1
|
Goldin MR, Ruderfer DM, Bick A, Roden DM, Schuler BA, Robinson JR. Benefits and barriers to broad implementation of genomic sequencing in the NICU. Am J Hum Genet 2025:S0002-9297(25)00148-X. [PMID: 40367948 DOI: 10.1016/j.ajhg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Genome (GS) and exome (ES) sequencing as first-tier diagnostic tests have the potential to increase rates of genetic diagnoses and acutely change the management of neonates in the neonatal intensive care unit (NICU). However, the widespread implementation of genomic sequencing has been limited by several barriers. In this systematic review, we analyze the current literature on the utilization of GS and ES in infants in the NICU to identify the benefits, barriers, and components of successful implementation. Across the 42 studies that discussed GS and ES in the NICU setting, six themes were identified: disease detection, timeliness of results, cost, provider attitudes, parental attitudes, and equitable access. Benefits of GS and ES include high disease detection rates, timely results, and possible reduction in healthcare costs by reducing time spent in the NICU. Additionally, clinicians find GS/ES to be important and useful, and parents and caregivers largely perceive GS/ES to be beneficial. Barriers to widespread GS/ES include availability of personnel to facilitate timely diagnosis and coverage of cost. Additionally, clinicians report worries about a lack of genetics knowledge, informed consent, results return, and potential harm. Parents consistently report low levels of anxiety, decisional conflict, harm, or regret. Finally, the lack of availability of translated consent documents limits the participation of families who do not speak English or Spanish. Continued work is essential to optimize these technologies and ensure equitable access.
Collapse
Affiliation(s)
| | - Douglas M Ruderfer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bryce A Schuler
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie R Robinson
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Wu SN, E HS, Yu Y, Ling SY, Liang LL, Qiu WJ, Zhang HW, Shuai RX, Wei HY, Yang CJ, Xu P, Chen XG, Zou H, Feng JZ, Niu TT, Hu HL, Zhang KC, Lu DY, Gong ZW, Zhan X, Ji WJ, Gu XF, Chen YX, Han LS. Variable phenotypes and outcomes associated with the MMACHC c.482G > A mutation: follow-up in a large CblC disease cohort. World J Pediatr 2024; 20:848-858. [PMID: 38070096 PMCID: PMC11402842 DOI: 10.1007/s12519-023-00770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/05/2023] [Indexed: 09/16/2024]
Abstract
BACKGROUND The aim of this study was to characterize the variable phenotypes and outcomes associated with the methylmalonic aciduria and homocystinuria type C protein gene (MMACHC) c.482G > A mutation in 195 Chinese cases with CblC disease. METHODS We carried out a national, retrospective multicenter study of 195 Chinese patients with CblC disease attributable to the MMACHC c.482G > A variant either in a homozygous or compound heterozygous state. The control group consisted of 200 patients diagnosed with CblC disease who did not possess the c.482G > A mutation. Clinical features, including disease onset, symptoms, biochemical metabolites, gene mutation, and follow-up outcomes were reviewed and analyzed in detail. The median follow-up period spanned 3 years and 8 months, with a range of 1 year and 2 months to 12 years and 10 months. RESULTS Among 195 patients carrying the c.482G > A variant, 125 (64.1%) cases were diagnosed by newborn screening (NBS), 60 (30.8%) cases were detected due to disease onset, and 10 (5.1%) cases were identified from sibling diagnoses. One hundred and seventeen (93.6%) individuals who were diagnosed by NBS, and nine patients who came from sibling diagnoses remained asymptomatic in this study. From 69 symptomatic patients of the c.482G > A group, more patients presented with later onset, and the top six common clinical symptoms at disease onset were developmental delay (59.4%), lower limb weakness and poor exercise tolerance (50.7%), cognitive decline (37.7%), gait instability and abnormal posture (36.2%), seizures (26.1%), and psychiatric