1
|
Dias-Lopes G, Xavier Cruz SM, Santini Pereira BA, Zabala-Peñafiel A, Alves CR. Molecular and biochemical approaches of the trypanothione system in Leishmania spp.: A key player in parasite resistance to antimonial therapy. Biochimie 2025; 234:40-47. [PMID: 40147582 DOI: 10.1016/j.biochi.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The trypanothione system is a crucial antioxidant defense mechanism in Leishmania spp. The enzymes involved, including trypanothione reductase (TR), trypanothione synthetase (TS), tryparedoxin (TXN) and tryparedoxin peroxidase (TXNPx) are essential for maintaining the redox balance. This system plays a fundamental role in the biology of Leishmania spp., contributing to parasite resistance against metalloid-based treatments, such as trivalent antimony (Sb3+). The mechanisms underlying this resistance, particularly those linked to the functionality of the trypanothione system, have garnered increasing interest. This review prioritizes studies conducted with clinical isolates of Leishmania spp. that evaluated gene expression, protein abundance, and enzyme activity to determine how variations in trypanothione-related mechanisms influence their clinical outcomes. Additionally, complementary strategy involving different protocols to determine intracellular non-protein thiols have further enrich the information into these studies. Notably, the evidence gathered here highlights that studies have focused on only four Leishmania spp. with just one belonging to the Viannia subgenus. Several approaches have been used to determine TR and TXNPx enzyme activity in parasite lysates, supporting their use as tools for studying resistant phenotypes. Additionally, the assessment of TR, TXNPx and TS activities has been applied in kinetic studies for screening of inhibitor compounds. The functional insights presented herein may aid in elucidating the basis of parasite resistance and guide the development of more effective therapeutic strategies against leishmaniasis in its different clinical forms.
Collapse
Affiliation(s)
- Geovane Dias-Lopes
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Departamento de Ciências Biomédicas e Saúde, Cabo Frio, RJ, Brazil; Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil.
| | - Sara Maria Xavier Cruz
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil.
| | - Bernardo Acácio Santini Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil; Universidade Federal Fluminense, Departamento de Patologia, Faculdade de Medicina, Niterói, RJ, Brazil.
| | - Anabel Zabala-Peñafiel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Carlos Roberto Alves
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Grundmane A, Radchenko V, Ramogida CF. Chemistry of Antimony in Radiopharmaceutical Development: Unlocking the Theranostic Potential of Sb Isotopes. Chempluschem 2024; 89:e202400250. [PMID: 39048512 PMCID: PMC11639648 DOI: 10.1002/cplu.202400250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Antimony-119 (119Sb) holds promise for radiopharmaceutical therapy (RPT), emitting short-range Auger and conversion electrons that can deliver cytotoxic radiation on a cellular level. While it has high promise theoretically, experimental validation is necessary for 119Sb in vivo applications. Current 119Sb production and separation methods face robustness and compatibility challenges in radiopharmaceutical synthesis. Limited progress in chelator development hampers targeted experiments with 119Sb. This review compiles literature on the toxicological, biodistribution and redox properties of Sb, along with existing Sb complexes, evaluating their suitability for radiopharmaceuticals. Sb(III) is suggested as the preferred oxidation state for radiopharmaceutical elaboration due to its stability in vivo and lack of skeletal uptake. While Sb complexes with both hard and soft donor atoms can be achieved, Sb thiol complexes offer enhanced stability and compatibility with the desired Sb(III) oxidation state. For 119Sb to find application in RPT, scientists need to make discoveries and advancements in the areas of isotope production, and radiometal chelation. This review aims to guide future research towards harnessing the therapeutic potential of 119Sb in RPT.
