1
|
Huang W, Fateh AA, Zhao Y, Zeng H, Yang B, Fang D, Zhang L, Meng X, Hassan M, Wen F. Effects of the SNAP-25 Mnll variant on hippocampal functional connectivity in children with attention deficit/hyperactivity disorder. Front Hum Neurosci 2023; 17:1219189. [PMID: 37635807 PMCID: PMC10447972 DOI: 10.3389/fnhum.2023.1219189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives Attention-deficit/hyperactivity disorder (ADHD) is one of the most widespread and highly heritable neurodevelopmental disorders affecting children worldwide. Although synaptosomal-associated protein 25 (SNAP-25) is a possible gene hypothesized to be associated with working memory deficits in ADHD, little is known about its specific impact on the hippocampus. The goal of the current study was to determine how variations in ADHD's SNAP-25 Mnll polymorphism (rs3746544) affect hippocampal functional connectivity (FC). Methods A total of 88 boys between the ages of 7 and 10 years were recruited for the study, including 60 patients with ADHD and 28 healthy controls (HCs). Data from resting-state functional magnetic resonance imaging (rs-fMRI) and clinical information were acquired and assessed. Two single nucleotide polymorphisms (SNP) in the SNAP-25 gene were genotyped, according to which the study's findings separated ADHD patients into two groups: TT homozygotes (TT = 35) and G-allele carriers (TG = 25). Results Based on the rs-fMRI data, the FC of the right hippocampus and left frontal gyrus was evaluated using group-based comparisons. The corresponding sensitivities and specificities were assessed. Following comparisons between the patient groups, different hippocampal FCs were identified. When compared to TT patients, children with TG had a lower FC between the right precuneus and the right hippocampus, and a higher FC between the right hippocampus and the left middle frontal gyrus. Conclusion The fundamental neurological pathways connecting the SNAP-25 Mnll polymorphism with ADHD via the FC of the hippocampus were newly revealed in this study. As a result, the hippocampal FC may further serve as an imaging biomarker for ADHD.
Collapse
Affiliation(s)
- Wenxian Huang
- Department of Pediatric China Medical University, Shenyang, China
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yilin Zhao
- Department of Pediatric China Medical University, Shenyang, China
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Binrang Yang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Diangang Fang
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Linlin Zhang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xianlei Meng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
2
|
Marques DM, Almeida AS, Oliveira CBA, Machado ACL, Lara MVS, Porciúncula LO. Delayed Outgrowth in Response to the BDNF and Altered Synaptic Proteins in Neurons From SHR Rats. Neurochem Res 2023:10.1007/s11064-023-03917-9. [PMID: 36995561 DOI: 10.1007/s11064-023-03917-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by inattention, hyperactivity, and impulsivity symptoms. Neuroimaging studies have revealed a delayed cortical and subcortical development pattern in children diagnosed with ADHD. This study followed up on the development in vitro of frontal cortical neurons from Spontaneously hypertensive rats (SHR), an ADHD rat model, and Wistar-Kyoto rats (WKY), control strain, over their time in culture, and in response to BDNF treatment at two different days in vitro (DIV). These neurons were also evaluated for synaptic proteins, brain-derived neurotrophic factor (BDNF), and related protein levels. Frontal cortical neurons from the ADHD rat model exhibited shorter dendrites and less dendritic branching over their time in culture. While pro- and mature BDNF levels were not altered, the cAMP-response element-binding (CREB) decreased at 1 DIV and SNAP-25 decreased at 5 DIV. Different from control cultures, exogenous BDNF promoted less dendritic branching in neurons from the ADHD model. Our data revealed that neurons from the ADHD model showed decreased levels of an important transcription factor at the beginning of their development, and their delayed outgrowth and maturation had consequences in the levels of SNAP-25 and may be associated with less response to BDNF. These findings provide an alternative tool for studies on synaptic dysfunctions in ADHD. They may also offer a valuable tool for investigating drug effects and new treatment opportunities.
Collapse
Affiliation(s)
- Daniela M Marques
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Amanda S Almeida
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Catiane B A Oliveira
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Ana Carolina L Machado
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Marcus Vinícius S Lara
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil
| | - Lisiane O Porciúncula
- Departamento de Bioquímica, Programa de Pós-Graduação Em Ciências Biológicas-Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-anexo, Porto Alegre, RS, 90035-003, Brasil.
