1
|
Kuran FK, Senadeera SPD, Wang D, Hwang JY, Goncharova E, Wilson J, Wamiru A, Wilson BAP, Pruett N, Du L, Hoang CD, Beutler JA, Miski M. Sesquiterpene Coumarin Ethers and Phenylpropanoids from the Roots of Ferula drudeana, the Putative Anatolian Ecotype of the Silphion Plant. Molecules 2025; 30:1916. [PMID: 40363722 PMCID: PMC12073360 DOI: 10.3390/molecules30091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Four new sesquiterpene coumarin ethers (1-4) and a new phenylpropanoid compound (5) were isolated from a hexane extract of the roots of Ferula drudeana, the putative Anatolian ecotype of the silphion plant, in addition to nineteen previously described sesquiterpene coumarins (6-24) and four known phenylpropanoid derivatives (25-28). The structures of these compounds were elucidated by extensive spectroscopic analysis and computational studies. The cytotoxic activities of all isolated compounds were evaluated on renal, malignant pleural mesothelioma (MPM) and colon cancer cell lines. While 11 sesquiterpene coumarin derivatives showed strong-to-moderate cytotoxic activity against the UO31 renal cancer cell line, 13 compounds showed strong cytotoxic activity against the MPM cell line, and four sesquiterpene coumarin derivatives displayed moderate cytotoxic activity against the colon cancer cell line.
Collapse
Affiliation(s)
- Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye;
- Department of Pharmacognosy, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul 34116, Türkiye
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Sarath P. D. Senadeera
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Dongdong Wang
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Ji-Yeon Hwang
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Ekaterina Goncharova
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer Wilson
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Antony Wamiru
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Brice A. P. Wilson
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Nathanael Pruett
- Thoracic Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA (C.D.H.)
| | - Lin Du
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Chuong D. Hoang
- Thoracic Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA (C.D.H.)
| | - John A. Beutler
- Molecular Targets Program, National Cancer Institute, Frederick, MD 21702, USA; (S.P.D.S.); (D.W.); (J.-Y.H.); (E.G.); (J.W.); (L.D.)
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Türkiye;
| |
Collapse
|
2
|
Hassan HA, Abdelwahab SF, Al-Khdhairawi A, Al Zrkani MK, Rehman HM, Abdel-Rahman IM, El-Sheikh AAK, Abdelhamid MM. Exploring the therapeutic potential of galidesivir analogs against Zaire ebolavirus protein 24 (V24): database screening, molecular docking, drug-relevant property evaluation and molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:6761-6771. [PMID: 37477257 DOI: 10.1080/07391102.2023.2236720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Sayed F Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mrtatha K Al Zrkani
- Institute of Genetic Engineering & Biotechnology Research, Baghdad University, Iraq
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M Abdelhamid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
3
|
Gurivelli P, Katta S. Unraveling Grewia bilamellata Gagnep. Role in cerebral ischemia: Comprehensive in vivo and in silico studies. In Silico Pharmacol 2024; 12:62. [PMID: 39035100 PMCID: PMC11254896 DOI: 10.1007/s40203-024-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
The present study investigated the neuroprotective properties of whole plants of Grewia bilamellata Gagnep. extract (GBEE) against cerebral ischemia by harnessing both In vivo studies in a rat model and In silico studies focusing on nitric oxide synthase (NOS) inhibition. High-resolution liquid chromatography‒mass spectrometry (HR LC‒MS) analysis identified 32 phytochemicals in the GBEE, 15 of which adhered to Lipinski's rule of five. These compounds exhibited diverse physicochemical properties and high binding affinity to NOS, with cleomiscosin D showing the greatest potential. In vivo, GBEE had significant neuroprotective effects on bilateral common carotid artery occlusion/reperfusion (BCCAO/R) in rats, especially at doses of 200 mg/kg and 400 mg/kg body weight. GBEE treatment improved brain function, as evidenced by EEG normalization, substantial reductions in cerebral infarction size, mitigated neuronal loss, and the restoration of regular histological arrangement in the CA1 hippocampal area of the brain. Furthermore, GBEE enhanced antioxidant defenses by augmenting the activity of catalase (CAT) and superoxide dismutase (SOD), reducing malondialdehyde (MDA) levels, and restoring reduced glutathione (GSH) levels. These effects were accompanied by a decrease in nitric oxide (NO) levels, indicative of attenuated oxidative and nitrosative stress. Collectively, our findings suggest that GBEE is a promising natural therapeutic agent that may prevent or alleviate ischemic brain injury through a multifaceted mechanism involving NOS inhibition and attenuation of the oxidative stress response. This study highlights the therapeutic potential of GBEE and warrants further research into its mechanism of action and possible clinical applications.
Collapse
Affiliation(s)
- Poornima Gurivelli
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| | - Sunitha Katta
- Pharmacognosy and Phytochemistry Division, Gitam School of Pharmacy, Gitam University, Visakhapatnam, 530 045 Andhra Pradesh India
| |
Collapse
|
4
|
Azarkar S, Abedi M, Lavasani ASO, Ammameh AH, Goharipanah F, Baloochi K, Bakhshi H, Jafari A. Curcumin as a natural potential drug candidate against important zoonotic viruses and prions: A narrative review. Phytother Res 2024; 38:3080-3121. [PMID: 38613154 DOI: 10.1002/ptr.8119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 04/14/2024]
Abstract
Zoonotic diseases are major public health concerns and undeniable threats to human health. Among Zoonotic diseases, zoonotic viruses and prions are much more difficult to eradicate, as they result in higher infections and mortality rates. Several investigations have shown curcumin, the active ingredient of turmeric, to have wide spectrum properties such as anti-microbial, anti-vascular, anti-inflammatory, anti-tumor, anti-neoplastic, anti-oxidant, and immune system modulator properties. In the present study, we performed a comprehensive review of existing in silico, in vitro, and in vivo evidence on the antiviral (54 important zoonotic viruses) and anti-prion properties of curcumin and curcuminoids in PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases. Database searches yielded 13,380 results, out of which 216 studies were eligible according to inclusion criteria. Of 216 studies, 135 (62.5%), 24 (11.1%), and 19 (8.8%) were conducted on the effect of curcumin and curcuminoids against SARS-CoV-2, Influenza A virus, and dengue virus, respectively. This review suggests curcumin and curcuminoids as promising therapeutic agents against a wide range of viral zoonoses by targeting different proteins and signaling pathways.
Collapse
Affiliation(s)
- Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Masoud Abedi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | | | - Fatemeh Goharipanah
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kimiya Baloochi
- Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Bakhshi
- Vector-Borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirsajad Jafari
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Khan MT, Ali A, Wei X, Nadeem T, Muhammad S, Al-Sehemi AG, Wei D. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. BRAZ J BIOL 2024; 84:e250667. [DOI: 10.1590/1519-6984.25066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Nigella sativa is known for the safety profile, containing a wealth of useful antiviral compounds. The main protease (Mpro, 3CLpro) of severe acute respiratory syndrome 2 (SARS-CoV-2) is being considered as one of the most attractive viral target, processing the polyproteins during viral pathogenesis and replication. In the current investigation we analyzed the potency of active component, thymoquinone (TQ) of Nigella sativa against SARS-CoV-2 Mpro. The structures of TQ and Mpro was retrieved from PubChem (CID10281) and Protein Data Bank (PDB ID 6MO3) respectively. The Mpro and TQ were docked and the complex was subjected to molecular dynamic (MD) simulations for a period 50ns. Protein folding effect was analyzed using radius of gyration (Rg) while stability and flexibility was measured, using root means square deviations (RMSD) and root means square fluctuation (RMSF) respectively. The simulation results shows that TQ is exhibiting good binding activity against SARS-CoV-2 Mpro, interacting many residues, present in the active site (His41, Cys145) and also the Glu166, facilitating the pocket shape. Further, experimental approaches are needed to validate the role of TQ against virus infection. The TQ is interfering with pocket maintaining residues as well as active site of virus Mpro which may be used as a potential inhibitor against SARS-CoV-2 for better management of COVID-19.
