1
|
Chen K, Zhang J, Li Z, Wang D, Chen W, Zhu H, Wen X. Enhancing waste sludge solubilization through radio frequency treatment perforating bacterial cells. ENVIRONMENTAL RESEARCH 2024; 263:120012. [PMID: 39299447 DOI: 10.1016/j.envres.2024.120012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Sludge solubilization is known as a rate-limiting step of anaerobic digestion. Although radio frequency (RF) has been applied for sludge pretreatment due to its similar thermal effect as microwave, the potential non-thermal effects of RF treatment remain controversial. In this study, we demonstrate that RF pretreatment enhances the solubilization and lysis of sludge by 8.02%-19.69% through both thermal and non-thermal mechanisms with less energy input. Scanning electron microscope images provide direct evidence that RF-induced microcurrents penetrated bacterial cells, leading to the release of intracellular substances through formed pores. Additionally, the non-thermal effect of RF treatment which could weaken the cell protection and accelerate the lysis rate involves the disruption of binding forces between extracellular polymeric substances and microbial cells. On average, the utilization of RF at a frequency of 27.12 MHz demonstrates its efficacy as a sludge pretreatment technique, as evidenced by a 13.39% reduction in energy consumption and a 16.9% improvement in treatment performance compared to conductive heating (CH). The findings of this study elucidate the possible mechanism of RF treatment of sludge and could establish a theoretical basis for the practical application of RF treatment in sludge management.
Collapse
Affiliation(s)
- Kai Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Jing Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhuo Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Dongquan Wang
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Wangyang Chen
- China Water Investment Co., Ltd., Beijing, 100053, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Bermudez-Aguirre D, Sites J, Carter J, Uknalis J, Niemira BA. Effect of Radio Frequency Energy for Intervention Processing on the Quality of Intact Eggs. Foods 2024; 13:3457. [PMID: 39517241 PMCID: PMC11544829 DOI: 10.3390/foods13213457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
During conventional pasteurization, eggs are submerged for 60 min at 56.7 °C, a lengthy and costly process that affects egg quality. Radio frequency (RF), a means to pasteurize eggs without affecting quality, is a novel option based on fast volumetric heating; however, there is scarce information about the quality of such treated food. This research consisted in a comprehensive quality study on eggs treated with RF. The RF system was operated at 40.68 MHz, 40 W and 16 W (8 min total), and 42 rpm. The quality assessment included the determination of Haugh unit, yolk index, compression strength, albumen turbidity, albumen and yolk pH, and yolk color. Additional analyses were conducted to quantify the mineral composition of the eggshell (40.68 MHz, 40 W, 42 rpm, 5.5, 8.5, and 10 min); these samples were observed by SEM. The results showed that RF did not significantly (p > 0.05) change any quality parameters. The mineral composition remained constant in processed eggs. The SEM images of RF-treated eggs showed some smooth spots; however, these areas could exist due to the high variability of the eggshells. RF is an option to process intact eggs, maintaining their fresh quality and keeping the integrity of the eggshell to ensure the food safety of the internal egg components.
Collapse
Affiliation(s)
- Daniela Bermudez-Aguirre
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joseph Sites
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Joshua Carter
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
- Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 1601 East Market St., Greensboro, NC 27411, USA
| | - Joseph Uknalis
- Microbial and Chemical Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Brendan A. Niemira
- Characterization and Interventions for Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
3
|
Xu Y, Guan X, Wang S. Synergistic bactericidal mechanisms of RF energy simultaneously combined with cinnamon essential oil or epsilon-polylysine against Salmonella revealed at cellular and metabolic levels. Int J Food Microbiol 2024; 408:110447. [PMID: 37907022 DOI: 10.1016/j.ijfoodmicro.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.
