1
|
Abebe Y, Whitehead P, Alamirew T, Jin L, Alemayehu E. Evaluating the effects of geochemical and anthropogenic factors on the concentration and treatability of heavy metals in Awash River and Lake Beseka, Ethiopia: arsenic and molybdenum issues. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1188. [PMID: 37698767 PMCID: PMC10497432 DOI: 10.1007/s10661-023-11674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
In the Awash River basin (Ethiopia), massive urbanization and industrialization, driven by rapid development and human settlement, are detrimental to the environment and human health as pollutants such as heavy metals (HMs) find their way into water bodies without proper treatment. The purpose of this study was to assess the HMs content and pollution sources within the basin. In this context, a total of 205 samples were collected from 21 surface water sampling stations. Heavy metal concentrations were measured using the Perkin Elmer NexION 350 ICP-MS with inductively coupled plasma. Findings demonstrate that high levels of HMs, such as Al, Mn, Mo, As, V, Fe, and Ba were exhibited with the value of 1257 μg/L, 626.8 μg/L, 116.7 μg/L, 61.2 μg/L, 100.5 μg/L, 1082.7 μg/L, and 211.7 μg/L, respectively. Among 20 HMs analyzed, 20% of the parameters within the study area were above the WHO limit for drinking water; Al (157 μg/L), V (100.5 μg/L), Fe (1082.7 μg/L), Mn (626.8 μg/L), and Mo (103.8 μg/L) were exhibited at sites along the river system. Likewise, 57% of water samples showed high values of As at many stations down the river systems. In particular, high HM concentrations seen in the upper Awash are primarily controlled by anthropogenic activities such as untreated industrial, agricultural, and domestic discharges, while the high HM concentrations in the middle Awash samples were likely due to the influence from the Lake Beseka that has high HM concentrations due to geological process. In conclusion, securing potable water for the rapidly increasing population in Addis Ababa and in the watersheds of Awash is unsafe to sustain the environment and the human health.
Collapse
Affiliation(s)
- Yosef Abebe
- Africa Center of Excellence for Water Management, Water Science and Technology, AAU, Addis Ababa, Ethiopia.
- Water and Land Resource Center, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Ecohydrology and Water Quality, Ministry of Water and Energy, Addis Ababa, Ethiopia.
| | - Paul Whitehead
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, UK
| | - Tena Alamirew
- Water and Land Resource Center, Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Li Jin
- Geology Department, State University of New York at Cortland, Cortland, NY, 13045, USA
| | - Esayas Alemayehu
- Africa Center of Excellence for Water Management, Water Science and Technology, AAU, Addis Ababa, Ethiopia
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Esan OO, Maikifi AS, Esuola LO, Ajibade TO, Adetona MO, Aina OO, Oyagbemi AA, Adejumobi OA, Omobowale TO, Oladele OA, Oguntibeju OO, Nwulia E, Yakubu MA. Taurine mitigates sodium arsenite–induced cardiorenal dysfunction in cockerel chicks: from toxicological, biochemical, and immunohistochemical stand-points. COMPARATIVE CLINICAL PATHOLOGY 2023; 32:769-782. [DOI: 10.1007/s00580-023-03485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/26/2023] [Indexed: 01/05/2025]
|
3
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Sandhi A, Yu C, Rahman MM, Amin MN. Arsenic in the water and agricultural crop production system: Bangladesh perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51354-51366. [PMID: 35618999 PMCID: PMC9288370 DOI: 10.1007/s11356-022-20880-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/12/2022] [Indexed: 04/12/2023]
Abstract
The presence of high levels of carcinogenic metalloid arsenic (As) in the groundwater system of Bangladesh has been considered as one of the major environmental disasters in this region. Many parts of Bangladesh have extensively reported the presence of high levels of arsenic in the groundwater due to both geological and anthropogenic activities. In this paper, we reviewed the available literature and scientific information regarding arsenic pollution in Bangladesh, including arsenic chemistry and occurrences. Along with using As-rich groundwater as a drinking-water source, the agricultural activities and especially irrigation have greatly depended on the groundwater resources in this region due to high water demands for ensuring food security. A number of investigations in Bangladesh have shown that high arsenic content in both soil and groundwater may result in high levels of arsenic accumulation in different plants, including cereals and vegetables. This review provides information regarding arsenic accumulation in major rice varieties, soil-groundwater-rice arsenic interaction, and past arsenic policies and plans, as well as previously implemented arsenic mitigation options for both drinking and irrigation water systems in Bangladesh. In conclusion, this review highlights the importance and necessity for more in-depth studies as well as more effective arsenic mitigation action plans to reduce arsenic incorporation in the food chain of Bangladesh.