Collapse
Affiliation(s)
| | - A. Ali
- Shanghai Jiao Tong University, China
| | - X. Wei
- Shanghai Jiao Tong University, China
| | | | | | | | - Dongqing Wei
- Shanghai Jiao Tong University, China; Peng Cheng Laboratory, China
| |
Collapse
|
6
|
Mitra D, Paul M, Thatoi H, Das Mohapatra PK. Potentiality of bioactive compounds as inhibitor of M protein and F protein function of human respiratory syncytial virus. In Silico Pharmacol 2023; 12:5. [PMID: 38148755 PMCID: PMC10749291 DOI: 10.1007/s40203-023-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023] Open
Abstract
The human respiratory syncytial virus (RSV) creates a pandemic every year in several countries in the world. Lack of target therapeutics and absence of vaccines have prompted scientists to create novel vaccines or small chemical treatments against RSV's numerous targets. The matrix (M) protein and fusion (F) glycoprotein of RSV are well characterized and attractive drug targets. Five bioactive compounds from Alnus japonica (Thunb.) Steud. were taken into consideration as lead compounds. Drug-likeness characters of them showed the drugs are non-toxic and non-mutagenic and mostly lipophobic. Molecular docking reveals that all bioactive compounds have better binding and better inhibitory effect than ribavirin which is currently used against RSV. Praecoxin A appeared as the best lead compound between them. It creates 7 different types of bonds with amino acids of M protein and 5 different types of bonds with amino acids of F protein. Van der Waals interactions highly influenced the binding energies. Molecular dynamic simulations represent the non-deviated and less fluctuating nature of praecoxin A. Principal Component Analysis showed praecoxin A complex with RSV matrix protein is more stable than ribavirin complex. This study will help to develop a new drug to inhibit RSV. All ligands were minimized through semi-empirical PM3 process with MOPAC. Toxicity was tested by ProTox-II server. Molecular docking studies were carried out using AutoDock 4.2. Molecular dynamics simulations for 100 ns were carried out through GROMACS 5.12 MD and GROMOS96 43a1 force field. The graphs were produced by GROMACS's XMGrace program. Graphical abstract
Collapse
Affiliation(s)
- Debanjan Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal 733134 India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, Odisha 757003 India
| | | |
Collapse
|
7
|
Kumar H, Dhalaria R, Guleria S, Sharma R, Cimler R, Dhanjal DS, Chopra C, Kumar V, Manickam S, Siddiqui SA, Kaur T, Verma N, Kumar Pathera A, Kuča K. Advances in the concept of functional foods and feeds: applications of cinnamon and turmeric as functional enrichment ingredients. Crit Rev Food Sci Nutr 2023; 65:1144-1162. [PMID: 38063355 DOI: 10.1080/10408398.2023.2289645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Spices are a rich source of vitamins, polyphenols, proteins, dietary fiber, and minerals such as calcium, magnesium, iron, and zinc, all of which play an important role in biological functions. Since ancient times, spices have been used in our kitchen as a food coloring agent. Spices like cinnamon and turmeric allegedly contain various functional ingredients, such as phenolic and volatile compounds. Therefore, this review aims to summarize the current knowledge about the nutritional profiles of cinnamon and turmeric, as well as to analyze the clinical studies on their extracts and essential oils in animals and humans. Furthermore, their enrichment applications for food products and animal feed have also been investigated in terms of safety and toxicity. Numerous studies have shown that cinnamon and turmeric have various health benefits, including the reduction of insulin resistance and insulin signaling pathways in diabetic patients, the reduction of inflammatory biomarkers, and the maintenance of gut microflora in both animals and humans. The food and animal feed industries have taken notice of these health benefits and have begun to promote cinnamon and turmeric as healthy foods. This has resulted in the development of new food products and animal feeds that contain cinnamon and turmeric as primary ingredients, which have been deemed an effective means of promoting cinnamon and turmeric's health benefits.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala, India
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, India
| | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Kamil Kuča
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec, Kralove, Czech Republic
| |
Collapse
|
8
|
Kumar RN, Prasanth D, Midthuri PG, Ahmad SF, Badarinath AV, Karumanchi SK, Seemaladinne R, Nalluri R, Pasala PK. Unveiling the Cardioprotective Power: Liquid Chromatography-Mass Spectrometry (LC-MS)-Analyzed Neolamarckia cadamba (Roxb.) Bosser Leaf Ethanolic Extract against Myocardial Infarction in Rats and In Silico Support Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3722. [PMID: 37960078 PMCID: PMC10650531 DOI: 10.3390/plants12213722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
Neolamarckia cadamba (Roxb.) Bosser, a member of the Rubiaceae family, is a botanical species with recognized therapeutic properties. It is commonly used in traditional medicine to treat cardiac ailments and other disorders. However, the precise active constituents and the potential mechanisms by which they manage cardiovascular disorders remain unclear. Therefore, this study aimed to ascertain the bioactive components and investigate their underlying mechanisms of action. N. cadamba is used to treat cardiovascular disorders using the integrated metabolomic methodology. An HPLC-QTOF-MS/MS analysis determined the potential chemicals in the N. cadamba leaf ethanol extract (NCEE). A thorough investigation of the NCEE samples used in this study led to the identification of 32 phytoconstituents. Of the 32 compounds, 19 obeyed Lipinski's rule of five (RO5). A molecular docking study directed towards HMG-CoA reductase used 19 molecules. The reference drug atorvastatin indicated a binding energy of -3.9 kcal/mol, while the other substances, Cinchonain Ib and Dukunolide B, revealed binding energies of -5.7 and -5.3 kcal/mol, respectively. Both phytocompounds showed no toxicity and exhibited favorable pharmacokinetic properties. In vivo study results concluded that treatment with NCEE significantly reduced the cardiac myocardial infarction (MI) marker CK-MB and atherogenic risk indices, such as the atherogenic index plasma (AIP), cardiac risk ratio (CRR), and atherogenic coefficient (AC) in isoproterenol-induced MI rats. In MI rats, NCEE therapy significantly improved the antioxidant system of the heart tissue, as evidenced by the increased levels of GSH and SOD, lower levels of the oxidative stress marker MDA, and significantly decreased HMG-CoA activity. Additionally, electrocardiogram (ECG) signals from rats treated with NCEE resembled those treated with traditional atorvastatin to treat myocardial infarction. This study used H&E staining to show that administering NCEE before treatment reduced cardiac myocyte degeneration in rats with myocardial infarction, increased the presence of intact nuclei, and increased myocardial fiber strength. The potential cardioprotective effect observed in myocardial infarction (MI) rats treated with NCEE can be extrapolated from computational data to be caused by Cinchonain Ib.