Collapse
Affiliation(s)
- Yuanmei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, China
| | - Xiangyu Guan
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Washington State University, Department of Biological Systems Engineering, Pullman, WA 99164-6120, USA.
| |
Collapse
|
4
|
Shen D, Zhang M, Mujumdar AS, Ma Y. Consumer-oriented smart dynamic detection of fresh food quality: recent advances and future prospects. Crit Rev Food Sci Nutr 2023; 64:11281-11301. [PMID: 37462236 DOI: 10.1080/10408398.2023.2235703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Since fresh foods include a significant amount of water, fat, and protein, it is more likely to become infected by microorganisms causing a major loss of quality. Traditional detection techniques are less able to meet customer expectations owing to the limitations of high cost, slow response time, and inability to permit dynamic monitoring. Intelligent non-destructive detection technologies have emerged in recent years, which offer the advantages of small size and fast response at low cost. However, dynamic monitoring of fresh food quality based on intelligent detection technologies on the consumer side has not been rigorously evaluated yet. This paper discussed the application of intelligent detection technologies based on the consumer side in the dynamic monitoring of fresh food freshness, microorganisms, food additives, and pesticide residues. Furthermore, the application of intelligent detection technologies combined with smartphones for quality monitoring and detection of fresh foods is evaluated. Moreover, the challenges and development trends of intelligent fresh food quality detection technologies are also discussed. Intelligent detection technologies based on the consumer side are designed to detect in real-time the quality of fresh food through visual color changes in combination with smartphones. This paper provides ideas and recommendations for the application of intelligent detection technologies based on the consumer side in food quality detection/monitoring and future research trends.
Collapse
Affiliation(s)
- Dongbei Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
5
|
Huang J, Zhang M, Mujumdar AS, Ma Y. Technological innovations enhance postharvest fresh food resilience from a supply chain perspective. Crit Rev Food Sci Nutr 2023; 64:11044-11066. [PMID: 37409544 DOI: 10.1080/10408398.2023.2232464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Fresh food is rich in nutrients but is usually seasonal, perishable, and challenging to store without degradation of quality. The inherent limitations of various preservation technologies can result in losses in all stages of the supply chain. As consumers of fresh foods have become more health-conscious, new technologies for intelligent, energy-efficient, and nondestructive preservation and processing have emerged as a research priority in recent years. This review aims to summarize the quality change characteristics of postharvest fruits, vegetables, meats, and aquatic products. It critically analyzes research progress and applications of various emerging technologies, which include: the application of high-voltage electric field, magnetic field, electromagnetic field, plasma, electrolytic water, nanotechnology, modified atmosphere packaging, and composite bio-coated film preservation technologies. An evaluation is presented of the benefits and drawbacks of these technologies, as well as future development trends. Moreover, this review provides guidance for design of the food supply chain to take advantage of various technologies used to process food, reduce losses and waste of fresh food, and this improve the overall resilience of the supply chain.
Collapse
Affiliation(s)
- Jinjin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | - Yamei Ma
- Jiangsu Gaode Food Co, Rugao, Jiangsu, China
| |
Collapse
|
6
|
Jia L, Shao L, Zhao Y, Sun Y, Li X, Dai R. Inactivation effects and mechanism of ohmic heating on Bacillus cereus. Int J Food Microbiol 2023; 390:110125. [PMID: 36774686 DOI: 10.1016/j.ijfoodmicro.2023.110125] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The inactivation effects and mechanism of ohmic heating (OH) on Bacillus cereus ATCC 11778 were investigated in this study, conventional heating (CH) was also carried out and served as control. All OH treatments (10 V/cm 50 Hz, 10 V/cm 500 Hz, 5 V/cm 50 Hz and 5 V/cm 500 Hz) could achieve a comparable inactivation effect with CH, while OH treatments significantly shortened the processing time. OH treated cells exhibited significantly higher leakage of metal ions (Mg2+ and K+) and biomacromolecules (nucleic acids and proteins) than those treated with CH when bacterial suspensions were heated to the same temperature. Moreover, OH treatment caused more damage on membrane structure, greatly decreased the cell membrane potential and endogenous enzyme activity than that of CH. The results of this study indicated that OH is more efficient in the inactivation of bacteria.
