1
|
da Silva GR, de Brito Souza IG, de Mello Pereira F, de Almeida Souza B, do Rêgo Lopes MT, Prosdocimi F, Bentzen P, Diniz FM. The Mitochondrial Genome of Melipona fasciculata (Apidae, Meliponini): Genome Organization and Comparative Analyses, Phylogenetic Implications and Divergence Time Estimations. Biochem Genet 2024:10.1007/s10528-024-10991-3. [PMID: 39643768 DOI: 10.1007/s10528-024-10991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
The native stingless bee Melipona fasciculata is economically and ecologically important to the Brazilian Northeast, providing a sustainable source of income to family farmers and being considered an effective pollinator in most ecosystems and crops. This study describes, for the first time, the mitogenome of the species and its phylogenetic position. The mitochondrial genome was sequenced using a MiSeq Sequencer (Illumina Inc.) and compared with other GenBank bee mitogenomes. The length of the mitochondrial DNA, excluding most of the control region, is 14,753 bp, and contains 13 protein-coding genes (PCGs), 21 transfer RNAs, 2 ribosomal RNAs (16S and 12S), and 1 AT-rich region. The GC-content of the M. fasciculata mitogenome was 13.4%. Of the 36 coding regions, 12 tRNAs and 9 PCGs were encoded in the heavy strand, and 9 tRNAs, 4 PCGs and 2 rRNAs were encoded in the light strand. The relative orientation and gene order was the same as other stingless bee mitogenomes. Phylogenetic inference produced well-resolved relationships with high statistical support for concordant branch topologies, under different optimization schemes and model parameters, within and among Melipona, Bombus, Apis, and related clades of Hymenoptera. In general, our divergence time estimates, which were based on the concatenated gene sequences (PCGs + rRNAs) from various groups, overlapped estimations captured by Bayesian analysis from different studies. The divergence time among Melipona species was estimated to occur during the Oligocene, approximately 24 Mya (95% HPD 14-36 Mya). Our results represent a valuable addition to help understanding not only the taxonomy and evolution of Brazilian stingless bee species, but also to uncover historical dispersal and isolation patterns in Meliponinae.
Collapse
Affiliation(s)
- Geice Ribeiro da Silva
- Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras km 4, Caixa Postal 145, Fazenda Três Lagoas, Sobral, Ceará, CEP: 62011-970, Brazil
| | - Isis Gomes de Brito Souza
- Northeast Biotechnology Network - RENORBIO/Universidade Federal do Piauí, Campus Universitário Ministro Petrônio Portella, Ininga, Teresina, Piauí, CEP: 64049-550, Brazil
| | - Fábia de Mello Pereira
- Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Caixa Postal 01, Teresina, Piauí, 64006-220, Brazil
| | - Bruno de Almeida Souza
- Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Caixa Postal 01, Teresina, Piauí, 64006-220, Brazil
| | | | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, CEP: 21.941-902, Brazil
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Fábio Mendonça Diniz
- Embrapa Caprinos e Ovinos, Estrada Sobral-Groaíras km 4, Caixa Postal 145, Fazenda Três Lagoas, Sobral, Ceará, CEP: 62011-970, Brazil.
| |
Collapse
|
2
|
Salas-Castañeda MR, Saavedra-Sotelo NC, Cruz-Barraza JA, Bisbal-Pardo CI, Rocha-Olivares A. Novel microsatellite markers suggest significant genetic isolation in the Eastern Pacific sponge Aplysina gerardogreeni. Mol Biol Rep 2024; 51:87. [PMID: 38183556 PMCID: PMC10771372 DOI: 10.1007/s11033-023-09043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/25/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND The Eastern Tropical Pacific (ETP) harbors a great diversity of Porifera. In particular, the Aplysina genus has acquired biotechnological and pharmacological importance. Nevertheless, the ecological aspects of their species and populations have been poorly studied. Aplysina gerardogreeni is the most conspicuous verongid sponge from the ETP, where it is usually found on rocky-coralline ecosystems. We evaluated the polymorphism levels of 18 microsatellites obtained from next-generation sequencing technologies. Furthermore, we tested the null hypothesis of panmixia in A. gerardogreeni population from two Mexican-Pacific localities. METHODS AND RESULTS A total of 6,128,000 paired reads were processed of which primer sets of 18 microsatellites were designed. The loci were tested in 64 specimens from Mazatlan, Sinaloa (N = 32) and Isabel Island, Nayarit (N = 32). The microsatellites developed were moderately polymorphic with a range of alleles between 2 and 11, and Ho between 0.069 and 0.785. Fifteen loci displayed significant deviation from the Hardy-Weinberg equilibrium. No linkage disequilibrium was detected. A strong genetic structure was confirmed between localities using hierarchical Bayesian analyses, principal coordinates analyses, and fixation indices (FST = 0.108*). All the samples were assigned to their locality; however, there was a small sign of mixing between localities. CONCLUSIONS Despite the moderate values of diversity in microsatellites, they showed a strong signal of genetic structure between populations. We suggest that these molecular markers can be a relevant tool to evaluate all populations across the ETP. In addition, 17 of these microsatellites were successfully amplified in the species A. fistularis and A. lacunosa, meaning they could also be applied in congeneric sponges from the Caribbean Sea. The use of these molecular markers in population genetic studies will allow assessment of the connectivity patterns in species of the Aplysina genus.