Collapse
Affiliation(s)
- Raghupathi Niranjan Kumar
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (R.N.K.); (P.G.M.)
| | - Dsnbk Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada 520010, Andhra Pradesh, India;
| | - Praisy Gladys Midthuri
- Department of Pharmacology, Santhiram College of Pharmacy, JNTUA, Nandyal 518112, Andhra Pradesh, India; (R.N.K.); (P.G.M.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Srikanth Kumar Karumanchi
- Department of Pharmaceutical Chemistry, DKSS Institute of Pharmaceutical Science & Research (for Girls), Swami-Chincholi, Bhigwan 413130, Maharashtra, India;
| | | | - Rahul Nalluri
- Department of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA;
| | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, JNTUA, Anantapuramu 515721, Andhra Pradesh, India
| |
Collapse
|
9
|
Eruçar FM, Kuran FK, Altıparmak Ülbegi G, Özbey S, Karavuş ŞN, Arcan GG, Yazıcı Tütüniş S, Tan N, Aksoy Sağırlı P, Miski M. Sesquiterpene Coumarin Ethers with Selective Cytotoxic Activities from the Roots of Ferula huber-morathii Peşmen (Apiaceae) and Unequivocal Determination of the Absolute Stereochemistry of Samarcandin. Pharmaceuticals (Basel) 2023; 16:792. [PMID: 37375740 DOI: 10.3390/ph16060792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Ancient physicians frequently used the resin of Ferula species to treat cancer. Today, some folkloric recipes used for cancer treatment also contain the resin of Ferula species. The dichloromethane extract of the roots of Ferula huber-morathii exhibited cytotoxic activities against COLO 205 (colon), K-562 (lymphoblast), and MCF-7 (breast) cancer cell lines (IC50 = 52 µg/mL, 72 µg/mL, and 20 µg/mL, respectively). Fifteen sesquiterpene coumarin ethers with cytotoxic activity were isolated from the dichloromethane extract of the roots of F. huber-morathii using bioactivity-directed isolation studies. Extensive spectroscopic analyses and chemical transformations have elucidated the structures of these sesquiterpene coumarin ethers as conferone (1), conferol (2), feselol (3), badrakemone (4), mogoltadone (5), farnesiferol A (6), farnesiferol A acetate (7), gummosin (8), ferukrin (9), ferukrin acetate (10), deacetylkellerin (11), kellerin (12), samarcandone (13), samarcandin (14), and samarcandin acetate (15). The absolute configuration of samarcandin (14) was unequivocally determined by the X-ray crystallographic analysis of the semi-synthetic (R)-MTPA ester of samarcandin (24). Conferol (2) and mogoltadone (5) were found to be the most potent cytotoxic compounds against all three cancer cell lines; furthermore, these compounds exhibit low cytotoxic activity against the non-cancerous human umbilical vein epithelial cells (HUVEC) cell line. Investigation of the biological activity mechanisms of mogoltadone (5) revealed that while suppressing the levels of Bcl-XL and procaspase-3 in the COLO 205 cancer cell line, it did not have a significant effect on the Bcl-XL, caspase-3, and β-catenin protein levels of the HUVEC cell line, which may explain the cytotoxic selectivity of mogoltadone (5) on cancer cell lines.
Collapse
Affiliation(s)
- Fatma Memnune Eruçar
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | - Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | | | - Süheyla Özbey
- Department of Engineering Physics, Faculty of Engineering, Hacettepe University, 06800 Ankara, Türkiye
| | - Şule Nur Karavuş
- Department of Pharmacognosy, School of Pharmacy, İstanbul Medipol University, 34810 İstanbul, Türkiye
| | - Gülşah Gamze Arcan
- Department of Biochemistry, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | - Seçil Yazıcı Tütüniş
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | - Nur Tan
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | - Pınar Aksoy Sağırlı
- Department of Biochemistry, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, 34116 İstanbul, Türkiye
| |
Collapse
|
10
|
Bourouai MA, Si Larbi K, Bouchoucha A, Terrachet-Bouaziz S, Djebbar S. New Ni(II) and Pd(II) complexes bearing derived sulfa drug ligands: synthesis, characterization, DFT calculations, and in silico and in vitro biological activity studies. Biometals 2023; 36:153-188. [PMID: 36427181 DOI: 10.1007/s10534-022-00469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022]
Abstract
In the present study, the synthesis of six new Ni(II) and Pd(II) complexes with three derived sulfamethoxazole drug ligands is reported. The coordination mode, geometry, and chemical formula of all the synthesized compounds have been determined by elemental analysis, mass spectrometry, emission atomic spectroscopy, conductivity measurements, magnetic susceptibility, FTIR, TGA, 1H-NMR, electronic absorption spectroscopy, SEM-EDX along with DFT calculations. The Schiff Base ligands were found to be bidentate and coordinated to the metal ions through sulfonamidic nitrogen and oxazolic nitrogen atoms leading to a square planar geometry for palladium (II) while a distorted octahedral geometry around Nickel (II) ion was suggested. Biological applications of the new complexes including in vitro antimicrobial, antioxidant and anticancer properties were investigated. The results showed that the new metal (II) compounds exhibit remarkable antibacterial inhibition activity against both Gram-positive and Gram-negative bacteria, in addition to noticeable DPPH free radical scavenging activity. The in vitro cytotoxicity assay of the complexes against cell lines of chronic myelogenous leukaemia (K562) showed promising potential for the application of the coordination compounds in antitumor therapy. Subsequently, to evaluate the pharmaceutical potential of the metal-containing compounds, pharmacokinetics and toxicity were studied by ADMET simulations while interactions between the complexes and bacterial proteins were evaluated by molecular docking.
Collapse
Affiliation(s)
- Mohamed Amine Bourouai
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Karima Si Larbi
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| | - Afaf Bouchoucha
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria.
| | | | - Safia Djebbar
- Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Science and Technology Houari Boumediene, BP 32 El Alia, 16111, Algiers, Algeria
| |
Collapse
|
11
|
Kumar N, Acharya V. Machine intelligence-guided selection of optimized inhibitor for human immunodeficiency virus (HIV) from natural products. Comput Biol Med 2023; 153:106525. [PMID: 36603433 DOI: 10.1016/j.compbiomed.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) connects to the cluster of differentiation (CD4) and any of the entry co-receptors (CCR5 and CXCR4); followed by unloading the viral genome, reverse transcriptase, and integrase enzymes within the host cell. The co-receptors facilitate the entry of virus and vital enzymes, leading to replication and pre-maturation of viral particles within the host. The protease enzyme transforms the immature viral vesicles into the mature virion. The pivotal role of co-receptors and enzymes in homeostasis and growth makes the crucial target for anti-HIV drug discovery, and the availability of X-ray crystal structures is an asset. Here, we used the machine intelligence-driven framework (A-HIOT) to identify and optimize target-based potential hit molecules for five significant protein targets from the ZINC15 database (natural products dataset). Following validation with dynamic motion behavior analysis and molecular dynamics simulation, the optimized hits were evaluated using in silico ADMET filtration. Furthermore, three molecules were screened, optimized, and validated: ZINC00005328058 for CCR5 and protease, ZINC000254014855 for CXCR4 and integrase, and ZINC000000538471 for reverse transcriptase. In clinical trials, the ZINC000254014855 and ZINC000254014855 were passed in primary screens for vif-HIV-1, and we reported the specific receptor as well as interactions. As a result, the validated molecules may be investigated further in experimental studies targeting specific receptors in order to design and synergize an anti-HIV regimen.