Collapse
Affiliation(s)
- Lihong Jia
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Lele Shao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yijie Zhao
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Yingying Sun
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Xingmin Li
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China
| | - Ruitong Dai
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
7
|
Qing S, Long Y, Wu Y, Shu S, Zhang F, Zhang Y, Yue J. Hot-air-assisted radio frequency blanching of broccoli: heating uniformity, physicochemical parameters, bioactive compounds, and microstructure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2664-2674. [PMID: 36647340 DOI: 10.1002/jsfa.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vegetables are often blanched before drying. The hot-water blanching (HWB) of broccoli reduces quality and is environmentally harmful. In this work, hot-air-assisted radio frequency heating blanching (HA-RFB) of broccoli was developed for use before further drying processes. Blanching sufficiency, heating uniformity, and heating rate during HA-RFB were investigated to improve the product's physicochemical properties and texture. Suitable heating conditions were achieved when HA-RFB was applied with hot air at 70 °C, with an electrode gap of 10.7 cm, using a cylindrical container for the broccoli. RESULTS Under these conditions, the relative peroxidase activity in broccoli decreased to 3.26% within 117 s, with 13.45% of weight loss. In comparison with HWB broccoli, the products blanched by HA-RFB preserved their texture, bioactive compounds, and microstructure better. The ascorbic acid, sulforaphane, and total glucosinolate content in HA-RFB products were 251.1%, 131.9% and 36.7% higher than those in HWB broccoli, and HA-RFB treatment led to a greater weight loss (13.45 ± 0.50%) than HWB (8.70 ± 1.70%), which is very helpful for the subsequent drying process. CONCLUSION This study demonstrated that HA-RFB could be a promising substitute for HWB to blanch broccoli and other flower vegetables, especially as a pretreatment in the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuting Qing
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Long
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Wu
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Shu
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Fei Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Yan Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Jin Yue
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China
| |
Collapse
|
8
|
Zhang M, Zhu S, Li Q, Xue D, Jiang S, Han Y, Li C. Effect of Thermal Processing on the Conformational and Digestive Properties of Myosin. Foods 2023; 12:foods12061249. [PMID: 36981174 PMCID: PMC10048447 DOI: 10.3390/foods12061249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heat treatment affects the structural properties of meat proteins, which in turn leads to changes in their sensitivity to digestive enzymes, further affecting the nutritional value of meat and meat products. The mechanism of changes in the structure and digestive properties of myosin under different heating conditions were studied. An increase in heating temperature led to the exposure of internal groups to a polar environment, but to a decrease in the sturdy α-helix structure of myosin (p < 0.05). The results of tryptophan fluorescence verified that the tertiary structure of the protein seemed to be unfolded at 70 °C. Higher protein denaturation after overheating, as proven by the sulfhydryl contents and turbidity, caused irregular aggregate generation. The excessive heating mode of treatment at 100 °C for 30 min caused myosin to exhibit a lower degree of pepsin digestion, which increased the Michaelis constant (Km value) of pepsin during the digestion, but induced the production of new peptides with longer peptide sequences. This study elucidates the effects of cooking temperature on the conformation of myosin and the change in digestibility of pepsin treatment during heating.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- International Joint Collaborative Research Laboratory for Animal Health and Food Safety, Ministry of Education, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuran Zhu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dejiang Xue
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Han
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Nanjing 210095, China
- Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
9
|
Effects of radio frequency thawing on the quality characteristics of frozen mutton. FOOD AND BIOPRODUCTS PROCESSING 2023. [DOI: 10.1016/j.fbp.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
10
|
Improving modification of structures and functionalities of food macromolecules by novel thermal technologies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Li J, Deng Y, Xu W, Zhao R, Chen T, Wang M, Xu E, Zhou J, Wang W, Liu D. Multiscale modeling of food thermal processing for insight, comprehension, and utilization of heat and mass transfer: A state-of-the-art review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Abea A, Gou P, Guàrdia MD, Picouet P, Kravets M, Bañón S, Muñoz I. Dielectric Heating: A Review of Liquid Foods Processing Applications. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Andres Abea