| |
Collapse
|
3
|
Bolat H, Ünsel-Bolat G, Özgül S, Parıltay E, Tahıllıoğlu A, Rohde LA, Akın H, Ercan ES. Investigation of possible associations of the BDNF, SNAP-25 and SYN III genes with the neurocognitive measures: BDNF and SNAP-25 genes might be involved in attention domain, SYN III gene in executive function. Nord J Psychiatry 2022; 76:610-615. [PMID: 35077325 DOI: 10.1080/08039488.2022.2027518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Attention-deficit/hyperactivity disorder (ADHD) is a heterogeneous disorder and Sluggish Cognitive Tempo (SCT) might be a second inattention disorder that might be even affected by different attention pathways. SCT is characterized by daydreaming, mental confusion, staring blankly and hypoactivity. In the present study, we evaluated 5 common variants (rs6265, rs3746544, rs1051312, rs133946 and rs133945) located in 3 candidate genes (BDNF, SNAP25 and SYN III) that are known to take part in synaptic plasticity and neurotransmitter transmission. METHODS We tested the effects of these variants on neuropsychological findings assessed by a computer-based neuropsychological test battery in children with inattention symptoms (SCT and/or ADHD). RESULTS BDNF (rs6265), SNAP25 (rs3746544 and rs1051312) and SYN III (rs133946 and rs133945) polymorphisms were associated with variable cognitive measures. BDNF gene (rs6265) polymorphism Met allele carriers and SNAP25 gene (rs3746544) T allele carriers had an association with the attention domain. SNAP25 gene (rs1051312) C allele carriers were only associated with reaction time scores. Cognitive flexibility, which is one of the key components of executive function evaluation and shifting attention test scores were associated with BDNF (rs6265) Met allele and SYN III (rs133946) gene G allele. SYN III (rs133945) gene C allele carriers had an association with verbal memory correct hit scores. CONCLUSIONS As a conclusion, BDNF, SNAP25 and SYN III genes were associated with specific neurocognitive outcomes in children with inattention symptoms. It is important to note that exploring genotyping effects on neurocognitive functions instead of a heterogeneous psychiatric diagnosis can improve our understanding of psychopathologies.
Collapse
Affiliation(s)
- Hilmi Bolat
- Department of Medical Genetics, Balıkesir University, Balıkesir, Turkey.,Department of Medical Bioinformatics, Ege University, İzmir, Turkey
| | - Gül Ünsel-Bolat
- Department of Child and Adolescent Psychiatry, Balıkesir University, Balıkesir, Turkey.,Department of Neuroscience, Ege University, İzmir, Turkey
| | - Semiha Özgül
- Department of Bioistatistics and Medical Informatics, Ege University, Izmir, Turkey
| | - Erhan Parıltay
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Akın Tahıllıoğlu
- Department of Child and Adolescent Psychiatry, Çiğli Research and Training Hospital, Izmir, Turkey
| | - Luis Augusto Rohde
- ADHD Outpatient Program, Hospital de Clinicas de Porto Alegre, Department of Psychiatry, Federal University of Rio Grande do Sul, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Haluk Akın
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Eyüp Sabri Ercan
- Department of Child and Adolescent Psychiatry, Çiğli Research and Training Hospital, Izmir, Turkey.,Department of Child and Adolescent Psychiatry, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Hwang J, Thurmond DC. Exocytosis Proteins: Typical and Atypical Mechanisms of Action in Skeletal Muscle. Front Endocrinol (Lausanne) 2022; 13:915509. [PMID: 35774142 PMCID: PMC9238359 DOI: 10.3389/fendo.2022.915509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin-stimulated glucose uptake in skeletal muscle is of fundamental importance to prevent postprandial hyperglycemia, and long-term deficits in insulin-stimulated glucose uptake underlie insulin resistance and type 2 diabetes. Skeletal muscle is responsible for ~80% of the peripheral glucose uptake from circulation via the insulin-responsive glucose transporter GLUT4. GLUT4 is mainly sequestered in intracellular GLUT4 storage vesicles in the basal state. In response to insulin, the GLUT4 storage vesicles rapidly translocate to the plasma membrane, where they undergo vesicle docking, priming, and fusion via the high-affinity interactions among the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) exocytosis proteins and their regulators. Numerous studies have elucidated that GLUT4 translocation is defective in insulin resistance and type 2 diabetes. Emerging evidence also links defects in several SNAREs and SNARE regulatory proteins to insulin resistance and type 2 diabetes in rodents and humans. Therefore, we highlight the latest research on the role of SNAREs and their regulatory proteins in insulin-stimulated GLUT4 translocation in skeletal muscle. Subsequently, we discuss the novel emerging role of SNARE proteins as interaction partners in pathways not typically thought to involve SNAREs and how these atypical functions reveal novel therapeutic targets for combating peripheral insulin resistance and diabetes.