Collapse
Affiliation(s)
- Aivija Grundmane
- Department of ChemistrySimon Fraser University8888 University DriveBurnaby, BCV5A 1S6Canada
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
| | - Valery Radchenko
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
- Department of ChemistryUniversity of British Columbia2036 Main MallVancouver, BCV6T 1Z1Canada
| | - Caterina F. Ramogida
- Department of ChemistrySimon Fraser University8888 University DriveBurnaby, BCV5A 1S6Canada
- Life Sciences DivisionTRIUMF4004 Wesbrook MallVancouver, BCV6T 2A3Canada
| |
Collapse
|
3
|
Bernardo L, Ibarra-Meneses AV, Douanne N, Corbeil A, Solana JC, Beaudry F, Carrillo E, Moreno J, Fernandez-Prada C. Potential selection of antimony and methotrexate cross-resistance in Leishmania infantum circulating strains. PLoS Negl Trop Dis 2024; 18:e0012015. [PMID: 38422164 DOI: 10.1371/journal.pntd.0012015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/12/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Visceral leishmaniasis (VL) resolution depends on a wide range of factors, including the instauration of an effective treatment coupled to a functional host immune system. Patients with a depressed immune system, like the ones receiving methotrexate (MTX), are at higher risk of developing VL and refusing antileishmanial drugs. Moreover, the alarmingly growing levels of antimicrobial resistance, especially in endemic areas, contribute to the increasing the burden of this complex zoonotic disease. PRINCIPAL FINDINGS To understand the potential links between immunosuppressants and antileishmanial drugs, we have studied the interaction of antimony (Sb) and MTX in a Leishmania infantum reference strain (LiWT) and in two L. infantum clinical strains (LiFS-A and LiFS-B) naturally circulating in non-treated VL dogs in Spain. The LiFS-A strain was isolated before Sb treatment in a case that responded positively to the treatment, while the LiFS-B strain was recovered from a dog before Sb treatment, with the dog later relapsing after the treatment. Our results show that, exposure to Sb or MTX leads to an increase in the production of reactive oxygen species (ROS) in LiWT which correlates with a sensitive phenotype against both drugs in promastigotes and intracellular amastigotes. LiFS-A was sensitive against Sb but resistant against MTX, displaying high levels of protection against ROS when exposed to MTX. LiFS-B was resistant to both drugs. Evaluation of the melting proteomes of the two LiFS, in the presence and absence of Sb and MTX, showed a differential enrichment of direct and indirect targets for both drugs, including common and unique pathways. CONCLUSION Our results show the potential selection of Sb-MTX cross-resistant parasites in the field, pointing to the possibility to undermine antileishmanial treatment of those patients being treated with immunosuppressant drugs in Leishmania endemic areas.
Collapse
Affiliation(s)
- Lorena Bernardo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Ana Victoria Ibarra-Meneses
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Noelie Douanne
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Audrey Corbeil
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francis Beaudry
- Département de Biomédecine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- Centre de recherche sur le cerveau et l'apprentissage (CIRCA), Université de Montréal, Montréal, Quebec, Canada
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, Spanish National Center for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Christopher Fernandez-Prada
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
- The Research Group on Infectious Diseases in Production Animals (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
4
|
Negreira GH, de Groote R, Van Giel D, Monsieurs P, Maes I, de Muylder G, Van den Broeck F, Dujardin J, Domagalska MA. The adaptive roles of aneuploidy and polyclonality in Leishmania in response to environmental stress. EMBO Rep 2023; 24:e57413. [PMID: 37470283 PMCID: PMC10481652 DOI: 10.15252/embr.202357413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Aneuploidy is generally considered harmful, but in some microorganisms, it can act as an adaptive mechanism against environmental stress. Here, we use Leishmania-a protozoan parasite with remarkable genome plasticity-to study the early steps of aneuploidy evolution under high drug pressure (using antimony or miltefosine as stressors). By combining single-cell genomics, lineage tracing with cellular barcodes, and longitudinal genome characterization, we reveal that aneuploidy changes under antimony pressure result from polyclonal selection of pre-existing karyotypes, complemented by further and rapid de novo alterations in chromosome copy number along evolution. In the case of miltefosine, early parasite adaptation is associated with independent point mutations in a miltefosine transporter gene, while aneuploidy changes only emerge later, upon exposure to increased drug levels. Therefore, polyclonality and genome plasticity are hallmarks of parasite adaptation, but the scenario of aneuploidy dynamics depends on the nature and strength of the environmental stress as well as on the existence of other pre-adaptive mechanisms.