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | - Pere Gou
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| | | | - Pierre Picouet
- USC 1422 GRAPPE, INRA, Ecole Supérieure d’Agricultures, Univ. Bretagne Loire, Angers, France
| | - Marina Kravets
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Sancho Bañón
- Department of Food Science and Technology and Nutrition, Faculty of Veterinary Science, University of Murcia, Murcia, Spain
| | - Israel Muñoz
- Food Processing and Engineering, IRTA-TA, Monells, Spain
| |
Collapse
|
13
|
Inactivation of Endogenous Pectin Methylesterases by Radio Frequency Heating during the Fermentation of Fruit Wines. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pectin methylesterase (PME) is a methyl ester group hydrolytic enzyme of either plant or microbial origin. Importantly, endogenous PMEs in fruits can catalyze the demethoxylation of pectin with a bulk release of methanol, largely impacting the fruit juice and wine industries. Here, we demonstrated radio frequency (RF) heating for inactivation of endogenous PMEs and investigated the relevant mechanisms underpinning enzymatic inactivation. The RF heating curve indicated that the optimal heating rate was achieved at an electrode gap of 90 mm (compared to 100 mm and 110 mm) and that the inactivation rate of the enzyme increases with heating time. RF heating exhibited better effects on enzymatic inactivation than traditional water heating, mainly by changing the secondary structures of PMEs, including α-helix, β-sheet, β-turn, and random coil. Moreover, fluorescence spectroscopy indicated changes in the tertiary structure with a significant increase in fluorescence intensity. Significantly, application of RF heating for inactivation of PMEs resulted in a 1.5-fold decrease in methanol during the fermentation of jujube wine. Collectively, our findings demonstrated an effective approach for inactivating endogenous PMEs during the bioprocesses of fruits.
Collapse
|
14
|
Lara G, Takahashi C, Nagaya M, Uemura K. Improving the shelf life stability of vacuum‐packed fresh‐cut peaches (
Prunus persica
L.) by radio frequency heating in water. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grace Lara
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Chieko Takahashi
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Miku Nagaya
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Kunihiko Uemura
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| |
Collapse
|
15
|
Goñi SM, d’Amore M, Della Valle M, Olivera DF, Salvadori VO, Marra F. Effect of Load Spatial Configuration on the Heating of Chicken Meat Assisted by Radio Frequency at 40.68 MHz. Foods 2022; 11:foods11081096. [PMID: 35454683 PMCID: PMC9029437 DOI: 10.3390/foods11081096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Food heating assisted by radio frequencies has been industrially applied to post-harvest treatment of grains, legumes and various kind of nuts, to tempering and thawing of meat and fish products and to post-baking of biscuits. The design of food processes based on the application of radiofrequencies was often based on rules of thumb, so much so that their intensification could lead significant improvements. One of the subjects under consideration is the shape of the food items that may influence their heating assisted by radiofrequency. In this work, a joint experimental and numerical study on the effects of the spatial configuration of a food sample (chicken meat shaped as a parallelepiped) on the heating pattern in a custom RF oven (40.68 MHz, 50 Ohm, 10 cm electrodes gap, 300 W) is presented. Minced chicken breast samples were shaped as cubes (4 × 4 × 4 cm3) to be organized in different loads and spatial configurations (horizontal or vertical arrays of 2 to 16 cubes). The samples were heated at two radiofrequency operative power levels (225 W and 300 W). Heating rate, temperature uniformity and heating efficiency were determined during each run. A digital twin of the experimental system and process was developed by building and numerically solving a 3D transient mathematical model, taking into account electromagnetic field distribution in air and samples and heat transfer in the food samples. Once validated, the digital tool was used to analyze the heating behavior of the samples, focusing on the most efficient configurations. Both experiments and simulations showed that, given a fixed gap between the electrodes (10 cm), the vertically oriented samples exhibited a larger heating efficiency with respect to the horizontally oriented ones, pointing out that the gap between the top electrode and the samples plays a major role in the heating efficiency. The efficiency was larger (double or even more; >40% vs. 10−15%) in thicker samples (built with two layers of cubes), closer to the top electrode, independently from nominal power. Nevertheless, temperature uniformity in vertical configurations was poorer (6−7 °C) than in horizontal ones (3 °C).
