.412484.f0000 0001 0302 820XDepartment of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hongyoon Choi
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Keon Wook Kang
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Dong Soo Lee
- grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea ,grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|