Collapse
Affiliation(s)
- Neeraj Kumar
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
12
|
Mohamed EAR, Abdelwahab SF, Alqaisi AM, Nasr AMS, Hassan HA. Identification of promising anti-EBOV inhibitors: de novo drug design, molecular docking and molecular dynamics studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220369. [PMID: 36177201 PMCID: PMC9515638 DOI: 10.1098/rsos.220369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The Ebola virus (EBOV) outbreak was recorded as the largest in history and caused many fatalities. As seen in previous studies, drug repurposing and database filtration were the two major pathways to searching for potent compounds against EBOV. In this study, a deep learning (DL) approach via the LigDream tool was employed to obtain novel and effective anti-EBOV inhibitors. Based on the galidesivir (BCX4430) chemical structure, 100 compounds were collected and inspected using various in silico approaches. Results from the molecular docking study indicated that mol1_069 and mol1_092 were the best two potent compounds with a docking score of -7.1 kcal mol-1 and -7.0 kcal mol-1, respectively. Molecular dynamics simulations, in addition to binding energy calculations, were conducted over 100 ns. Both compounds exhibited lower binding energies than BCX4430. Furthermore, compared with BCX4430 (%Absorption = 60.6%), mol1_069 and mol1_092 scored higher values of % Absorption equal to 68.1% and 63.7%, respectively. The current data point to the importance of using DL in the drug design process instead of conventional methods such as drug repurposing or database filtration. In conclusion, mol1_069 and mol1_092 are promising anti-EBOV drug candidates that require further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Eslam A. R. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, Minia 61511, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | | | | | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
13
|
Coordination of new palladium (II) complexes with derived furopyran-3,4‑dione ligands: Synthesis, characterization, redox behaviour, DFT, antimicrobial activity, molecular docking and ADMET studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Skariyachan S. Scope of computational biology and bioinformatics towards the discovery of potential therapeutic agents against viral diseases. Future Virol 2022. [DOI: 10.2217/fvl-2021-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tweetable abstract Computational biology and bioinformatics resources provide a cutting-edge platform for the screening and development of novel therapeutic agents against probable targets of emerging viral diseases.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St Pius X College, Rajapuram, Kasaragod, Kerala, 671532, India
| |
Collapse
|
15
|
Rani JMJ, Kalaimathi K, Vijayakumar S, Varatharaju G, Karthikeyan K, Thiyagarajan G, Bhavani K, Manogar P, Prabhu S. Anti-viral effectuality of plant polyphenols against mutated dengue protein NS2B47-NS3: A computational exploration. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Curcumin-Based Inhibitors of Thrombosis and Cancer Metastasis Promoting Factor CLEC 2 from Traditional Medicinal Species Curcuma longa. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9344838. [PMID: 35082906 PMCID: PMC8786508 DOI: 10.1155/2022/9344838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The CLEC-2 receptor protein belongs to the C-type lectin superfamily of transmembrane receptors that have one or more C-type lectin-like domains. CLEC-2 is a physiological binding receptor of podoplanin (PDPN), which is expressed on specific tumour cell types and involved in tumour cell-induced platelet aggregation and tumour metastasis. CLEC-2 and podoplanin-expressing tumour cells interact to increase angiogenesis, tumour development, and metastasis. CLEC-2 is a hemi-immunoreceptor tyrosine-based activation motif (hemi-ITAM) receptor located on platelets and a subset of dendritic cells that are expressed constitutively. This molecule is secreted by activated platelets around tumours and has been shown to inhibit platelet aggregation and tumour metastasis in colon carcinoma by binding to the surface of tumour cells. Pharmacokinetic studies were carried using a DrugLiTo, and molecular docking was performed using AutoDock Tools 1.5.6 (ADT). Twenty-nine bioactive compounds were included in the study, and four of them, namely, piperine, dihydrocurcumin, bisdemethoxycurcumin, and demothoxycurcumin, showed potential antagonist properties against the target. The resultant best bioactive was compared with commercially available standard drugs. Further, validation of respective compounds with an intensive molecular dynamics simulation was performed using Schrödinger software. To the best of our knowledge, this is the first report on major bioactive found on clove as natural antagonists for CLEC-2 computationally. To further validate the bioactive and delimit the screening process of potential drugs against CLEC-2, in vitro and in vivo studies are needed to prove their efficacy.
Collapse
|
17
|
Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds. Biomedicines 2021; 9:biomedicines9121796. [PMID: 34944612 PMCID: PMC8698941 DOI: 10.3390/biomedicines9121796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ebola virus (EBOV) is one of the most lethal pathogens that can infect humans. The Ebola viral protein VP35 (EBOV VP35) inhibits host IFN-α/β production by interfering with host immune responses to viral invasion and is thus considered as a plausible drug target. The aim of this study was to identify potential novel lead compounds against EBOV VP35 using computational techniques in drug discovery. The 3D structure of the EBOV VP35 with PDB ID: 3FKE was used for molecular docking studies. An integrated library of 7675 African natural product was pre-filtered using ADMET risk, with a threshold of 7 and, as a result, 1470 ligands were obtained for the downstream molecular docking using AutoDock Vina, after an energy minimization of the protein via GROMACS. Five known inhibitors, namely, amodiaquine, chloroquine, gossypetin, taxifolin and EGCG were used as standard control compounds for this study. The area under the curve (AUC) value, evaluating the docking protocol obtained from the receiver operating characteristic (ROC) curve, generated was 0.72, which was considered to be acceptable. The four identified potential lead compounds of NANPDB4048, NANPDB2412, ZINC000095486250 and NANPDB2476 had binding affinities of −8.2, −8.2, −8.1 and −8.0 kcal/mol, respectively, and were predicted to possess desirable antiviral activity including the inhibition of RNA synthesis and membrane permeability, with the probable activity (Pa) being greater than the probable inactivity (Pi) values. The predicted anti-EBOV inhibition efficiency values (IC50), found using a random forest classifier, ranged from 3.35 to 11.99 μM, while the Ki values ranged from 0.97 to 1.37 μM. The compounds NANPDB4048 and NANPDB2412 had the lowest binding energy of −8.2 kcal/mol, implying a higher binding affinity to EBOV VP35 which was greater than those of the known inhibitors. The compounds were predicted to possess a low toxicity risk and to possess reasonably good pharmacological profiles. Molecular dynamics (MD) simulations of the protein–ligand complexes, lasting 50 ns, and molecular mechanisms Poisson-Boltzmann surface area (MM-PBSA) calculations corroborated the binding affinities of the identified compounds and identified novel critical interacting residues. The antiviral potential of the molecules could be confirmed experimentally, while the scaffolds could be optimized for the design of future novel anti-EBOV chemotherapeutics.