Collapse
Affiliation(s)
- Arifin Sandhi
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden.
| | - Changxun Yu
- Department of Biology and Environmental Science, Faculty of Health and Life Sciences, Linnaeus University, 391 82, Kalmar, Sweden
| | - Md Marufur Rahman
- Bangladesh Institute of Research and Training On Applied Nutrition, Rangpur Regional Station, Pirgonj-5470, Rangpur, Bangladesh
| | - Md Nurul Amin
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
- Breeder Seed Production Centre, Bangladesh Agricultural Research Institute, Debiganj, Panchagarh-5020, Bangladesh
| |
Collapse
|
5
|
Das S, Majumder B, Biswas AK. Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:468-489. [PMID: 35122561 DOI: 10.1007/s10646-022-02524-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Arsenic contamination of groundwater is a major concern for its usage in crop irrigation in many regions of the world. Arsenic is absorbed by rice plants mainly from arsenic contaminated water during irrigation. It hampers growth and agricultural productivity. The aim of the study was to mitigate the toxic effects of arsenate (As-V) [25 μM, 50 μM, and 75 μM] by silicon (Si) [2 mM] and selenium (Se) [5 μM] amendments on the activity of the TCA cycle, synthesis of γ-aminobutyric acid (GABA) and polyamines (PAs) in rice (Oryza sativa L. cv. MTU-1010) seedlings and to identify which chemical was more potential to combat this threat. As(V) application decreased the activities of tested respiratory enzymes and increased the levels of organic acids (OAs) in the test seedlings. Application of Si with As(V) and Se with As(V) increased the activities of respiratory enzymes and the levels of OAs. The effects were more pronounced during Si amendments. The activities of GABA synthesizing enzymes along with accumulation of GABA were increased under As(V) stress. During joint application of Si with As(V) and Se with As(V) the activity and the level of said parameters were decreased that indicating defensive role of these chemicals to resist As(V) toxicity in rice and Si amendments showed greater potential to reduce As(V) induced damages in the test seedlings. PAs trigger tolerance mechanism against As(V) in plants. PAs such as putrescine, spermidine and spermine were synthesized more during Si and Se amendments in As(V) contaminated rice seedlings to combat the toxic effects of As(V). Si amendments substantially modulated the toxic effects caused by As(V) over Se amendments in the As(V) challenged test seedlings. Thus, in future application of Si enriched fertilizer will be beneficial to grow rice plants with normal vigor in arsenic contaminated soil.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
6
|
Joardar M, Das A, Chowdhury NR, Mridha D, De A, Majumdar KK, Roychowdhury T. Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3027-3053. [PMID: 33492569 DOI: 10.1007/s10653-021-00823-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 μg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using 'ANOVA' proves a significant relationship between drinking water and biomarkers, whereas "two-tailed paired t test" justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College & Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
7
|
Radfard M, Yunesian M, Nabizadeh R, Biglari H, Nazmara S, Hadi M, Yousefi N, Yousefi M, Abbasnia A, Mahvi AH. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2019; 25:949-965. [DOI: 10.1080/10807039.2018.1458210] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/24/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Majid Radfard
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Biglari
- Department of Environmental Health Engineering, School of Public Health, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Yousefi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Yousefi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Abbasnia
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Roy A, van Genuchten CM, Mookherjee I, Debsarkar A, Dutta A. Concrete stabilization of arsenic-bearing iron sludge generated from an electrochemical arsenic remediation plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:141-150. [PMID: 30579002 DOI: 10.1016/j.jenvman.2018.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 05/12/2023]
Abstract