Collapse
Affiliation(s)
- Gabriel H Negreira
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Robin de Groote
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Dorien Van Giel
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Pieter Monsieurs
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Ilse Maes
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | | | - Frederik Van den Broeck
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical ResearchKatholieke Universiteit LeuvenLeuvenBelgium
| | - Jean‐Claude Dujardin
- Molecular Parasitology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | | |
Collapse
|
5
|
Demicheli C, Vallejos VMR, Lanza JS, Ramos GS, Do Prado BR, Pomel S, Loiseau PM, Frézard F. Supramolecular assemblies from antimony(V) complexes for the treatment of leishmaniasis. Biophys Rev 2023; 15:751-765. [PMID: 37681109 PMCID: PMC10480371 DOI: 10.1007/s12551-023-01073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 09/09/2023] Open
Abstract
The pentavalent meglumine antimoniate (MA) is still a first-line drug in the treatment of leishmaniasis in several countries. As an attempt to elucidate its mechanism of action and develop new antimonial drugs with improved therapeutic profile, Sb(V) complexes with different ligands, including β-cyclodextrin (β-CD), nucleosides and non-ionic surfactants, have been studied. Interestingly, Sb(V) oxide, MA, its complex with β-CD, Sb(V)-guanosine complex and amphiphilic Sb(V) complexes with N-alkyl-N-methylglucamide, have shown marked tendency to self-assemble in aqueous solutions, forming nanoaggregates, hydrogel or micelle-like nanoparticles. Surprisingly, the resulting assemblies presented in most cases slow dissociation kinetics upon dilution and a strong influence of pH, which impacted on their pharmacokinetic and therapeutic properties against leishmaniasis. To explain this unique property, we raised the hypothesis that multiple pnictogen bonds could contribute to the formation of these assemblies and their kinetic of dissociation. The present article reviews our current knowledge on the structural organization and physicochemical characteristics of Sb-based supramolecular assemblies, as well as their pharmacological properties and potential for treatment of leishmaniasis. This review supports the feasibility of the rational design of new Sb(V) complexes with supramolecular assemblies for the safe and effective treatment of leishmaniasis.
Collapse
Affiliation(s)
- Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | | | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Bruno R. Do Prado
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| | - Sébastien Pomel
- Faculty of Pharmacy, Antiparasite Chemotherapy (PARACHEM), UMR 8076 CNRS BioCIS, University Paris-Saclay, 91400 Orsay, France
| | - Philippe M. Loiseau
- Faculty of Pharmacy, Antiparasite Chemotherapy (PARACHEM), UMR 8076 CNRS BioCIS, University Paris-Saclay, 91400 Orsay, France
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
6
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023; 11:microorganisms11010228. [PMID: 36677520 PMCID: PMC9860978 DOI: 10.3390/microorganisms11010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite's basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies.
Collapse
|
8
|
Panecka-Hofman J, Poehner I, Wade R. Anti-trypanosomatid structure-based drug design - lessons learned from targeting the folate pathway. Expert Opin Drug Discov 2022; 17:1029-1045. [PMID: 36073204 DOI: 10.1080/17460441.2022.2113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trypanosomatidic parasitic infections of humans and animals caused by Trypanosoma brucei, Trypanosoma cruzi, and Leishmania species pose a significant health and economic burden in developing countries. There are few effective and accessible treatments for these diseases, and the existing therapies suffer from problems such as parasite resistance and side effects. Structure-based drug design (SBDD) is one of the strategies that has been applied to discover new compounds targeting trypanosomatid-borne diseases. AREAS COVERED We review the current literature (mostly over the last 5 years, searched in PubMed database on Nov 11th 2021) on the application of structure-based drug design approaches to identify new anti-trypanosomatidic compounds that interfere with a validated target biochemical pathway, the trypanosomatid folate pathway. EXPERT OPINION The application of structure-based drug design approaches to perturb the trypanosomatid folate pathway has successfully provided many new inhibitors with good selectivity profiles, most of which are natural products or their derivatives or have scaffolds of known drugs. However, the inhibitory effect against the target protein(s) often does not translate to anti-parasitic activity. Further progress is hampered by our incomplete understanding of parasite biology and biochemistry, which is necessary to complement SBDD in a multiparameter optimization approach to discovering selective anti-parasitic drugs.