Collapse
|
18
|
Fakhri S, Mohammadi Pour P, Piri S, Farzaei MH, Echeverría J. Modulating Neurological Complications of Emerging Infectious Diseases: Mechanistic Approaches to Candidate Phytochemicals. Front Pharmacol 2021; 12:742146. [PMID: 34764869 PMCID: PMC8576094 DOI: 10.3389/fphar.2021.742146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Growing studies are revealing the critical manifestations of influenza, dengue virus (DENV) infection, Zika virus (ZIKV) disease, and Ebola virus disease (EVD) as emerging infectious diseases. However, their corresponding mechanisms of major complications headed for neuronal dysfunction are not entirely understood. From the mechanistic point of view, inflammatory/oxidative mediators are activated during emerging infectious diseases towards less cell migration, neurogenesis impairment, and neuronal death. Accordingly, the virus life cycle and associated enzymes, as well as host receptors, cytokine storm, and multiple signaling mediators, are the leading players of emerging infectious diseases. Consequently, chemokines, interleukins, interferons, carbohydrate molecules, toll-like receptors (TLRs), and tyrosine kinases are leading orchestrates of peripheral and central complications which are in near interconnections. Some of the resulting neuronal manifestations have attracted much attention, including inflammatory polyneuropathy, encephalopathy, meningitis, myelitis, stroke, Guillain-Barré syndrome (GBS), radiculomyelitis, meningoencephalitis, memory loss, headaches, cranial nerve abnormalities, tremor, and seizure. The complex pathophysiological mechanism behind the aforementioned complications urges the need for finding multi-target agents with higher efficacy and lower side effects. In recent decades, the natural kingdom has been highlighted as promising neuroprotective natural products in modulating several dysregulated signaling pathways/mediators. The present study provides neuronal manifestations of some emerging infectious diseases and underlying pathophysiological mechanisms. Besides, a mechanistic-based strategy is developed to introduce candidate natural products as promising multi-target agents in combating major dysregulated pathways towards neuroprotection in influenza, DENV infection, ZIKV disease, and EVD.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
19
|
Vasudevan K, Thirumal Kumar D, Udhaya Kumar S, Saleem A, Nagasundaram N, Siva R, Tayubi IA, George Priya Doss C, Zayed H. A computational overview on phylogenetic characterization, pathogenic mutations, and drug targets for Ebola virus disease. Curr Opin Pharmacol 2021; 61:28-35. [PMID: 34563987 DOI: 10.1016/j.coph.2021.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022]
Abstract
The World Health Organization declared Ebola virus disease (EVD) as the major outbreak in the 20th century. EVD was first identified in 1976 in South Sudan and the Democratic Republic of the Congo. EVD was transmitted from infected fruit bats to humans via contact with infected animal body fluids. The Ebola virus (EBOV) has a genome size of ∼18,959 bp. It encodes seven distinct proteins: nucleoprotein (NP), glycoprotein (GP), viral proteins VP24, VP30, VP35, matrix protein VP40, and polymerase L is considered a prime target for potential antiviral strategies. The current US FDA-approved anti-EVD vaccine, ERVERBO, and the other equally effective anti-EBOV combinations of three fully human monoclonal antibodies such as REGN-EB3, primarily target the envelope glycoprotein. This work elaborates on the EBOV's phylogenetic structure and the crucial mutations associated with viral pathogenicity.
Collapse
Affiliation(s)
- Karthick Vasudevan
- School of Applied Sciences, Reva University, Bengaluru, Karnataka, India.
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India.
| | - S Udhaya Kumar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Aisha Saleem
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - N Nagasundaram
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - R Siva
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Iftikhar Aslam Tayubi
- Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
20
|
Tripathy S, Verma DK, Thakur M, Patel AR, Srivastav PP, Singh S, Gupta AK, Chávez-González ML, Aguilar CN, Chakravorty N, Verma HK, Utama GL. Curcumin Extraction, Isolation, Quantification and Its Application in Functional Foods: A Review With a Focus on Immune Enhancement Activities and COVID-19. Front Nutr 2021; 8:747956. [PMID: 34621776 PMCID: PMC8490651 DOI: 10.3389/fnut.2021.747956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
An entirely unknown species of coronavirus (COVID-19) outbreak occurred in December 2019. COVID-19 has already affected more than 180 million people causing ~3.91 million deaths globally till the end of June 2021. During this emergency, the food nutraceuticals can be a potential therapeutic candidate. Curcumin is the natural and safe bioactive compound of the turmeric (Curcuma longa L.) plant and is known to possess potent anti-microbial and immuno-modulatory properties. This review paper covers the various extraction and quantification techniques of curcumin and its usage to produce functional food. The potential of curcumin in boosting the immune system has also been explored. The review will help develop insight and new knowledge about curcumin's role as an immune-booster and therapeutic agent against COVID-19. The manuscript will also encourage and assist the scientists and researchers who have an association with drug development, pharmacology, functional foods, and nutraceuticals to develop curcumin-based formulations.
Collapse
Affiliation(s)
- Soubhagya Tripathy
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Ami R. Patel
- Division of Dairy Microbiology, Mansinhbhai Institute of Dairy & Food Technology-MIDFT, Gujarat, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Smita Singh
- Department of Life Sciences (Food Technology), Graphic Era (Deemed to Be) University, Dehradun, India
- Department of Nutrition and Dietetics, University Institute of Applied Health Sciences, Chandigarh University, Chandigarh, India
| | - Alok Kumar Gupta
- Division of Post-Harvest Management, ICAR-Central Institute for Subtropical Horticulture (Ministry of Agriculture and Farmers Welfare, Government of India), Lucknow, India
| | - Mónica L. Chávez-González
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Cristobal Noe Aguilar
- Bioprocesses Research Group, Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, Saltillo, Mexico
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Henu Kumar Verma
- Department of Immunopathology, Comprehensive Pneumology Center, Institute of Lungs Biology and Disease, Munich, Germany
| | - Gemilang Lara Utama
- Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
- Center for Environment and Sustainability Science, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
21
|
Singh H, Bharadvaja N. Treasuring the computational approach in medicinal plant research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 164:19-32. [PMID: 34004233 DOI: 10.1016/j.pbiomolbio.2021.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/24/2023]
Abstract
Medicinal plants serve as a valuable source of secondary metabolites since time immemorial. Computational Research in 21st century is giving more attention to medicinal plants for new drug design as pharmacological screening of bioactive compound was time consuming and expensive. Computational methods such as Molecular Docking, Molecular Dynamic Simulation and Artificial intelligence are significant Insilico tools in medicinal plant research. Molecular docking approach exploits the mechanism of potential phytochemicals into the target active site to elucidate its interactions and biological therapeutic properties. MD simulation illuminates the dynamic behavior of biomolecules at atomic level with fine quality representation of biomolecules. Dramatical advancement in computer science is illustrating the biological mechanism via these tools in different diseases treatment. The advancement comprises speed, the system configuration, and other software upgradation to insights into the structural explanation and optimization of biomolecules. A probable shift from simulation to artificial intelligence has in fact accelerated the art of scientific study to a sky high. The most upgraded algorithm in artificial intelligence such as Artificial Neural Networks, Deep Neural Networks, Neuro-fuzzy Logic has provided a wide opportunity in easing the time required in classical experimental strategy. The notable progress in computer science technology has paved a pathway for understanding the pharmacological functions and creating a roadmap for drug design and development and other achievement in the field of medicinal plants research. This review focus on the development and overview in computational research moving from static molecular docking method to a range of dynamic simulation and an advanced artificial intelligence such as machine learning.
Collapse
Affiliation(s)
- Harshita Singh
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Plant Biotechnology Laboratory, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
22
|
Ebolabase: Zaire ebolavirus-human protein interaction database for drug-repurposing. Int J Biol Macromol 2021; 182:1384-1391. [PMID: 34015403 DOI: 10.1016/j.ijbiomac.2021.04.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Ebola Virus (EBOV) is one of the deadliest pathogenic virus which causes hemorrhagic fever. Though many Ebola-human interaction studies and databases are already reported, the unavailability of an adequate model and lack of publically accessible resources requires a comprehensive study to curate the Ebola-Human-Drug interactions. In total, 270 human proteins interacted with EBOV are collected from published experimental evidence. Then the protein-protein interaction networks are generated as EBOV-human and EBOV-Human-Drugs interaction. These results can help the researcher to find the effective repurposed drug for EBOV treatment. Further, the illustration of gene enrichment and pathway analysis would provide knowledge and insight of EBOV-human interaction describes the importance of the study. Investigating the networks may help to identify a suitable human-based drug target for ebola research community. The inclusion of an emerging concept, a human-based drug targeted therapy plays a very significant role in drug repurposing which reduces the time and effort is the highlight of the current research. An integrated database namely, Ebolabase has been developed and linked with other repositories such as Epitopes, Structures, Literature, Genomics and Proteomics. All generated networks are made to be viewed in a customized manner and the required data can be downloaded freely. The Ebolabase is available at http://ebola.bicpu.edu.in.