In this study, concrete stabilization is adopted to sustainably manage hazardous arsenic-iron sludge near the vicinity of a community-based arsenic water treatment plant for potential use as material for local construction. The strength and workability of the sludge mixed with fresh concrete were investigated to determine the suitability of the concrete mixture for building materials. We found that over 25% sludge (with respect to cement weight) can be incorporated safely into different grades of concrete (M15 and M20). Structural characterization of the concrete mixtures by Fe and As K-edge X-ray absorption spectroscopy indicated a structural transformation of Fe in the sludge from a hydrous ferric oxide to a less ordered phase consistent with Fe siliceous hydrogarnet. Differences in the As K-edge XAS data of samples before and after stabilization in concrete were interpreted as a decrease in As-Fe coordination after concrete stabilization in favor of As-Ca coordination. The leaching of arsenic in the stabilized concrete was examined by the Toxicity Characteristics Leaching Procedure (TCLP) and found to produce < 15 μg/L As, even at the highest sludge mixture fraction (40% sludge with respect to cement weight). The formation of calcite in concrete stabilized arsenic sludge, which was detected by X-ray diffraction (XRD), contributes to the low leachability of arsenic in the sludge for a variety of reasons, including decreasing pore size. In addition, the formation of poorly soluble calcium arsenates can also be responsible for the low mobility of arsenic. Overall concrete stabilization of arsenic-iron sludge can be an effective pre-treatment to safe landfill disposal and, when the arsenic-iron sludge is mixed in specific proportions to achieve desired strength, we propose this concrete can be used locally in nearby construction.
Collapse
Affiliation(s)
- Abhisek Roy
- Department of Civil Engineering, Jadavpur University, Kolkata 700 032, India.
| | - Case M van Genuchten
- Department of Earth Sciences - Geochemistry, Utrecht University, Utrecht 3508TA, the Netherlands
| | | | - Anupam Debsarkar
- Department of Civil Engineering, Jadavpur University, Kolkata 700 032, India
| | - Amit Dutta
- Department of Civil Engineering, Jadavpur University, Kolkata 700 032, India
| |
Collapse
|
9
|
Majumder B, Das S, Mukhopadhyay S, Biswas AK. Identification of arsenic-tolerant and arsenic-sensitive rice (Oryza sativa L.) cultivars on the basis of arsenic accumulation assisted stress perception, morpho-biochemical responses, and alteration in genomic template stability. PROTOPLASMA 2019; 256:193-211. [PMID: 30066266 DOI: 10.1007/s00709-018-1290-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/17/2018] [Indexed: 05/03/2023]
Abstract
Arsenic toxicity is the most commonly experienced challenge of rice plants due to irrigation with arsenic-polluted groundwater and their cultivation in water logging environment which poses threat to human health, particularly in Bangladesh and West Bengal (India). In the present study, hydroponically grown eight rice cultivars, viz., Bhutmuri, Kumargore, Binni, Vijaya, Tulsibhog, Badshabhog, Pusa basmati, and Swarnadhan, were screened for arsenic tolerance by using physiological and molecular parameters. Treatment with 25 μM, 50 μM, and 75 μM arsenate resulted in dosage-based retardation in growth and water content in all the tested cultivars due to accumulation of total arsenic along with the enhanced activity of arsenate reductase with more severe effects exhibited in cvs. Swarnadhan, Pusa basmati, Badshabhog, and Tulsibhog. Arsenic sensitivity of rice cultivars was evaluated in terms of oxidative stress markers generation, antioxidant enzyme activities, and level of genotoxicity. Under arsenate-challenged conditions, the levels of oxidative stress markers, viz., H2O2, MDA, and proline, and activities of antioxidant enzymes, viz., SOD and CAT, along with the level of genotoxicity analyzed by RAPD profiling were altered in variable levels in all tested rice cultivars and showed a significant alteration in band patterns in arsenate-treated seedlings of cvs. Swarnadhan, Pusa basmati, Badshabhog, and Tulsibhog in terms of appearance of new bands and disappearance of normal bands that were presented in untreated seedlings led to reduction in genomic template stability due to their high susceptibility to arsenic toxicity. Cultivar- and dose-dependent alteration of parameters tested including the rate of As accumulation showed that cvs. Kumargore, Binni, and Vijaya, specially Bhutmuri, were characterized as arsenate tolerant and could be cultivated in arsenic-prone areas to minimize level of toxicity and potential health hazards.