and behavioral disturbances (24.6%). In the 159 symptomatic patients lacking c.482G > A variants, the most frequently observed clinical manifestations at disease onset included developmental delay (81.8%), lethargy and feeding difficulty (62.9%), lower limb weakness and poor exercise tolerance (54.7%), prolonged neonatal jaundice (51.6%), vomiting (47.2%), and seizures (32.7%). Before treatment, the levels of blood propionylcarnitine, propionylcarnitine/acetylcarnitine ratio, and homocysteine in the c.482G > A group were significantly lower (P < 0.05) than those in the non-c.482G > A group, while the concentration of urinary methylmalonic acid was slightly lower (P > 0.05). The degree of decline in the above metabolites after treatment in different groups significantly differed in both plasma total homocysteine values and urinary methylmalonic acid levels (P < 0.05). In patients carrying the c.482G > A variant compared with the non-c.428G > A group, there were markedly lower rates of mortality (0.5% vs. 2.0%) and developmental delay (20.5% vs. 65.5%). When compared with individuals diagnosed due to disease onset, those identified through NBS in either group exhibited a reduced proportion of disease onset (6.7% vs. 100% in the c.482G > A group, 54.4% vs. 100% in the non-c.482G > A group), lower mortality (0.0% vs. 1.7% in the c.482G > A group, 0.0% vs. 3.6% in the non-c.482G > A group), and had a higher percentage of patients exhibiting normal psychomotor and language development (99.3% vs. 33.3% in the c.482G > A group, 58.9% vs. 10.9% in the non-c.482G > A group). CONCLUSIONS The c.482G > A variant in MMACHC is associated with late-onset and milder phenotypes of CblC disease. Patients with this mutation tend to have a relatively better response to hydroxocobalamin, better metabolic control, and more favorable neurological outcomes. NBS and other appropriate pre-symptomatic treatments seem to be helpful in early diagnosis, resulting in favorable clinical outcomes. Video Abstract (MP4 136794 kb).
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, No. 255 Gangdu Street, Zhengzhou, China
| | - Hui-Shu E
- Department of Pediatric Endocrinology and Genetics, Fujian Children's Hospital, Fuzhou, China
| | - Yue Yu
- The Center for Pediatric Liver Diseases, Children's Hospital, Fudan University, Shanghai, China
| | - Shi-Ying Ling
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Li-Li Liang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Wen-Juan Qiu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Hui-Wen Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Rui-Xue Shuai
- Department of Pediatrics, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hai-Yan Wei
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, No. 255 Gangdu Street, Zhengzhou, China
| | - Chi-Ju Yang
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Peng Xu
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Xi-Gui Chen
- Center of Neonatal Disease Screening, Jining Maternal and Child Health Care Hospital, Jining, China
| | - Hui Zou
- Center of Neonatal Disease Screening, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Ji-Zhen Feng
- Center of Neonatal Disease Screening, Shijiazhuang Maternal and Child Health Care Hospital, Shijiazhuang, China
| | - Ting-Ting Niu
- Center of Neonatal Disease Screening, Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Hai-Li Hu
- Center of Neonatal Disease Screening, Hefei Maternal and Child Health Care Hospital, Hefei, China
| | - Kai-Chuang Zhang
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - De-Yun Lu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Zhu-Wen Gong
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Wen-Jun Ji
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Xue-Fan Gu
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China
| | - Yong-Xing Chen
- Department of Endocrinology and Metabolism, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, No. 255 Gangdu Street, Zhengzhou, China.
| | - Lian-Shu Han
- Department of Pediatric Endocrinology/Genetics, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, No. 1665 Kongjiang Road, Shanghai, China.