Collapse
Affiliation(s)
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
5
|
Cervantes-Henríquez ML, Acosta-López JE, Martinez AF, Arcos-Burgos M, Puentes-Rozo PJ, Vélez JI. Machine Learning Prediction of ADHD Severity: Association and Linkage to ADGRL3, DRD4, and SNAP25. J Atten Disord 2022; 26:587-605. [PMID: 34009035 DOI: 10.1177/10870547211015426] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate whether single nucleotide polymorphisms (SNPs) in the ADGRL3, DRD4, and SNAP25 genes are associated with and predict ADHD severity in families from a Caribbean community. METHOD ADHD severity was derived using latent class cluster analysis of DSM-IV symptomatology. Family-based association tests were conducted to detect associations between SNPs and ADHD severity latent phenotypes. Machine learning algorithms were used to build predictive models of ADHD severity based on demographic and genetic data. RESULTS Individuals with ADHD exhibited two seemingly independent latent class severity configurations. SNPs harbored in DRD4, SNAP25, and ADGRL3 showed evidence of linkage and association to symptoms severity and a potential pleiotropic effect on distinct domains of ADHD severity. Predictive models discriminate severe from non-severe ADHD in specific symptom domains. CONCLUSION This study supports the role of DRD4, SNAP25, and ADGRL3 genes in outlining ADHD severity, and a new prediction framework with potential clinical use.
Collapse
Affiliation(s)
| | | | | | | | - Pedro J Puentes-Rozo
- Universidad Simón Bolívar, Barranquilla, Colombia
- Universidad del Atlántico, Barranquilla, Colombia
| | | |
Collapse
|
6
|
Stanford SC. Animal Models of ADHD? Curr Top Behav Neurosci 2022; 57:363-393. [PMID: 35604570 DOI: 10.1007/7854_2022_342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To describe animals that express abnormal behaviors as a model of Attention-Deficit Hyperactivity Disorder (ADHD) implies that the abnormalities are analogous to those expressed by ADHD patients. The diagnostic features of ADHD comprise inattentiveness, impulsivity, and hyperactivity and so these behaviors are fundamental for validation of any animal model of this disorder. Several experimental interventions such as neurotoxic lesion of neonatal rats with 6-hydroxydopamine (6-OHDA), genetic alterations, or selective inbreeding of rodents have produced animals that express each of these impairments to some extent. This article appraises the validity of claims that these procedures have produced a model of ADHD, which is essential if they are to be used to investigate the underlying cause(s) of ADHD and its abnormal neurobiology.
Collapse
Affiliation(s)
- S Clare Stanford
- Department of Neuroscience Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
7
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
8
|
Chen F, Chen H, Chen Y, Wei W, Sun Y, Zhang L, Cui L, Wang Y. Dysfunction of the SNARE complex in neurological and psychiatric disorders. Pharmacol Res 2021; 165:105469. [PMID: 33524541 DOI: 10.1016/j.phrs.2021.105469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
The communication between neurons constitutes the basis of all neural activities, and synaptic vesicle exocytosis is the fundamental biological event that mediates most communication between neurons in the central nervous system. The SNARE complex is the core component of the protein machinery that facilitates the fusion of synaptic vesicles with presynaptic terminals and thereby the release of neurotransmitters. In synapses, each release event is dependent on the assembly of the SNARE complex. In recent years, basic research on the SNARE complex has provided a clearer understanding of the mechanism underlying the formation of the SNARE complex and its role in vesicle formation. Emerging evidence indicates that abnormal expression or dysfunction of the SNARE complex in synapse physiology might contribute to abnormal neurotransmission and ultimately to synaptic dysfunction. Clinical research using postmortem tissues suggests that SNARE complex dysfunction is correlated with various neurological diseases, and some basic research has also confirmed the important role of the SNARE complex in the pathology of these diseases. Genetic and pharmacogenetic studies suggest that the SNARE complex and individual proteins might represent important molecular targets in neurological disease. In this review, we summarize the recent progress toward understanding the SNARE complex in regulating membrane fusion events and provide an update of the recent discoveries from clinical and basic research on the SNARE complex in neurodegenerative, neuropsychiatric, and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yuanhong Sun
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Lu Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiao tong University, Xi'an, China.
| |
Collapse
|
9
|
Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019; 8:cells8080907. [PMID: 31426340 PMCID: PMC6721689 DOI: 10.3390/cells8080907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a highly heritable and prevalent neurodevelopmental disorder that frequently persists into adulthood. Strong evidence from genetic studies indicates that single nucleotide polymorphisms (SNPs) harboured in the ADGRL3 (LPHN3), SNAP25, FGF1, DRD4, and SLC6A2 genes are associated with ADHD. We genotyped 26 SNPs harboured in genes previously reported to be associated with ADHD and evaluated their potential association in 386 individuals belonging to 113 nuclear families from a Caribbean community in Barranquilla, Colombia, using family-based association tests. SNPs rs362990-SNAP25 (T allele; p = 2.46 × 10−4), rs2282794-FGF1 (A allele; p = 1.33 × 10−2), rs2122642-ADGRL3 (C allele, p = 3.5 × 10−2), and ADGRL3 haplotype CCC (markers rs1565902-rs10001410-rs2122642, OR = 1.74, Ppermuted = 0.021) were significantly associated with ADHD. Our results confirm the susceptibility to ADHD conferred by SNAP25, FGF1, and ADGRL3 variants in a community with a significant African American component, and provide evidence supporting the existence of specific patterns of genetic stratification underpinning the susceptibility to ADHD. Knowledge of population genetics is crucial to define risk and predict susceptibility to disease.