Collapse
Affiliation(s)
- Barsha Majumder
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
- Molecular Biology & Plant Biotechnology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Susmita Das
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Sandip Mukhopadhyay
- Molecular Biology & Plant Biotechnology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Asok K Biswas
- Plant Physiology & Biochemistry Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
10
|
Das S, Majumder B, Biswas AK. Modulation of growth, ascorbate-glutathione cycle and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings by arsenic and silicon. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1387-1403. [PMID: 30406896 DOI: 10.1007/s10646-018-1994-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Arsenic is a carcinogenic metalloid, exists in two important oxidation states-arsenate (As-V) and arsenite (As-III). The influence of arsenate with or without silicate on the growth and thiol metabolism in rice (Oryza sativa L. cv. MTU-1010) seedlings were investigated. Arsenate was more toxic for root growth than shoot growth where the root lengths were short, characteristically fragile and root tips turned brown. The multiple comparison analysis using Tukey's HSD (honest significant difference) tests indicated that the rate of arsenate accumulation and its conversion to arsenite by arsenate reductase were significantly increased in all arsenate treated seedlings while in seedlings treated jointly with arsenate and silicate, arsenate accumulation and its conversion to arsenite decreased. Silicate content was detected in the seedlings treated with silicate alone and under co-application of arsenate with silicate. In the test seedlings arsenic toxicity increased ascorbate and glutathione contents along with the activities of their regulatory enzymes, viz., ascorbate peroxidase, glutathione reductase, glutathione peroxidase and glutathione-s-transferase to reduce the toxicity level induced by arsenic whereas ascorbate oxidase activity was decreased to maintain sufficient ascorbate pool under arsenate treatment. Phytochelatins production were increased in both root and shoot of the test seedlings under arsenate exposure to alter the detrimental effects of arsenic by chelation with arsenite and their subsequent sequestration into vacuole. Thus, joint application of silicate along with arsenate showed significant alterations on all the parameters tested compared to arsenate treatment alone due to less availability of arsenic in the tissue leading to better growth and metabolism in rice seedlings. Thus use of silicon in arsenic contaminated medium may help to grow rice with improved vigour.
Collapse
Affiliation(s)
- Susmita Das
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Barsha Majumder
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India
| | - Asok K Biswas
- Plant Physiology and Biochemistry Laboratory, Centre of Advanced Studies, Department of Botany, University of Calcutta, Kolkata, West Bengal, 700019, India.
| |
Collapse
|
11
|
Singh SK. An analysis of the cost-effectiveness of arsenic mitigation technologies: Implications for public policy. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.ijsbe.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Zhao J, Guo H, Ma J, Shen Z. Effect of Fluoride on Arsenic Uptake from Arsenic-Contaminated Groundwater using Pteris vittata L. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:355-362. [PMID: 25409248 DOI: 10.1080/15226514.2013.837028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-arsenic groundwater in inland basins usually contains high concentrations of fluoride. In the present study, the effects of fluoride on arsenic uptake by Pteris vittata and on arsenic transformation in growth media were investigated under greenhouse conditions. After P. vittata was hydroponically exposed to 66.8 μM As (V) in the presence of 1.05 mM F- in the form of NaF, KF, or NaF+KF for 10 d, no visible toxicity symptoms were observed, and there were not significant differences in the dry biomass among the four treatments. The results showed that P. vittata tolerated F- concentrations as high as 1.05 mM but did not accumulate fluoride in their own tissues. Arsenic uptake was inhibited in the presence of 1.05 mM F-. However, in hydroponic batches with 60 μM As (III) or 65 μM As (V), it was found that 210.6 and 316.0 μM F(-) promoted arsenic uptake. As(III) was oxidized to As(V) in the growth media in the presence and absence of plants, and F- had no effect on the rate of As(III) transformation. These experiments demonstrated that P. vittata was a good candidate to remediate arsenic-contaminated groundwater in the presence of fluoride. Our results can be used to develop strategies to remediate As-F-contaminated water using P. vittata.