| |
Collapse
|
3
|
Xiao H, Chen H, Chen X, Lu Y, Wu B, Wang H, Cao Y, Hu L, Dong X, Zhou W, Yang L. Comprehensive assessment of the genetic characteristics of small for gestational age newborns in NICU: from diagnosis of genetic disorders to prediction of prognosis. Genome Med 2023; 15:112. [PMID: 38093364 PMCID: PMC10717355 DOI: 10.1186/s13073-023-01268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND In China, ~1,072,100 small for gestational age (SGA) births occur annually. These SGA newborns are a high-risk population of developmental delay. Our study aimed to evaluate the genetic profile of SGA newborns in the newborn intensive care unit (NICU) and establish a prognosis prediction model by combining clinical and genetic factors. METHODS A cohort of 723 SGA and 1317 appropriate for gestational age (AGA) newborns were recruited between June 2018 and June 2020. Clinical exome sequencing was performed for each newborn. The gene-based rare-variant collapsing analyses and the gene burden test were applied to identify the risk genes for SGA and SGA with poor prognosis. The Gradient Boosting Machine framework was used to generate two models to predict the prognosis of SGA. The performance of two models were validated with an independent cohort of 115 SGA newborns without genetic diagnosis from July 2020 to April 2022. All newborns in this study were recruited through the China Neonatal Genomes Project (CNGP) and were hospitalized in NICU, Children's Hospital of Fudan University, Shanghai, China. RESULTS Among the 723 SGA newborns, 88(12.2%) received genetic diagnosis, including 42(47.7%) with monogenic diseases and 46(52.3%) with chromosomal abnormalities. SGA with genetic diagnosis showed higher rates in severe SGA(54.5% vs. 41.9%, P=0.0025) than SGA without genetic diagnosis. SGA with chromosomal abnormalities showed higher incidences of physical and neurodevelopmental delay compared to those with monogenic diseases (45.7% vs. 19.0%, P=0.012). We filtered out 3 genes (ITGB4, TXNRD2, RRM2B) as potential causative genes for SGA and 1 gene (ADIPOQ) as potential causative gene for SGA with poor prognosis. The model integrating clinical and genetic factors demonstrated a higher area under the receiver operating characteristic curve (AUC) over the model based solely on clinical factors in both the SGA-model generation dataset (AUC=0.9[95% confidence interval 0.84-0.96] vs. AUC=0.74 [0.64-0.84]; P=0.00196) and the independent SGA-validation dataset (AUC=0.76 [0.6-0.93] vs. AUC=0.53[0.29-0.76]; P=0.0117). CONCLUSION SGA newborns in NICU presented with roughly equal proportions of monogenic and chromosomal abnormalities. Chromosomal disorders were associated with poorer prognosis. The rare-variant collapsing analyses studies have the ability to identify potential causative factors associated with growth and development. The SGA prognosis prediction model integrating genetic and clinical factors outperformed that relying solely on clinical factors. The application of genetic sequencing in hospitalized SGA newborns may improve early genetic diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiang Chen
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Yun Cao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Liyuan Hu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Wenhao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Shanghai Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China.
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
4
|
Ji X, Ge Y, Ni Q, Xu S, Xiong Z, Yang L, Hu L, Cao Y, Lu Y, Wei Q, Kang W, Zhuang D, Zhou W, Dong X. Primary carnitine deficiency: Estimation of prevalence in Chinese population and insights into newborn screening. Front Genet 2023; 14:1304458. [PMID: 38125748 PMCID: PMC10730660 DOI: 10.3389/fgene.2023.1304458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Primary carnitine deficiency (PCD) caused by pathogenic variants in the solute carrier family 22 member 5 (SLC22A5) gene is a rare autosomal recessive disease that results in defective fatty acid oxidation. PCD can be detected through tandem mass spectrometry (MS/MS), but transplacental transport of free carnitine from mothers may cause false negatives or positives during newborn screening (NBS). This study aimed to analyze the genetic characteristics of SLC22A5 and estimate the prevalence of PCD in the Chinese population, providing useful information for NBS and genetic counseling. We manually curated SLC22A5 pathogenic or likely pathogenic (P/LP) variants according to the American College of Medical Genetics and Genomics (ACMG) guidelines and identified 128 P/LP variants. Based on the China Neonatal Genomes Project (CNGP), the estimated PCD prevalence was 1:17,456, which was higher than that in other populations. The genotype-phenotype association analysis showed that patients carrying homozygous c.760C>T and c.844C>T were more likely to present cardiomyopathy, whereas those carrying homozygous c.1400C>G were more likely to be asymptomatic (all p-values < 0.05). We found that there was no significant difference in initial C0 concentrations between patients and carriers, but there was a significant difference in the second-tier screening of C0 concentration between them (p-value < 0.05). We established a cost-effective variant panel containing 10 high-frequency sites and developed a screening algorithm incorporating gene panels with MS/MS, which could rescue one more patient who was undetected from MS/MS. In conclusion, the prevalence of PCD in the Chinese population is relatively high. The combination of conventional NBS with genetic sequencing is suggested for early diagnosis of PCD.