Collapse
|
23
|
Bhushan I, Sharma M, Mehta M, Badyal S, Sharma V, Sharma I, Singh H, Sistla S. Bioactive compounds and probiotics-a ray of hope in COVID-19 management. FOOD SCIENCE AND HUMAN WELLNESS 2021; 10:131-140. [PMID: 38620836 PMCID: PMC7982983 DOI: 10.1016/j.fshw.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The use of bioactive compounds and probiotic bacteria against the viral diseases in human is known for a long time. Anti-viral, anti-inflammatory and anti-allergic properties of bioactive compounds and bacteria with probiotic properties in respiratory viral diseases may have significance to enhance immunity. This review highlights some of the important bioactive compounds and probiotic bacteria, suggesting them as a ray of hope in the milieu of the COVID-19 management.
Collapse
Affiliation(s)
- Indu Bhushan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Mahima Sharma
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Malvika Mehta
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Shivi Badyal
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Varun Sharma
- Birbal Sahni Institute of Palaeosciences, Lucknow, UP, India
| | - Indu Sharma
- Birbal Sahni Institute of Palaeosciences, Lucknow, UP, India
| | - Hemender Singh
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
24
|
Miski M. Next Chapter in the Legend of Silphion: Preliminary Morphological, Chemical, Biological and Pharmacological Evaluations, Initial Conservation Studies, and Reassessment of the Regional Extinction Event. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10010102. [PMID: 33418989 PMCID: PMC7825337 DOI: 10.3390/plants10010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Silphion was an ancient medicinal gum-resin; most likely obtained from a Ferula species growing in the Cyrene region of Libya ca. 2500 years ago. Due to its therapeutic properties and culinary value, silphion became the main economic commodity of the Cyrene region. It is generally believed that the source of silphion became extinct in the first century AD. However, there are a few references in the literature about the cultivated silphion plant and its existence up to the fifth century. Recently, a rare and endemic Ferula species that produces a pleasant-smelling gum-resin was found in three locations near formerly Greek villages in Anatolia. Morphologic features of this species closely resemble silphion, as it appears in the numismatic figures of antique Cyrenaic coins, and conform to descriptions by ancient authors. Initial chemical and pharmacological investigations of this species have confirmed the medicinal and spice-like quality of its gum-resin supporting a connection with the long-lost silphion. A preliminary conservation study has been initiated at the growth site of this rare endemic Ferula species. The results of this study and their implications on the regional extinction event, and future development of this species will be discussed.
Collapse
Affiliation(s)
- Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
25
|
Hadhoum N, Zohra Hadjadj-Aoul F, Hocine S, Bouaziz-Terrachet S, Seklaoui N, Boubrit F, Abderrahim W, Redouane Mekacher L. Design and One-Pot Synthesis of Some New [3,5-Di(4’,5’-diphenyl-2’-substituted)-1H-imidazol-1-yl)]-1H-1,2,4-triazole Derivatives: in silico ADMET and Docking Study, Antibacterial and Antifungal Activities Evaluation. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Quercetin Blocks Ebola Virus Infection by Counteracting the VP24 Interferon-Inhibitory Function. Antimicrob Agents Chemother 2020; 64:AAC.00530-20. [PMID: 32366711 DOI: 10.1128/aac.00530-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Ebola virus (EBOV) is among the most devastating pathogens causing fatal hemorrhagic fever in humans. The epidemics from 2013 to 2016 resulted in more than 11,000 deaths, and another outbreak is currently ongoing. Since there is no FDA-approved drug so far to fight EBOV infection, there is an urgent need to focus on drug discovery. Considering the tight correlation between the high EBOV virulence and its ability to suppress the type I interferon (IFN-I) system, identifying molecules targeting viral protein VP24, one of the main virulence determinants blocking the IFN response, is a promising novel anti-EBOV therapy approach. Hence, in the effort to find novel EBOV inhibitors, a screening of a small set of flavonoids was performed; it showed that quercetin and wogonin can suppress the VP24 effect on IFN-I signaling inhibition. The mechanism of action of the most active compound, quercetin, showing a half-maximal inhibitory concentration (IC50) of 7.4 μM, was characterized to significantly restore the IFN-I signaling cascade, blocked by VP24, by directly interfering with the VP24 binding to karyopherin-α and thus restoring P-STAT1 nuclear transport and IFN gene transcription. Quercetin significantly blocked viral infection, specifically targeting EBOV VP24 anti-IFN-I function. Overall, quercetin is the first identified inhibitor of the EBOV VP24 anti-IFN function, representing a molecule interacting with a viral binding site that is very promising for further drug development aiming to block EBOV infection at the early steps.
Collapse
|
27
|
Naik B, Gupta N, Ojha R, Singh S, Prajapati VK, Prusty D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int J Biol Macromol 2020; 160:1-17. [PMID: 32470577 PMCID: PMC7250083 DOI: 10.1016/j.ijbiomac.2020.05.184] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022]
Abstract
The present-day world is severely suffering from the recently emerged SARS-CoV-2. The lack of prescribed drugs for the deadly virus has stressed the likely need to identify novel inhibitors to alleviate and stop the pandemic. In the present high throughput virtual screening study, we used in silico techniques like receptor-ligand docking, Molecular dynamic (MD), and ADME properties to screen natural compounds. It has been documented that many natural compounds display antiviral activities, including anti–SARS-CoV effect. The present study deals with compounds of Natural Product Activity and Species Source (NPASS) database with known biological activity that probably impedes the activity of six essential enzymes of the virus. Promising drug-like compounds were identified, demonstrating better docking score and binding energy for each druggable targets. After an extensive screening analysis, three novel multi-target natural compounds were predicted to subdue the activity of three/more major drug targets simultaneously. Concerning the utility of natural compounds in the formulation of many therapies, we propose these compounds as excellent lead candidates for the development of therapeutic drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, 305817 Ajmer, Rajasthan, India.