Collapse
Affiliation(s)
- Junying Zhao
- a School of Environmental Science and Safety Engineering , Tianjin University of Technology , Tianjin , China
| | | | | | | |
Collapse
|
13
|
Clancy TM, Hayes KF, Raskin L. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10799-812. [PMID: 24004144 DOI: 10.1021/es401749b] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.
Collapse
Affiliation(s)
- Tara M Clancy
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | |
Collapse
|
14
|
Ray JR, Wan W, Gilbert B, Jun YS. Effects of formation conditions on the physicochemical properties, aggregation, and phase transformation of iron oxide nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1069-1076. [PMID: 23256769 DOI: 10.1021/la3034319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, hematite transformation from a precursor 6-line ferrihydrite phase was investigated by systematically altering the forced hydrolysis hematite synthesis. Specifically, we used a combination of in situ and ex situ characterization techniques to examine the effects of varying the Fe(III) injection rates and cooling methods on the hematite and 6-line ferrihydrite nanoparticle size, isoelectric point, mineral phase, and aggregation. Finally, As(V) adsorption experiments were performed to determine how the two iron oxide phases existed in the reaction system. Nanoparticle synthesis thermodynamics and kinetics were found to control the extent of distinct 6-line ferrihydrite phases in the iron oxide nanoparticle solutions, as well as the particle size and isoelectric point. Conversion of 6-line ferrihydrite to hematite was greatly influenced by the degree of aggregation (determined by synthesis conditions) during drying. As(V) adsorption experiments revealed that 6-line ferrihydrite and hematite exist as a linear combination of two separate phases. These results provide unique information regarding how in situ iron oxide nanoparticle properties can direct their ex situ behavior.
Collapse
Affiliation(s)
- Jessica R Ray
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|
15
|
Santra SC, Samal AC, Bhattacharya P, Banerjee S, Biswas A, Majumdar J. Arsenic in Foodchain and Community Health Risk: A Study in Gangetic West Bengal. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.proenv.2013.04.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Chakrabarty S, Sarma HP. Heavy metal contamination of drinking water in Kamrup district, Assam, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 179:479-486. [PMID: 20976545 DOI: 10.1007/s10661-010-1750-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 10/04/2010] [Indexed: 05/26/2023]
Abstract
This study was undertaken to assess the heavy metal concentration of the drinking water with respect to zinc, copper, cadmium, manganese, lead and arsenic in Kamrup district of Assam, India. Ground water samples were collected from tube wells, deep tube wells and ring wells covering all the major hydrogeological environs. Heavy metals in groundwater are estimated by using Atomic Absorption Spectrometer, Perkin Elmer Analyst 200. Data were assessed statistically to find the distribution pattern and other related information for each metal. The study revealed that a good number of the drinking water sources were contaminated with cadmium, manganese and lead. Arsenic concentrations although did not exceeded WHO limits but was found to be slightly elevated. Copper and zinc concentrations were found to be within the prescribed WHO limits. An attempt has also been made to ascertain the possible source of origin of the metals. Positive and significant correlation existing between manganese with zinc and copper indicates towards their similar source of origin and mobility. In view of the present study and the level of heavy metal contamination, it could be suggested to test the potability of the water sources before using it for drinking purpose.
Collapse
Affiliation(s)
- Sutapa Chakrabarty
- Department of Environmental Science, Gauhati University, Guwahati 781 014, Assam, India.