Collapse
|
10
|
Jiang X, Zhang Z, Cheng K, Wu Q, Jiang L, Pielak GJ, Liu M, Li C. Membrane-mediated disorder-to-order transition of SNAP25 flexible linker facilitates its interaction with syntaxin-1 and SNARE-complex assembly. FASEB J 2019; 33:7985-7994. [PMID: 30916996 DOI: 10.1096/fj.201802796r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex comprises synaptosome-associated protein of 25 kDa (SNAP25), syntaxin-1a (syx-1), and synaptobrevin 2, which is essential for many physiologic processes requiring membrane fusion. Several studies imply that the loop region of SNAP25 plays important roles in SNARE-complex assembly. However, why and how the flexible loop facilitates the complex assembly remains poorly understood because it is purposely deleted in almost all structural studies. By using NMR spectroscopy and circular dichroism spectropolarimetry, we characterized SNAP25 structure and interactions with other SNAREs in aqueous buffer and in the membrane. We found that the N-terminal of the SNAP25 loop region binds with membrane, and this interaction induced a disorder-to-order conformational change of the loop, resulting in enhanced interaction between the C-terminal of the SNAP25 loop and syx-1. We further proved that SNARE-complex assembly efficiency decreased when we disrupted the electrostatic interaction between C-terminal of the SNAP25 loop and syx-1, suggesting that the SNAP25 loop region facilitates SNARE-complex assembly through promoting prefusion SNARE binary complex formation. Our work elucidates the role of the flexible loop and the membrane environment in SNARE-complex assembly at the residue level, which helps to understand membrane fusion, a fundamental transport and communication process in cells.-Jiang, X., Zhang, Z., Cheng, K., Wu, Q., Jiang, L., Pielak, G. J., Liu, M., Li, C. Membrane-mediated disorder-to-order transition of SNAP25 flexible linker facilitates its interaction with syntaxin-1 and SNARE-complex assembly.
Collapse
Affiliation(s)
- Xin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Zeting Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Gary J Pielak
- Department of Chemistry and Department of Biochemistry and Biophysics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Forero DA, Guio-Vega GP, González-Giraldo Y. A comprehensive regional analysis of genome-wide expression profiles for major depressive disorder. J Affect Disord 2017; 218:86-92. [PMID: 28460316 DOI: 10.1016/j.jad.2017.04.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a global health challenge. In recent years, a large number of genome-wide expression studies (GWES) have been carried out to identify the transcriptomic profiles for MDD. The objective of this work was to carry out a comprehensive meta-analysis of available GWES for MDD. METHODS GWES for MDD with available raw data were searched in NCBI GEO, Array Express and Stanley databases. Raw GWES data were preprocessed and normalized and meta-analytical procedures were carried out with the Network Analyst program. 743 samples from 24 primary studies were included in our meta-analyses for blood (Blo), amygdala (Amy), cerebellum (Cer), anterior cingulate cortex (ACC) and prefrontal cortex (PFC) regions. A functional enrichment analysis was carried out. RESULTS We identified 35, 793, 231, 668 and 252 differentially expressed (DE) genes for Blo, Amy, Cer, ACC and PFC regions. A region-dependent significant enrichment for several functional categories, such as gene ontologies, signaling pathways and topographic parameters, was identified. There was convergence with other available genome-wide studies, such as GWAS, DNA methylation analyses and miRNA expression studies. LIMITATIONS Raw data were not available for several primary studies that have been published previously. CONCLUSIONS This is the largest meta-analysis for GWES in MDD. The examination of convergence of genome-wide evidence and of the functional enrichment analysis provides a global overview of potential neural signaling mechanisms dysregulated in MDD. Our comprehensive analysis of several brain regions identified lists of DE genes for MDD that are interesting candidates for further studies.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.