| |
Collapse
|
28
|
Fanunza E, Frau A, Corona A, Tramontano E. Insights into Ebola Virus VP35 and VP24 Interferon Inhibitory Functions and their Initial Exploitation as Drug Targets. Infect Disord Drug Targets 2020; 19:362-374. [PMID: 30468131 DOI: 10.2174/1871526519666181123145540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Upon viral infection, the interferon (IFN) system triggers potent antiviral mechanisms limiting viral growth and spread. Hence, to sustain their infection, viruses evolved efficient counteracting strategies to evade IFN control. Ebola virus (EBOV), member of the family Filoviridae, is one of the most virulent and deadly pathogen ever faced by humans. The etiological agent of the Ebola Virus Disease (EVD), EBOV can be undoubtedly considered the perfect example of a powerful inhibitor of the host organism immune response activation. Particularly, the efficacious suppression of the IFN cascade contributes to disease progression and severity. Among the EBOVencoded proteins, the Viral Proteins 35 (VP35) and 24 (VP24) are responsible for the EBOV extreme virulence, representing the core of such inhibitory function through which EBOV determines its very effective shield to the cellular immune defenses. VP35 inhibits the activation of the cascade leading to IFN production, while VP24 inhibits the activation of the IFN-stimulated genes. A number of studies demonstrated that both VP35 and VP24 is validated target for drug development. Insights into the structural characteristics of VP35 and VP24 domains revealed crucial pockets exploitable for drug development. Considered the lack of therapy for EVD, restoring the immune activation is a promising approach for drug development. In the present review, we summarize the importance of VP35 and VP24 proteins in counteracting the host IFN cellular response and discuss their potential as druggable viral targets as a promising approach toward attenuation of EBOV virulence.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy.,Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
29
|
Hamedi A, Sakhteman A, Moheimani SM. An In Silico Approach Towards Investigation of Possible Effects of Essential Oils Constituents on Receptors Involved in Cardiovascular Diseases (CVD) and Associated Risk Factors (Diabetes Mellitus and Hyperlipidemia). Cardiovasc Hematol Agents Med Chem 2020; 19:32-42. [PMID: 32386501 DOI: 10.2174/1871524920666200510013039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
AIM Aromatherapy products, hydrosol beverages and distillates containing essential oils are widely used for cardiovascular conditions. Investigation of the possible activity of their major constituents with the cardiovascular-related receptors may lead to developing new therapeutics. It also may prevent unwanted side effects and drug-herb interactions. MATERIALS AND METHODS A list of 243 volatile molecules (mainly monoterpene and sesquiterpene) was prepared from a literature survey in Scopus and PubMed (2000-2019) on hydrosols and essential oils which are used for Cardiovascular Diseases (CVD) and its risk factors (diabetes mellitus and hyperlipidemia). The PDB files of the receptors (229 native PDB files) included alpha-glucosidase, angiotensin- converting enzymes, beta-2 adrenergic receptor, glucocorticoid, HMG-CoA reductase, insulin, mineralocorticoid, potassium channel receptors and peroxisome proliferator-activated receptoralpha, were downloaded from Protein Data Bank. An in silico study using AutoDock 4.2 and Vina in parallel mode was performed to investigate possible interaction of the molecules with the receptors. Drug likeliness of the most active molecules was investigated using DruLiTo software. RESULTS Spathulenol, bisabolol oxide A, bisabolone oxide, bergapten, bergamotene, dill apiole, pcymene, methyl jasmonate, pinocarveol, intermedeol, α-muurolol, S-camphor, ficusin, selinen-4-ol, iso-dihydrocarveol acetate, 3-thujanone, linanool oxide and cadinol isomers made a better interaction with some of the named receptors. All of the named molecules had an acceptable dug likeliness except for α-bergamotene. In addition, all of the named molecules had the ability to pass the bloodbrain barrier and it is possible to produce unwanted side effects. CONCLUSION Some ingredients of essential oils might be active on cardiovascular-related receptors.
Collapse
Affiliation(s)
- Azadeh Hamedi
- Department of Pharmacognosy, Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
30
|
Monteiro AFM, de Oliveira Viana J, Muratov E, Scotti MT, Scotti L. In Silico Studies against Viral Sexually Transmitted Diseases. Curr Protein Pept Sci 2020; 20:1135-1150. [PMID: 30854957 DOI: 10.2174/1389203720666190311142747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 01/02/2023]
Abstract
Sexually Transmitted Diseases (STDs) refer to a variety of clinical syndromes and infections caused by pathogens that can be acquired and transmitted through sexual activity. Among STDs widely reported in the literature, viral sexual diseases have been increasing in a number of cases globally. This emphasizes the need for prevention and treatment. Among the methods widely used in drug planning are Computer-Aided Drug Design (CADD) studies and molecular docking which have the objective of investigating molecular interactions between two molecules to better understand the three -dimensional structural characteristics of the compounds. This review will discuss molecular docking studies applied to viral STDs, such as Ebola virus, Herpes virus and HIV, and reveal promising new drug candidates with high levels of specificity to their respective targets.
Collapse
Affiliation(s)
- Alex F M Monteiro
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Jessika de Oliveira Viana
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Engene Muratov
- Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina, Beard Hall 301, CB#7568, Chapel Hill, NC, 27599, United States
| | - Marcus T Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil
| | - Luciana Scotti
- Program of Natural and Synthetic Bioactive Products (PgPNSB), Health Sciences Center, Federal University of Paraíba, Joao Pessoa-PB, Brazil.,Teaching and Research Management - University Hospital, Federal University of Paraíba, Campus I, 58051-900, João Pessoa-PB, Brazil
| |
Collapse
|
31
|
Mirza MU, Vanmeert M, Ali A, Iman K, Froeyen M, Idrees M. Perspectives towards antiviral drug discovery against Ebola virus. J Med Virol 2019; 91:2029-2048. [PMID: 30431654 PMCID: PMC7166701 DOI: 10.1002/jmv.25357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11 500 deaths according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays one of the most deadly infectious diseases. However, no Food and Drug Administration‐approved Ebola drugs or vaccines are available yet with the mainstay of therapy being supportive care. The high fatality rate and absence of effective treatment or vaccination make Ebola virus a category‐A biothreat pathogen. Fortunately, a series of investigational countermeasures have been developed to control and prevent this global threat. This review summarizes the recent therapeutic advances and ongoing research progress from research and development to clinical trials in the development of small‐molecule antiviral drugs, small‐interference RNA molecules, phosphorodiamidate morpholino oligomers, full‐length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the search for effective countermeasures against EVD with additional focus on the interplay between available in silico prediction methods and their evidenced potential in antiviral drug discovery.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory (BIRL), Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Muhammad Idrees
- Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.,Hazara University Mansehra, Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
32
|
Kwofie SK, Broni E, Teye J, Quansah E, Issah I, Wilson MD, Miller WA, Tiburu EK, Bonney JHK. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput Biol Med 2019; 113:103414. [PMID: 31536833 DOI: 10.1016/j.compbiomed.2019.103414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of Ebola virus disease (EVD) is devastating with concomitant high fatalities. Currently, various drugs and vaccines are at different stages of development, corroborating the need to identify new therapeutic molecules. The VP24 protein of the Ebola virus (EBOV) plays a key role in the pathology and replication of the EVD. The VP24 protein interferes with the host immune response to viral infections and promotes nucleocapsid formation, thus making it a viable drug target. This study sought to identify putative lead compounds from the African flora with potential to inhibit the activity of the EBOV VP24 protein using pharmacoinformatics and molecular docking. METHODS An integrated library of 7675 natural products originating from Africa obtained from the AfroDB and NANPDB databases, as well as known inhibitors were screened against VP24 (PDB ID: 4M0Q) utilising AutoDock Vina after energy minimization using GROMACS. The top 19 compounds were physicochemically and pharmacologically profiled using ADMET Predictor™, SwissADME and DataWarrior. The mechanisms of binding between the molecules and EBOV VP24 were characterised using LigPlot+. The performance of the molecular docking was evaluated by generating a receiver operating characteristic (ROC) by screening known inhibitors and decoys against EBOV VP24. The prediction of activity spectra for substances (PASS) and machine learning-based Open Bayesian models were used to predict the anti-viral and anti-Ebola activity of the molecules, respectively. RESULTS Four natural products, namely, ZINC000095486070, ZINC000003594643, ZINC000095486008 and sarcophine were found to be potential EBOV VP24-inhibitiory molecules. The molecular docking results showed that ZINC000095486070 had high binding affinity of -9.7 kcal/mol with EBOV VP24, which was greater than those of the known VP24-inhibitors used as standards in the study including Ouabain, Nilotinib, Clomiphene, Torimefene, Miglustat and BCX4430. The area under the curve of the generated ROC for evaluating the performance of the molecular docking was 0.77, which was considered acceptable. The predicted promising molecules were also validated using induced-fit docking with the receptor using Schrödinger and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The molecules had better binding mechanisms and were pharmacologically profiled to have plausible efficacies, negligible toxicity as well as suitable for designing anti-Ebola scaffolds. ZINC000095486008 and sarcophine (NANPDB135) were predicted to possess anti-viral activity, while ZINC000095486070 and ZINC000003594643 to be anti-Ebola compounds. CONCLUSION The identified compounds are potential inhibitors worthy of further development as EBOV biotherapeutic agents. The scaffolds of the compounds could also serve as building blocks for designing novel Ebola inhibitors.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA.