Collapse
Affiliation(s)
- Sandro M. Goñi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet La Plata-Universidad Nacional de La Plata-Comisión de Investigaciones Científicas, 47 y 116, La Plata 1900, Argentina; (S.M.G.); (D.F.O.); (V.O.S.)
- Facultad de Ingeniería, Universidad Nacional de La Plata, 1 y 47, La Plata 1900, Argentina
| | - Matteo d’Amore
- Dipartimento di Farmacia, Università degli Studi di Salerno, 84084 Fisciano, Italy;
| | - Marta Della Valle
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, 84084 Fisciano, Italy;
| | - Daniela F. Olivera
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet La Plata-Universidad Nacional de La Plata-Comisión de Investigaciones Científicas, 47 y 116, La Plata 1900, Argentina; (S.M.G.); (D.F.O.); (V.O.S.)
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 y 118, La Plata 1900, Argentina
| | - Viviana O. Salvadori
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Conicet La Plata-Universidad Nacional de La Plata-Comisión de Investigaciones Científicas, 47 y 116, La Plata 1900, Argentina; (S.M.G.); (D.F.O.); (V.O.S.)
- Facultad de Ingeniería, Universidad Nacional de La Plata, 1 y 47, La Plata 1900, Argentina
| | - Francesco Marra
- Dipartimento di Ingegneria Industriale, Università degli Studi di Salerno, 84084 Fisciano, Italy;
- Correspondence:
| |
Collapse
|
16
|
Soto‐Reyes N, Sosa‐Morales ME, Rojas‐Laguna R, López‐Malo A. Advances in radio frequency pasteurisation equipment for liquid foods: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nohemí Soto‐Reyes
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| | - María Elena Sosa‐Morales
- División de Ciencias de la Vida Departamento de Alimentos Posgrado en Biociencias Universidad de Guanajuato Campus Irapuato‐Salamanca Irapuato GTO 36500 Mexico
| | - Roberto Rojas‐Laguna
- División de Ingenierías Departamento de Ingeniería Electrónica Universidad de Guanajuato Campus Irapuato‐Salamanca Salamanca GTO 36600 Mexico
| | - Aurelio López‐Malo
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| |
Collapse
|
17
|
Tsikrika K, Tzima K, Rai DK. Recent advances in anti‐browning methods in minimally processed potatoes—A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Konstantina Tsikrika
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
- Laboratory of Food Microbiology and Biotechnology Department of Food Science and Technology Agricultural University of Athens Athens Greece
| | - Katerina Tzima
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | - Dilip K. Rai
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| |
Collapse
|
18
|
Liu W, Zhang M, Mujumdar AS, Chen J. Role of dehydration technologies in processing for advanced ready-to-eat foods: A comprehensive review. Crit Rev Food Sci Nutr 2021; 63:5506-5520. [PMID: 34961367 DOI: 10.1080/10408398.2021.2021136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Advanced ready-to-eat foods, which can be consumed directly or only need simple processed before consumption, refer to the products that processing with cutting-edge food science and technology and have better quality attribute. Cold chain and chemical addition are commonly used options to ensure microbial safety of high moisture advanced ready-to-eat foods. However, this requires freezing/thawing processing at high cost or has undesirable residue. Dehydration treatment has the potential to compensate those shortcomings. This article reviewed the positive effects of dehydration on advanced ready-to-eat foods, current application status of dehydration technologies, novel dehydration related technologies and the pathogenic bacteria control of products. It is observed that dehydration treatment is receiving increasing attention for ready-to-eat foods including space foods, 3 D-printed personalized foods and formula foods for special medical purposes. Recently developed drying technologies such as pulsed spouted microwave freeze-drying and infrared freeze-drying have attracted much interest due to their excellent drying characteristics. Finally, intelligent drying, dehydration-nano-hybridization and dehydration-induced multi-dimensional modification technology are some of the emerging R and D areas in this field.