| | - Gina P Guio-Vega
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
12
|
Perceived Stress as a Mediator of the Relationship between Neuroticism and Depression and Anxiety Symptoms. CURRENT PSYCHOLOGY 2017. [DOI: 10.1007/s12144-017-9587-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
14
|
Zhong ZQ, Xiang Y, Hu X, Wang YC, Zeng X, Wang XM, Xia QJ, Wang TH, Zhang X. Synaptosomal-associated protein 25 may be an intervention target for improving sensory and locomotor functions after spinal cord contusion. Neural Regen Res 2017; 12:969-976. [PMID: 28761431 PMCID: PMC5514873 DOI: 10.4103/1673-5374.208592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synaptosomal-associated protein 25 kDa (SNAP-25) is localized on the synapse and participates in exocytosis and neurotransmitter release. Decreased expression of SNAP-25 is associated with Alzheimer's disease and attention deficit/hyperactivity disorder. However, the expression of SNAP-25 in spinal cord contusion injury is still unclear. We hypothesized that SNAP-25 is associated with sensory and locomotor functions after spinal cord injury. We established rat models of spinal cord contusion injury to detect gene changes with a gene array. A decreased level of SNAP-25 was detected by quantitative real time-polymerase chain reaction and western blot assay at 1, 3, 7, 14 and 28 days post injury. SNAP-25 was localized in the cytoplasm of neurons of the anterior and posterior horns, which are involved in locomotor and sensory functions. Our data suggest that reduced levels of SNAP-25 are associated with sensory and locomotor functions in rats with spinal cord contusion injury.
Collapse
Affiliation(s)
- Zhan-Qiong Zhong
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China.,School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yang Xiang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xi Hu
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - You-Cui Wang
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xi Zeng
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Xiao-Meng Wang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| | - Qing-Jie Xia
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ting-Hua Wang
- Institute of Neurological Diseases, Center for Translational Neuroscience, Western China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiao Zhang
- Experiment Technology Center of Preclinical Medicine of Chengdu Medical College, Chengdu, Sichuan Province, China
| |
Collapse
|
15
|
Forero DA, Prada CF, Perry G. Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders. Open Neurol J 2016; 10:143-148. [PMID: 27990183 PMCID: PMC5120378 DOI: 10.2174/1874205x01610010143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Background: In recent years, a large number of studies around the world have led to the identification of causal genes for hereditary types of common and rare neurological and psychiatric disorders. Objective: To explore the functional and genomic features of known human genes mutated in neuropsychiatric disorders. Methods: A systematic search was used to develop a comprehensive catalog of genes mutated in neuropsychiatric disorders (NPD). Functional enrichment and protein-protein interaction analyses were carried out. A false discovery rate approach was used for correction for multiple testing. Results: We found several functional categories that are enriched among NPD genes, such as gene ontologies, protein domains, tissue expression, signaling pathways and regulation by brain-expressed miRNAs and transcription factors. Sixty six of those NPD genes are known to be druggable. Several topographic parameters of protein-protein interaction networks and the degree of conservation between orthologous genes were identified as significant among NPD genes. Conclusion: These results represent one of the first analyses of enrichment of functional categories of genes known to harbor mutations for NPD. These findings could be useful for a future creation of computational tools for prioritization of novel candidate genes for NPD.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Carlos F Prada
- Grupo de Citogenética, Filogenia y Evolución de Poblaciones, Universidad del Tolima. Ibagué, Colombia
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Ye C, Hu Z, Wu E, Yang X, Buford UJ, Guo Z, Saveanu RV. Two SNAP-25 genetic variants in the binding site of multiple microRNAs and susceptibility of ADHD: A meta-analysis. J Psychiatr Res 2016; 81:56-62. [PMID: 27380186 DOI: 10.1016/j.jpsychires.2016.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/23/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022]
Abstract
The aim of this meta-analysis is to assess the associations between two most widely investigated polymorphisms (rs3746544 and rs1051312) in the 3'UTR of the SNAP-25 gene and susceptibility of ADHD. Two investigators selected related studies and assessed methodological quality independently. Six studies were included in this meta-analysis for a total of 715 cases and 655 controls. There is no apparent association between rs3746544 polymorphisms and risk of ADHD. However, subgroup analysis based on ethnicity demonstrated a strong association between rs3746544 polymorphism and ADHD in the subset of Asian participants, but not among Caucasians. Compared to the T allele, the allele G was associated with a significantly decreased risk of developing ADHD in the Asian population (odds ratio (OR) = 0.70, 95% confidence interval (CI) = 0.52-0.95, p = 0.02). The association between the TT genotype and ADHD risk was also significantly increased as compared to G/T (OR = 1.56, 95% CI = 1.00-2.44, p = 0.05) and the dominant genetic model (GG + GT vs. TT: OR = 1.51, 95% CI = 1.07-2.13, p = 0.02). For the rs1051312 SNP, being homozygous for the minor allele (C/C) was associated with a 3.66 higher odds of ADHD as compared to cases homozygous for the major allele (T/T) (95% CI = 1.64-8.13, p = 0.001), and 3.57 higher odds as compared to heterozygous (C/T) carriers (95% CI = 2.01-12.90, p < 0.001). Our results suggest that the polymorphisms rs3746544 and rs1051312 may increase the odds of developing ADHD. Additional studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Chuanzhong Ye
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine/Jackson Health System, 1695 NW 9th Ave, 33136, United States.