Collapse
Affiliation(s)
- Manuel Ricardo Salas-Castañeda
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria Coyoacán, C.P. 04510, Mexico City, Mexico
- Unidad Académica Mazatlán, Instituto Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Nancy C Saavedra-Sotelo
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa (UAS), Mazatlán, Sinaloa, Mexico
| | - José Antonio Cruz-Barraza
- Unidad Académica Mazatlán, Instituto Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena s/n, CP 82000, Mazatlán, Sinaloa, Mexico.
| | - Celia Isabel Bisbal-Pardo
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Axayácatl Rocha-Olivares
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico
| |
Collapse
|
3
|
Gastineau R, Dąbek P, Mianowicz K, Stoyanova V, Krawcewicz A, Abramowski T. Complete mitochondrial genome of the abyssal coral Abyssoprimnoagemina Cairns, 2015 (Octocorallia, Primnoidae) from the Clarion-Clipperton Zone, Pacific Ocean. Zookeys 2023; 1183:81-98. [PMID: 37953748 PMCID: PMC10632777 DOI: 10.3897/zookeys.1183.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
The Clarion-Clipperton Zone (CCZ) in the tropical East Pacific is a region of interest for deep-sea mining due to its underwater deposits of polymetallic nodules containing economically important metals such as nickel, copper, and cobalt. It is also a region of extensive baseline studies aiming to describe the state of the environment, including the biodiversity of the benthic fauna. An abundant component of the abyssal plain ecosystem consists of sessile fauna which encrusts polymetallic nodules and are vulnerable to potential impacts arising from exploitation activities, particularly removal of substrate. Therefore, this fauna is often considered to have key species whose genetic connectivity should be studied to assess their ecological resilience. One such species is Abyssoprimnoagemina Cairns, 2015, a deep-sea coral from the CCZ whose presence in the Interoceanmetal Joint Organization (IOM) claim area has been confirmed during samplings. In this study, we used next-generation sequencing (NGS) to obtain the 18S nuclear rRNA gene and the complete mitochondrial genome of A.gemina from IOM exploration area. The mitogenome is 18,825 bp long and encodes for 14 protein coding genes, 2 rRNAs, and a single tRNA. The two phylogeny reconstructions derived from these data confirm previous studies and display A.gemina within a highly supported cluster of seven species whose mitogenomes are all colinear and of comparable size. This study also demonstrates the suitability of NGS for DNA barcoding of the benthic megafauna of the CCZ, which could become part of the IOM protocol for the assessment of population diversity and genetic connectivity in its claim area.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, PolandUniversity of SzczecinSzczecinPoland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, ul. Mickiewicza 16a, Szczecin, 70-383, PolandUniversity of SzczecinSzczecinPoland
| | - Kamila Mianowicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Valcana Stoyanova
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Artur Krawcewicz
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| | - Tomasz Abramowski
- Interoceanmetal Joint Organization, ul. Cyryla i Metodego 9-9A, Szczecin, 71-541, PolandInteroceanmetal Joint OrganizationSzczecinPoland
| |
Collapse
|
4
|
Taboada S, Riesgo A, Wiklund H, Paterson GLJ, Koutsouveli V, Santodomingo N, Dale AC, Smith CR, Jones DOB, Dahlgren TG, Glover AG. Implications of population connectivity studies for the design of marine protected areas in the deep sea: An example of a demosponge from the Clarion-Clipperton Zone. Mol Ecol 2018; 27:4657-4679. [PMID: 30378207 DOI: 10.1111/mec.14888] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023]
Abstract
The abyssal demosponge Plenaster craigi inhabits the Clarion-Clipperton Zone (CCZ) in the northeast Pacific, a region with abundant seafloor polymetallic nodules with potential mining interest. Since P. craigi is a very abundant encrusting sponge on nodules, understanding its genetic diversity and connectivity could provide important insights into extinction risks and design of marine protected areas. Our main aim was to assess the effectiveness of the Area of Particular Environmental Interest 6 (APEI-6) as a potential genetic reservoir for three adjacent mining exploration contract areas (UK-1A, UK-1B and OMS-1A). As in many other sponges, COI showed extremely low variability even for samples ~900 km apart. Conversely, the 168 individuals of P. craigi, genotyped for 11 microsatellite markers, provided strong genetic structure at large geographical scales not explained by isolation by distance (IBD). Interestingly, we detected molecular affinities between samples from APEI-6 and UK-1A, despite being separated ~800 km. Although our migration analysis inferred very little progeny dispersal of individuals between areas, the major differentiation of OMS-1A from the other areas might be explained by the occurrence of predominantly northeasterly transport predicted by the HYCOM hydrodynamic model. Our study suggests that although APEI-6 does serve a conservation role, with species connectivity to the exploration areas, it is on its own inadequate as a propagule source for P. craigi for the entire eastern portion of the CCZ. Our new data suggest that an APEI located to the east and/or the south of the UK-1, OMS-1, BGR, TOML and NORI areas would be highly valuable.
Collapse
Affiliation(s)
- Sergi Taboada
- Life Sciences Department, The Natural History Museum, London, UK.,Departamento de Ciencias de la Vida, Ecología y Ciencias Ambientales, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Ana Riesgo
- Life Sciences Department, The Natural History Museum, London, UK
| | - Helena Wiklund
- Life Sciences Department, The Natural History Museum, London, UK
| | | | | | | | - Andrew C Dale
- The Scottish Association for Marine Science, Oban, UK
| | - Craig R Smith
- Department of Oceanography, University of Hawaii, Honolulu, Hawaii
| | - Daniel O B Jones
- National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK
| | - Thomas G Dahlgren
- NORCE, Uni Research, Bergen, Norway.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.,Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Adrian G Glover
- Life Sciences Department, The Natural History Museum, London, UK
| |
Collapse
|