Collapse
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Effects of freeze-thaw cycles of Pacific white shrimp (Litopenaeus vannamei) subjected to radio frequency tempering on melanosis and quality. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Wang F, Shao W, Yang D. Effect of different drying methods on drying characteristics and quality of
Camellia oleifera
seeds. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fenghe Wang
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang China
| | - Wenhui Shao
- School of Grain Science and Technology Jiangsu University of Science and Technology Zhenjiang China
| | - Deyong Yang
- College of Engineering China Agricultural University Beijing China
| |
Collapse
|
21
|
Elik A. Hot air-assisted radio frequency drying of black carrot pomace: Kinetics and product quality. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Fadiji T, Ashtiani SHM, Onwude DI, Li Z, Opara UL. Finite Element Method for Freezing and Thawing Industrial Food Processes. Foods 2021; 10:869. [PMID: 33923375 PMCID: PMC8071487 DOI: 10.3390/foods10040869] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 11/30/2022] Open
Abstract
Freezing is a well-established preservation method used to maintain the freshness of perishable food products during storage, transportation and retail distribution; however, food freezing is a complex process involving simultaneous heat and mass transfer and a progression of physical and chemical changes. This could affect the quality of the frozen product and increase the percentage of drip loss (loss in flavor and sensory properties) during thawing. Numerical modeling can be used to monitor and control quality changes during the freezing and thawing processes. This technique provides accurate predictions and visual information that could greatly improve quality control and be used to develop advanced cold storage and transport technologies. Finite element modeling (FEM) has become a widely applied numerical tool in industrial food applications, particularly in freezing and thawing processes. We review the recent studies on applying FEM in the food industry, emphasizing the freezing and thawing processes. Challenges and problems in these two main parts of the food industry are also discussed. To control ice crystallization and avoid cellular structure damage during freezing, including physicochemical and microbiological changes occurring during thawing, both traditional and novel technologies applied to freezing and thawing need to be optimized. Mere experimental designs cannot elucidate the optimum freezing, frozen storage, and thawing conditions. Moreover, these experimental procedures can be expensive and time-consuming. This review demonstrates that the FEM technique helps solve mass and heat transfer equations for any geometry and boundary conditions. This study offers promising insight into the use of FEM for the accurate prediction of key information pertaining to food processes.
Collapse
Affiliation(s)
- Tobi Fadiji
- Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Postharvest Technology Research Laboratory, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Seyed-Hassan Miraei Ashtiani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Daniel I. Onwude
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland;
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo 52021, Nigeria
| | - Zhiguo Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Umezuruike Linus Opara
- Africa Institute for Postharvest Technology, South African Research Chair in Postharvest Technology, Postharvest Technology Research Laboratory, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
23
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
24
|
Zhang Z, Zhang B, Yang R, Zhao W. Recent Developments in the Preservation of Raw Fresh Food by Pulsed Electric Field. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1860083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhenna Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Bin Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, PR China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
25
|
Zhao L, Zhang M, Bhandari B, Bai B. Microbial and quality improvement of boiled gansi dish using carbon dots combined with radio frequency treatment. Int J Food Microbiol 2020; 334:108835. [PMID: 32898829 DOI: 10.1016/j.ijfoodmicro.2020.108835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 11/19/2022]
Abstract
Use of carbon dots (CDs) combined with radio frequency (RF) was applied to pasteurize and reduce the microorganism population in order to improve the quality of boiled gansi dish. CDs were prepared from banana using hydrothermal method, and characterized by using TEM, XRD and FTIR. The minimal inhibitory concentration (MIC) test showed CDs can efficiently inactivate Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus subtilis (B. subtilis). This study also evaluated the effectiveness of five treatments, including CDs alone, CDs combined RF (CDRF) heating for different time (8 min, 12 min, and 16 min), and high pressure steam (HPS) sterilization of boiled gansi dish inoculated with B. subtilis. After CDRF treated for 8 min, 12 min, and 16 min, the center temperature of samples reached to 78.92, 87.77 and 93.82 °C, and the colony forming units (CFU) of B. subtilis reduced by 2.13, 3.62, and 4.63 log, respectively. Samples with CDRF12 treatment, exhibited better product quality as evidenced by reduced loss of texture, flavor, and sensory as compared with HPS sample. The results indicated that CDRF treatment has a great potential to produce packaged boiled gansi dish with high product quality.