| | - Zhijian Hu
- Department of Epidemiology and Health Statistics, Fujian Medical University, 1 Xue Yuan Road University Town, Fujian, 350108, China
| | - Evan Wu
- Department of Health Sciences, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL, 33136, United States
| | - Xiaolu Yang
- Department of Epidemiology and Health Statistics, Fujian Medical University, 1 Xue Yuan Road University Town, Fujian, 350108, China
| | - Ushimbra J Buford
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine/Jackson Health System, 1695 NW 9th Ave, 33136, United States
| | - Zhihong Guo
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine/Jackson Health System, 1695 NW 9th Ave, 33136, United States
| | - Radu V Saveanu
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine/Jackson Health System, 1695 NW 9th Ave, 33136, United States
| |
Collapse
|
17
|
[Study of genetic variants in the BDNF, COMT, DAT1 and SERT genes in Colombian children with attention deficit disorder]. ACTA ACUST UNITED AC 2016; 46:222-228. [PMID: 29122229 DOI: 10.1016/j.rcp.2016.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Attention deficit and hyperactive disorder (ADHD) is highly prevalent among children in Bogota City. Both genetic and environmental factors play a very important role in the etiology of ADHD. However, to date few studies have addressed the association of genetic variants and ADHD in the Colombian population. OBJECTIVES To test the genetic association between polymorphisms in the DAT1, HTTLPR, COMT and BDNF genes and ADHD in a sample from Bogota City. METHODS We genotyped the most common polymorphisms in DAT1, SERT, COMT and BDNF genes associated with ADHD using conventional PCR followed by restriction fragment length polymorphism (RFLP) in 97 trios recruited in a medical center in Bogota. The transmission disequilibrium test (TDT) was used to determine the association between such genetic variants and ADHD. RESULTS The TDT analysis showed that no individual allele of any variant studied has a preferential transmission. CONCLUSIONS Our results suggest that the etiology of the ADHD may be complex and involves several genetic factors. Further studies in other candidate polymorphisms in a larger sample size will improve our knowledge of the ADHD in Colombian population.
Collapse
|
18
|
Zarrabi Alhosseini M, Jamshidi J, Zare Bidoki A, Ganji S, Eslami Amirabadi MR, Emamalizadeh B, Taghavi S, Shokraeian P, Mohajerani F, Darvish H. SNAP-25gene variations and attention-deficit hyperactivity disorder in Iranian population. Neurol Res 2016; 38:959-964. [DOI: 10.1080/01616412.2016.1232548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Lundwall RA, Rasmussen CG. MAOA Influences the Trajectory of Attentional Development. Front Hum Neurosci 2016; 10:424. [PMID: 27610078 PMCID: PMC4996824 DOI: 10.3389/fnhum.2016.00424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2023] Open
Abstract
Attention is vital to success in all aspects of life (Meck and Benson, 2002; Erickson et al., 2015), hence it is important to identify biomarkers of later attentional problems early enough to intervene. Our objective was to determine if any of 11 genes (APOE, BDNF, HTR4, CHRNA4, COMT, DRD4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25) predicted the trajectory of attentional development within the same group of children between infancy and childhood. We recruited follow up participants from children who participated as infants in visual attention studies and used a similar task at both time points. Using multilevel modeling, we associated changes in the participant’s position in the distribution of scores in infancy to his/her position in childhood with genetic markers on each of 11 genes. While all 11 genes predicted reaction time (RT) residual scores, only Monoamine oxidase A (MAOA) had a significant interaction including time point. We conclude that the MAOA single nucleotide polymorphism (SNP) rs1137070 is useful in predicting which girls are likely to develop slower RTs on an attention task between infancy and childhood. This early identification is likely to be helpful in early intervention.