| | | |
Collapse
|
17
|
Enneking D. The nutritive value of grasspea (Lathyrus sativus) and allied species, their toxicity to animals and the role of malnutrition in neurolathyrism. Food Chem Toxicol 2011; 49:694-709. [DOI: 10.1016/j.fct.2010.11.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 11/14/2010] [Accepted: 11/22/2010] [Indexed: 12/12/2022]
|
18
|
Chetia M, Chatterjee S, Banerjee S, Nath MJ, Singh L, Srivastava RB, Sarma HP. Groundwater arsenic contamination in Brahmaputra river basin: a water quality assessment in Golaghat (Assam), India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2011; 173:371-385. [PMID: 20224855 DOI: 10.1007/s10661-010-1393-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 02/11/2010] [Indexed: 05/28/2023]
Abstract
Distribution of arsenic (As) and its compound and related toxicology are serious concerns nowadays. Millions of individuals worldwide are suffering from arsenic toxic effect due to drinking of As-contaminated groundwater. The Bengal delta plain, which is formed by the Ganga-Padma-Meghna-Brahmaputra river basin, covering several districts of West Bengal, India, and Bangladesh is considered as the worst As-affected alluvial basin. The present study was carried out to examine As contamination in the state of Assam, an adjoining region of the West Bengal and Bangladesh borders. Two hundred twenty-two groundwater samples were collected from shallow and deep tubewells of six blocks of Golaghat district (Assam). Along with total As, examination of concentration levels of other key parameters, viz., Fe, Mn, Ca, Na, K, and Mg with pH, total hardness, and SO[Formula: see text], was also carried out. In respect to the permissible limit formulated by the World Health Organization (WHO; As 0.01 ppm, Fe 1.0 ppm, and Mn 0.3 ppm for potable water), the present study showed that out of the 222 groundwater samples, 67%, 76.4%, and 28.5% were found contaminated with higher metal contents (for total As, Fe, and Mn, respectively). The most badly affected area was the Gamariguri block, where 100% of the samples had As and Fe concentrations above the WHO drinking water guideline values. In this block, the highest As and Fe concentrations were recorded 0.128 and 5.9 ppm, respectively. Tubewell water of depth 180±10 ft found to be more contaminated by As and Fe with 78% and 83% of the samples were tainted with higher concentration of such toxic metals, respectively. A strong significant correlation was observed between As and Fe (0.697 at p<0.01), suggesting a possible reductive dissolution of As-Fe-bearing minerals for the mobilization of As in the groundwater of the region.
Collapse
Affiliation(s)
- Mridul Chetia
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang SW, Liu CW, Lu KL, Chang YP, Chang TW. Distribution of Inorganic As Species in Groundwater Samples with the Presence of Fe. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12403-010-0036-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Samal AC, Kar S, Bhattacharya P, Santra SC. Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:1259-1265. [PMID: 21879858 DOI: 10.1080/10934529.2011.598810] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The widespread incidence of chronic arsenicosis in the Bengal Delta has led to intensive research on arsenic (As) enrichment in groundwater as well as accumulation in foodstuffs, as there are potential health risks associated with exposure to As from both sources. This study deals with human As exposure through the drinking of groundwater, consumption of locally grown foodstuffs (e.g., crops and vegetables) and cooked food in Nadia district, West Bengal. Groundwater and foodstuffs were collected and analyzed with FI-HG-AAS to estimate the total As content. Urine samples collected from human subjects were analyzed to assess the As exposure. Two major crops, boro and aman rice, showed a considerable amount of As, with mean values of 194 and 156 μg kg(-1), respectively. Significant levels of As were also found in other common crops and vegetables cultivated in this area (for example, the mean As in Arum and radish was 780 and 674 μg kg(-1), respectively). Total intake of As from foodstuffs by adults (560 μg day(-1)) and children (393 μg day(-1)) in the area was found to be at alarming levels. Arsenic exposure was demonstrated by the presence of As in urine (ranging between 154 and 276 μg L(-1)), with overall As retention of 50-60 %. The results of this study further indicate the potential risk of As exposure to local inhabitants through the food chain which is associated with continuous consumption of As-contaminated foodstuffs. Therefore, more action needs to be taken to control the contamination pathways (such as the water-soil-crop system) to protect humans from continuous ingestion of As through foodstuffs.
Collapse
Affiliation(s)
- Alok C Samal
- Department of Environmental Science, University of Kalyani, Nadia, Kalyani, West Bengal, India.
| | | | | | | |
Collapse
|
21
|
Roychowdhury T. Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 2010; 213:414-27. [DOI: 10.1016/j.ijheh.2010.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 08/20/2010] [Accepted: 09/07/2010] [Indexed: 11/28/2022]
|
22
|
Factors Associated with Arsenicosis and Arsenic Exposure Status in Nepal: Implications from Community Based Study. J Community Health 2010; 36:76-82. [DOI: 10.1007/s10900-010-9282-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|