Collapse
Affiliation(s)
- Linlin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Baosong Bai
- Yechun Food Production and Distribution Co., Ltd., 225000 Yangzhou, Jiangsu, China
| |
Collapse
|
26
|
Effects of combined radio frequency with hot water blanching on enzyme inactivation, color and texture of sweet potato. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
27
|
Afraz MT, Khan MR, Roobab U, Noranizan MA, Tiwari BK, Rashid MT, Inam‐ur‐Raheem M, Hashemi SMB, Aadil RM. Impact of novel processing techniques on the functional properties of egg products and derivatives: A review. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muhammad Talha Afraz
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Mohd Adzahan Noranizan
- Department of Food Technology Faculty of Food Science and Technology, Universiti Putra Malaysia Serdang Malaysia
| | - Brijesh K. Tiwari
- Department of Food Biosciences Teagasc Food Research Centre Dublin Ireland
| | | | - Muhammad Inam‐ur‐Raheem
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
28
|
Monitoring Thermal and Non-Thermal Treatments during Processing of Muscle Foods: A Comprehensive Review of Recent Technological Advances. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Muscle food products play a vital role in human nutrition due to their sensory quality and high nutritional value. One well-known challenge of such products is the high perishability and limited shelf life unless suitable preservation or processing techniques are applied. Thermal processing is one of the well-established treatments that has been most commonly used in order to prepare food and ensure its safety. However, the application of inappropriate or severe thermal treatments may lead to undesirable changes in the sensory and nutritional quality of heat-processed products, and especially so for foods that are sensitive to thermal treatments, such as fish and meat and their products. In recent years, novel thermal treatments (e.g., ohmic heating, microwave) and non-thermal processing (e.g., high pressure, cold plasma) have emerged and proved to cause less damage to the quality of treated products than do conventional techniques. Several traditional assessment approaches have been extensively applied in order to evaluate and monitor changes in quality resulting from the use of thermal and non-thermal processing methods. Recent advances, nonetheless, have shown tremendous potential of various emerging analytical methods. Among these, spectroscopic techniques have received considerable attention due to many favorable features compared to conventional analysis methods. This review paper will provide an updated overview of both processing (thermal and non-thermal) and analytical techniques (traditional methods and spectroscopic ones). The opportunities and limitations will be discussed and possible directions for future research studies and applications will be suggested.
Collapse
|
29
|
Llave Y, Erdogdu F. Radio frequency processing and recent advances on thawing and tempering of frozen food products. Crit Rev Food Sci Nutr 2020; 62:598-618. [PMID: 32960080 DOI: 10.1080/10408398.2020.1823815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During radio frequency (RF) thawing-tempering (defrosting) of frozen food products, some regions, mostly along the corners and edges, heat-thaw first due to the strong interaction of electric field and evolved heating leading to temperature increase. Resulting higher power absorption along these regions, compared to the rest of the volume, is the major cause of this problem. Besides, increase in temperature with phase change results in a significant increase of dielectric properties. This situation leads to runaway heating, which triggers the non-uniform temperature distribution in an accelerated manner. All these power absorption and temperature non-uniformity-based changes lead to significant quality changes, drip losses, and microbial growth. Based on this background, the objective of this review was to provide a comprehensive background regarding the most relevant and novel defrosting application studies using RF process, dielectric property data for frozen foods in the RF band, and novel mathematical modeling based computer simulation approaches to achieve a uniform process. Experimental and modeling studies were related with electrode position, sample geometry and size, electrode gap of the applied RF process, and the potential of charged electrode. Applying translational and rotational movement of the food product and the charged electrode vertical movement during the process to adjust the electric field and use of two-cavity systems and curved electrodes were also explained in detail. The data presented in this review is expected to give an insight information for further development of innovative RF thawing/tempering systems.