Collapse
Affiliation(s)
- Rebecca A Lundwall
- Development of Visual Cognition Laboratory, Department of Psychology, Brigham Young University Provo, UT, USA
| | - Claudia G Rasmussen
- Development of Visual Cognition Laboratory, Department of Psychology, Brigham Young University Provo, UT, USA
| |
Collapse
|
20
|
Liu YS, Dai X, Wu W, Yuan FF, Gu X, Chen JG, Zhu LQ, Wu J. The Association of SNAP25 Gene Polymorphisms in Attention Deficit/Hyperactivity Disorder: a Systematic Review and Meta-Analysis. Mol Neurobiol 2016; 54:2189-2200. [PMID: 26941099 DOI: 10.1007/s12035-016-9810-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/22/2016] [Indexed: 11/30/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) is one of the most highly heritable psychiatric disorders in childhood. The risk gene mutation accounts for about 60 to 90 % cases. Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic plasma membrane protein which is expressed highly and specifically in the neuronal cells. A number of evidences have suggested the role of SNAP-25 in the etiology of ADHD. Notably, the animal model of coloboma mouse mutant bears a ∼2-cM deletion encompassing genes including SNAP25 and displays spontaneous hyperkinetic behavior. Previous investigators have reported association between SNPs in SNAP25 and ADHD, and controversial results were observed. In this study, we analyzed the possible association between six polymorphisms (rs3746544, rs363006, rs1051312, rs8636, rs362549, and rs362998) of SNAP25 and ADHD in a pooled sample of ten family-based studies and four case-control studies by using meta-analysis. The combined analysis results were significant only for rs3746544 (P = 0.010) with mild association (odds ratio (OR) = 1.14). And, the meta-analysis data for rs8636, rs362549, and rs362998 are the first time to be reported; however, no positive association was detected. In conclusion, we report some evidence supporting the association of SNAP25 to ADHD. Future research should emphasize genome-wide association studies in more specific subgroups and larger independent samples.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xuan Dai
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wei Wu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Fang-Fen Yuan
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian-Guo Chen
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ling-Qiang Zhu
- Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China. .,Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
21
|
Cupertino RB, Kappel DB, Bandeira CE, Schuch JB, da Silva BS, Müller D, Bau CHD, Mota NR. SNARE complex in developmental psychiatry: neurotransmitter exocytosis and beyond. J Neural Transm (Vienna) 2016; 123:867-83. [DOI: 10.1007/s00702-016-1514-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
|
22
|
Fonseca DJ, Mateus HE, Gálvez JM, Forero DA, Talero-Gutierrez C, Velez-van-Meerbeke A. Lack of association of polymorphisms in six candidate genes in colombian adhd patients. Ann Neurosci 2015; 22:217-21. [PMID: 26526368 PMCID: PMC4627201 DOI: 10.5214/ans.0972.7531.220405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/21/2015] [Accepted: 02/08/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Attention Deficit and Hyperactivity Disorder (ADHD) is a common childhood neuropsychiatric condition. The disorder has a multifactorial background, with heritability estimates of around 76%, suggesting an important role of genetic factors. Candidate genes include those related to dopaminergic (e.g. DRD4, DRD5, SLC6A3 and DBH)and serotoninergic (e.g.HTR1B and SLC6A4) pathways. PURPOSE To explore the association of common polymorphisms in six genes (DRD4, DRD5, SLC6A3, DBH, HTR1B and SLC6A4) and the susceptibility to ADHD in a Colombian sample population. METHODS trios and 152 healthy controls were recruited. Genotyping of the six polymorphisms was performed using described PCR-based protocols. A TDT analysis was used to test if there was preferential allelic transmission for any of the six polymorphisms. Additionally, a case-control analysis was performed to test for association of the serotoninergic (HTR1B and SLC6A4) polymorphisms with ADHD. RESULTS Through the TDT analysis there was no preferential allelic transmission for any of the studied variants. Case-control analysis did not show association. CONCLUSION This is the first study in Latin America to describe six polymorphisms in a group of patients with ADHD. There was no evidence of association for any of the studied polymorphic variants in this Colombian ADHD sample. Further research, with larger sample sizes and study of endophenotypes, is needed in this population to confirm and extend the results.