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Joshua Teye
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Erasmus Quansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Ibrahim Issah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Whelton A Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Elvis K Tiburu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Joseph H K Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
33
|
Sulaiman KO, Kolapo TU, Onawole AT, Islam MA, Adegoke RO, Badmus SO. Molecular dynamics and combined docking studies for the identification of Zaire ebola virus inhibitors. J Biomol Struct Dyn 2018; 37:3029-3040. [PMID: 30058446 DOI: 10.1080/07391102.2018.1506362] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from -7.9 to -8.9 kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50 ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kazeem O Sulaiman
- a Department of Chemistry , University of Saskatchewan , Saskatoon , Saskatchewan , Canada
| | - Temitope U Kolapo
- b Department of Veterinary Parasitology and Entomology , University of Ilorin , Ilorin , Nigeria.,c Department of Veterinary Microbiology , University of Saskatchewan , Saskatchewan , Canada
| | | | - Md Ataul Islam
- e Department of Chemical Pathology Faculty of Health Sciences , University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,f School of Health Sciences , University of Kwazulu-Natal Westville Campus , Durban , South Africa
| | - Rukayat O Adegoke
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Suaibu O Badmus
- g Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| |
Collapse
|
34
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
35
|
Skariyachan S, Manjunath M, Bachappanavar N. Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii - insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn 2018. [PMID: 29529934 DOI: 10.1080/07391102.2018.1451387] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii, an opportunistic pathogen, has become multi-drug resistant (MDR) to major classes of antibacterial and poses grave threat to public health. The current study focused to screen novel phytotherapeutics against prioritised targets of Acinetobacter baumannii by computational investigation. Fourteen potential drug targets were screened based on their functional role in various biosynthetic pathways and the 3D structures of 9 targets were retrieved from Protein Data Bank and others were computationally predicted. By extensive literature survey, 104 molecules from 48 herbal sources were screened and subjected to virtual screening. Ten clinical isolates of A. baumannii were tested for antibiotic susceptibility towards clinafloxacin, imipenem and polymyxin-E. Computational screening suggested that Ajmalicine ((19α)-16, 17-didehydro-19-methyloxayohimban-16-carboxylic acid methyl ester from Rauwolfia serpentina), Strictamin (Akuammilan-17-oic acid methyl ester from Alstonia scholaris) and Limonin (7, 16-dioxo-7, 16-dideoxylimondiol from Citrus sps) exhibited promising binding towards multiple drug targets of A. baumannii in comparison with the binding between standard drugs and their targets. Limonin displayed promising binding potential (binding energy -9.8 kcal/mol) towards diaminopimelate epimerase (DapF) and UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA). Ajmalicine and Strictamin demonstrated good binding potential (-9.5, -8.5 kcal/mol, respectively) towards MurA and shikimate dehydrogenase (-7.8 kcal/mol). Molecular dynamic simulations further validated the docking results. In vitro assay suggested that the tested isolates exhibited resistance to clinafloxacin, imipenem and polymyxin-E and the herbal preparations (crude extract) demonstrated a significant antibacterial potential (p ≤ .05). The study suggests that the aforementioned lead candidates and targets can be used for structure-based drug screening towards MDR A. baumannii.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Meghna Manjunath
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| | - Nikhil Bachappanavar
- a Department of Biotechnology Engineering , Dayananda Sagar Institutions , Bengaluru 560 078 , Karnataka , India.,b Visvesvaraya Technological University , Belagavi , India
| |
Collapse
|
36
|
Filovirus proteins for antiviral drug discovery: Structure/function bases of the replication cycle. Antiviral Res 2017; 141:48-61. [PMID: 28192094 DOI: 10.1016/j.antiviral.2017.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/26/2022]
Abstract
Filoviruses are important pathogens that cause severe and often fatal hemorrhagic fever in humans, for which no approved vaccines and antiviral treatments are yet available. In an earlier article (Martin et al., Antiviral Research, 2016), we reviewed the role of the filovirus surface glycoprotein in replication and as a target for drugs and vaccines. In this review, we focus on recent findings on the filovirus replication machinery and how they could be used for the identification of new therapeutic targets and the development of new antiviral compounds. First, we summarize the recent structural and functional advances on the molecules involved in filovirus replication/transcription cycle, particularly the NP, VP30, VP35 proteins, and the "large" protein L, which harbors the RNA-dependent RNA polymerase (RdRp) and mRNA capping activities. These proteins are essential for viral mRNA synthesis and genome replication, and consequently they constitute attractive targets for drug design. We then describe how these insights into filovirus replication mechanisms and the structure/function characterization of the involved proteins have led to the development of new and innovative antiviral strategies that may help reduce the filovirus disease case fatality rate through post-exposure or prophylactic treatments.
Collapse
|
37
|
Ganugapati J, Akash S. Multi-template homology based structure prediction and molecular docking studies of protein ‘L’ of Zaire ebolavirus (EBOV). INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
38
|
Integrated Computational Approach for Virtual Hit Identification against Ebola Viral Proteins VP35 and VP40. Int J Mol Sci 2016; 17:ijms17111748. [PMID: 27792169 PMCID: PMC5133775 DOI: 10.3390/ijms17111748] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/18/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022] Open
Abstract
The Ebola virus (EBOV) has been recognised for nearly 40 years, with the most recent EBOV outbreak being in West Africa, where it created a humanitarian crisis. Mortalities reported up to 30 March 2016 totalled 11,307. However, up until now, EBOV drugs have been far from achieving regulatory (FDA) approval. It is therefore essential to identify parent compounds that have the potential to be developed into effective drugs. Studies on Ebola viral proteins have shown that some can elicit an immunological response in mice, and these are now considered essential components of a vaccine designed to protect against Ebola haemorrhagic fever. The current study focuses on chemoinformatic approaches to identify virtual hits against Ebola viral proteins (VP35 and VP40), including protein binding site prediction, drug-likeness, pharmacokinetic and pharmacodynamic properties, metabolic site prediction, and molecular docking. Retrospective validation was performed using a database of non-active compounds, and early enrichment of EBOV actives at different false positive rates was calculated. Homology modelling and subsequent superimposition of binding site residues on other strains of EBOV were carried out to check residual conformations, and hence to confirm the efficacy of potential compounds. As a mechanism for artefactual inhibition of proteins through non-specific compounds, virtual hits were assessed for their aggregator potential compared with previously reported aggregators. These systematic studies have indicated that a few compounds may be effective inhibitors of EBOV replication and therefore might have the potential to be developed as anti-EBOV drugs after subsequent testing and validation in experiments in vivo.
Collapse
|