Collapse
Affiliation(s)
- Xiaoshan Ji
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanzhuang Ge
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qi Ni
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Suhua Xu
- Children’s Hospital of Shanghai, Shanghai, China
| | - Zhongmeng Xiong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Division of Neonatology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qiufen Wei
- Division of Neonatology, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenqing Kang
- Division of Neonatology, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Deyi Zhuang
- Division of Pediatrics, Xiamen Children’s Hospital, Xiamen, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, National Children’s Medical Center, Children’s Hospital of Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
5
|
Huang Z, Shen Q, Wu B, Wang H, Dong X, Lu Y, Cheng G, Wang L, Lu W, Chen L, Kang W, Li L, Pan X, Wei Q, Zhuang D, Chen D, Yin Z, Yang L, Ni Q, Liu R, Li G, Zhang P, Qian Y, Peng X, Wang Y, Cao Y, Xu H, Hu L, Yang L, Zhou W. Genetic Spectrum of Congenital Anomalies of the Kidney and Urinary Tract in Chinese Newborn Genome Project. Kidney Int Rep 2023; 8:2376-2384. [PMID: 38025242 PMCID: PMC10658258 DOI: 10.1016/j.ekir.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Congenital anomalies of the kidney and urinary tract (CAKUT) corresponds to a spectrum of defects. Several large-cohort studies have used high-throughput sequencing to investigate the genetic risk of CAKUT during antenatal, childhood, and adulthood period. However, our knowledge of newborns with CAKUT is limited. Methods This multicenter retrospective cohort study explored the genetic spectrum of CAKUT in a Chinese neonatal cohort. Clinical data and whole exome sequencing (WES) data of 330 newborns clinically diagnosed with CAKUT were collected. WES data were analyzed for putative deleterious single nucleotide variants (SNVs) and potential disease-associated copy number variants (CNVs). Results In this study, pathogenic variants were identified in 61 newborns (18.5%, 61/330), including 35 patients (57.4%) with SNVs, 25 patients (41%) with CNVs, and 1 patient with both an SNV and a CNV. Genetic diagnosis rates were significantly higher in patients with extrarenal manifestations (P<0.001), especially in those with cardiovascular malformations (P<0.05). SNVs in genes related to syndromic disorders (CAKUT with extrarenal manifestations) were common, affecting 20 patients (57.1%, 20/35). KMT2D was the most common gene (5 patients) and 17q12 deletion was the most common CNV (4 patients). Patient 110 was detected with both a CNV (17q12 deletion) and an SNV (a homozygous variant of SLC25A13). Among the newborns with positive genetic results, 22 (36.1%, 22/61) patients may benefit from a molecular diagnosis and change in clinical management (including early multidisciplinary treatment, disease-specific follow-up, and familial genetic counseling). Conclusion This study shows the heterogeneous genetic etiologies in a Chinese CAKUT neonatal cohort by using WES. Patients with CAKUT who have extrarenal manifestations are more likely to harbor genetic diagnoses. Kabuki syndrome and 17q12 deletion syndrome were the most common genetic findings. Approximately 36.1% of the patients may benefit from molecular diagnoses and a change in clinical management.
Collapse
Affiliation(s)
- Zhelan Huang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Guoqiang Cheng
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Laishuan Wang
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Wei Lu
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Liping Chen
- Jiangxi Provincial Children’s Hospital, Nanchang, China
| | - Wenqing Kang
- Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Long Li
- Department of Neonatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xinnian Pan
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiufen Wei
- Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Dongmei Chen
- Quanzhou Women and Children’s Hospital, Quanzhou, China
| | | | - Ling Yang
- Hainan Women and Children’s Medical Center, Haikou, China
| | - Qi Ni
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Renchao Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
| | - Yun Cao
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Liyuan Hu
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, Shanghai, China
- Division of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai, China
- Xiamen Children’s Hospital, Xiamen, China
| |
Collapse
|