Collapse
Affiliation(s)
- Dora J Fonseca
- Research group Geniuros. School of Medicine and Health Sciences. Universidad del Rosario. Bogotá, Colombia
| | - Heidi E Mateus
- Research group Geniuros. School of Medicine and Health Sciences. Universidad del Rosario. Bogotá, Colombia
| | - Jubby M Gálvez
- Research group Geniuros. School of Medicine and Health Sciences. Universidad del Rosario. Bogotá, Colombia
| | - Diego A Forero
- Laboratory of NeuroPsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño. Bogotá, Colombia
| | - Claudia Talero-Gutierrez
- Neuroscience Research Group NEUROS. School of Medicine and Health Sciences. Universidad del Rosario. Bogotá, Colombia
| | - Alberto Velez-van-Meerbeke
- Neuroscience Research Group NEUROS. School of Medicine and Health Sciences. Universidad del Rosario. Bogotá, Colombia
| |
Collapse
|
23
|
Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome. Proc Natl Acad Sci U S A 2015; 112:E4697-706. [PMID: 26307763 DOI: 10.1073/pnas.1502258112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by severe intellectual disability and other symptoms including autism. Although caused by the silencing of a single gene, Fmr1 (fragile X mental retardation 1), the complexity of FXS pathogenesis is amplified because the encoded protein, FMRP, regulates the activity-dependent translation of numerous mRNAs. Although the mRNAs that associate with FMRP have been extensively studied, little is known regarding the proteins whose expression levels are altered, directly or indirectly, by loss of FMRP during brain development. Here we systematically measured protein expression in neocortical synaptic fractions from Fmr1 knockout (KO) and wild-type (WT) mice at both adolescent and adult stages. Although hundreds of proteins are up-regulated in the absence of FMRP in young mice, this up-regulation is largely diminished in adulthood. Up-regulated proteins included previously unidentified as well as known targets involved in synapse formation and function and brain development and others linked to intellectual disability and autism. Comparison with putative FMRP target mRNAs and autism susceptibility genes revealed substantial overlap, consistent with the idea that the autism endophenotype of FXS is due to a "multiple hit" effect of FMRP loss, particularly within the PSD95 interactome. Through studies of de novo protein synthesis in primary cortical neurons from KO and WT mice, we found that neurons lacking FMRP produce nascent proteins at higher rates, many of which are synaptic proteins and encoded by FMRP target mRNAs. Our results provide a greatly expanded view of protein changes in FXS and identify age-dependent effects of FMRP in shaping the neuronal proteome.
Collapse
|
24
|
Rovaris DL, Mota NR, da Silva BS, Girardi P, Victor MM, Grevet EH, Bau CH, Contini V. Should we keep on? Looking into pharmacogenomics of ADHD in adulthood from a different perspective. Pharmacogenomics 2015; 15:1365-81. [PMID: 25155937 DOI: 10.2217/pgs.14.95] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A considerable proportion of adults with attention-deficit/hyperactivity disorder (ADHD) do not respond to the treatment with methylphenidate. This scenario could be due to inherited interindividual differences that may alter pharmacologic treatment response. In this sense, in 2012 we conducted a systematic search on PUBMED-indexed literature for articles containing information about pharmacogenomics of ADHD in adults. Five studies were found on methylphenidate pharmacogenomics and the only significant association was reported by one particular study. However, this single association with the SLC6A3 gene was not replicated in two subsequent reports. In the present review, although we could not find additional pharmacogenomics studies, we discuss these up-to-date findings and suggest new approaches for this field. Additionally, using systeomic-oriented databases, we provide a broad picture of new possible candidate genes as well as potential gene-gene interactions to be investigated in pharmacogenomics of persistent ADHD.
Collapse
Affiliation(s)
- Diego L Rovaris
- Departament of Genetics, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gao Q, Liu L, Chen Y, Li H, Yang L, Wang Y, Qian Q. Synaptosome-related (SNARE) genes and their interactions contribute to the susceptibility and working memory of attention-deficit/hyperactivity disorder in males. Prog Neuropsychopharmacol Biol Psychiatry 2015; 57:132-9. [PMID: 25445064 DOI: 10.1016/j.pnpbp.2014.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUNDS N-ethylmaleimide-sensitive attachment protein receptor (SNARE) complex involved in neurotransmission via exocytosis was implicated in attention-deficit/hyperactivity disorder (ADHD). The present study investigated the influence of SNARE related genes and their interaction on ADHD susceptibility and their cognitive functions. METHODS We genotyped eight single nucleotide polymorphisms (SNP) of Syntaxin 1A (STX1A), vesicle-associated membrane protein 2 (VAMP2) and synaptosomal-associated protein 25 kDa (SNAP25) and conducted case-control studies in 1404 male ADHD and 617 male controls. Quantitative analyses were performed for genotypes and performance on the Rey-Osterrieth complex figure test (RCFT), digit span test and Stroop test in 383 ADHD males. In addition, we explored gene-gene interactions by generalized multifactor dimensionality reduction (GMDR) followed with logistic regression and analyses of covariance for verifying. RESULTS Genotypic distribution of rs875342 of STX1A was significantly different between ADHD and controls. The SNPs, rs363039 of SNAP25 and rs1150 of VAMP2, were significantly associated with RCFT scores, while rs875342 of STX1A with digit span. We found genetic interaction models between these three genes and ADHD susceptibility as well as working memory function evaluated by RCFT. CONCLUSION SNARE complex genes and their interactions may play a significant role in susceptibility and working memory of ADHD.
Collapse
Affiliation(s)
- Qian Gao
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yun Chen
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Haimei Li
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Li Yang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yufeng Wang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| | - Qiujin Qian
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China.
| |
Collapse
|
26
|
Abstract
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.
Collapse
|