Collapse
Affiliation(s)
- Yvan Llave
- Department of Agro-Food Science, Niigata Agro-Food University, Niigata, Japan
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Dag D, Singh RK, Kong F. Developments in Radio Frequency Pasteurization of Food Powders. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1775641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Damla Dag
- Department of Food Science and Technology, The University of Georgia, Athens, GA, USA
| | - Rakesh K. Singh
- Department of Food Science and Technology, The University of Georgia, Athens, GA, USA
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
31
|
Hassoun A, Heia K, Lindberg SK, Nilsen H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods 2020; 9:E767. [PMID: 32532043 PMCID: PMC7353598 DOI: 10.3390/foods9060767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cooking is an important processing method, that has been used since ancient times in order to both ensure microbiological safety and give desired organoleptic properties to the cooked food. Fish and other seafood products are highly sensitive to thermal treatments and the application of severe heat can result in negative consequences on sensory and nutritional parameters, as well as other quality attributes of the thermally processed products. To avoid such undesired effects and to extend the shelf life of these perishable products, both the heat processing methods and the assessment techniques used to monitor the process should be optimized. In this review paper, the most common cooking methods and some innovative ones will first be presented with a brief discussion of their impact on seafood quality. The main methods used for monitoring heat treatments will then be reviewed with a special focus on spectroscopic techniques, which are known to be rapid and non-destructive methods compared to traditional approaches. Finally, viewpoints of the current challenges will be discussed and possible directions for future applications and research will be suggested. The literature presented in this review clearly demonstrates the potential of spectroscopic techniques, coupled with chemometric tools, for online monitoring of heat-induced changes resulting from the application of thermal treatments of seafood. The use of fluorescence hyperspectral imaging is especially promising, as the technique combines the merits of both fluorescence spectroscopy (high sensitivity and selectivity) and hyperspectral imaging (spatial dimension). With further research and investigation, the few current limitations of monitoring thermal treatments by spectroscopy can be addressed, thus enabling the use of spectroscopic techniques as a routine tool in the seafood industry.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS Norwegian Institute of Food, Fisheries, and Aquaculture Research Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | | | | | | |
Collapse
|
32
|
Zhang L, Lan R, Zhang B, Erdogdu F, Wang S. A comprehensive review on recent developments of radio frequency treatment for pasteurizing agricultural products. Crit Rev Food Sci Nutr 2020; 61:380-394. [PMID: 32156148 DOI: 10.1080/10408398.2020.1733929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Recent pathogen incidents have forced food industry to seek for alternative processes in postharvest pasteurization of agricultural commodities. Radio frequency (RF) heating has been used as one alternative treatment to replace chemical fumigation and other conventional thermal methods since it is relatively easy to apply and leaves no chemical residues. RF technology transfers electromagnetic energy into large bulk volume of the products to provide a fast and volumetric heating. There are two types of RF technology commonly applied in lab and industry to generate the heat energy: free running oscillator and 50-Ω systems. Several reviews have been published to introduce the application of RF heating in food processing. However, few reviews have a comprehensive summary of RF treatment for pasteurizing agricultural products. The objective of this review was to introduce the developments in the RF pasteurization of agricultural commodities and to present future directions of the RF heating applications. While the recent developments in the RF pasteurization were presented, thermal death kinetics of targeted pathogens as influenced by water activity, pathogen species and heating rates, non-thermal effects of RF heating, combining RF heating with other technologies for pasteurization, RF heating uniformity improvements using computer simulation and development of practical RF pasteurization processes were also focused. This review is expected to provide a comprehensive understanding of RF pasteurization for agricultural products and promote the industrial-scale applications of RF technology with possible process protocol optimization purposes.
Collapse
Affiliation(s)
- Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ruange Lan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Beihua Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Ferruh Erdogdu
- Department of Food Engineering, Ankara University, Golbası-Ankara, Turkey
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China.,Department of Biological Systems Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
33
|
Xu J, Wang B, Wang Y. Electromagnetic fields assisted blanching—Effect on the dielectric and physicochemical properties of cabbage. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingjing Xu
- School of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
| | - Bo Wang
- School of Food and Biological EngineeringJiangsu University Zhenjiang Jiangsu China
| | - Yuchuan Wang
- School of Food Science and TechnologyJiangnan University Wuxi Jiangsu China
| |
Collapse
|