Collapse
Affiliation(s)
- Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5a, 02-097 Warsaw, Poland
| | - Ina Poehner
- School of Pharmacy, University of Eastern Finland, Kuopio, Yliopistonranta 1C, PO Box 1627, FI-70211 Kuopio, Finland
| | - Rebecca Wade
- Center for Molecular Biology (ZMBH), Heidelberg University, Im Neuenheimer Feld 282, Heidelberg 69120, Germany.,Heidelberg Institute for Theoretical Studies (HITS), Schloß-Wolfsbrunnenweg 35, Heidelberg 69118, Germany.,DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg 69120, Germany
| |
Collapse
|
9
|
Nanoassemblies from Amphiphilic Sb Complexes Target Infection Sites in Models of Visceral and Cutaneous Leishmaniases. Pharmaceutics 2022; 14:pharmaceutics14081743. [PMID: 36015369 PMCID: PMC9412331 DOI: 10.3390/pharmaceutics14081743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
This work aims to evaluate whether nanoassemblies (NanoSb) made from antimony(V) complexes with octanoyl-N-methylglucamide (SbL8) or decanoyl-N-methylglucamide (SbL10) would effectively target the infection sites in visceral and cutaneous leishmaniases (VL and CL). NanoSb were investigated regarding stability at different pHs, accumulation of Sb in the macrophage host cell and liver, and in vitro and in vivo activities in models of leishmaniasis. The kinetic stability assay showed that NanoSb are stable at neutral pH, but release incorporated lipophilic substance after conformational change in media that mimic the gastric fluid and the parasitophorous vacuole. NanoSb promoted greater accumulation of Sb in macrophages and in the liver of mice after parenteral administration, when compared to conventional antimonial Glucantime®. SbL10 was much more active than Glucantime® against intramacrophage Leishmania amastigotes and less cytotoxic than SbL8 against macrophages. The in vitro SbL10 activity was further enhanced with co-incorporated miltefosine. NanoSb showed high antileishmanial activity in the L. donovani murine VL after parenteral administration and moderate activity in the L. amazonensis murine CL after topical treatment. This study supports the ability of NanoSb to effectively deliver a combination of Sb and co-incorporated drug to host cell and infected tissues, in a better way than Glucantime® does.
Collapse
|
10
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Tang Y, Song H, Wang Z, Xiao S, Xiang X, Zhan H, Wu L, Wu J, Xing Y, Tan Y, Liang Y, Yan N, Li Y, Li J, Wu J, Zheng D, Jia Y, Chen Z, Li Y, Zhang Q, Zhang J, Zeng H, Tao W, Liu F, Wu Y, Lu M. Repurposing antiparasitic antimonials to noncovalently rescue temperature-sensitive p53 mutations. Cell Rep 2022; 39:110622. [PMID: 35417717 DOI: 10.1016/j.celrep.2022.110622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
The tumor suppressor p53 is inactivated by over hundreds of heterogenous mutations in cancer. Here, we purposefully selected phenotypically reversible temperature-sensitive (TS) p53 mutations for pharmacological rescue with thermostability as the compound-screening readout. This rational screening identified antiparasitic drug potassium antimony tartrate (PAT) as an agent that can thermostabilize the representative TS mutant p53-V272M via noncovalent binding. PAT met the three basic criteria for a targeted drug: availability of a co-crystal structure, compatible structure-activity relationship, and intracellular target specificity, consequently exhibiting antitumor activity in a xenograft mouse model. At the antimony dose in clinical antiparasitic therapy, PAT effectively and specifically rescued p53-V272M in patient-derived primary leukemia cells in single-cell RNA sequencing. Further scanning of 815 frequent p53-missense mutations identified 65 potential PAT-treatable mutations, most of which were temperature sensitive. These results lay the groundwork for repurposing noncovalent antiparasitic antimonials for precisely treating cancers with the 65 p53 mutations.
Collapse
Affiliation(s)
- Yigang Tang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinrong Xiang
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Lili Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangfei Xing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ni Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuntong Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunchuan Jia
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiming Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yunqi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianqian Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Wei Tao
- Department of Hematology, The People's Hospital of Jianyang City, Jianyang 641400, Sichuan, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu Wu
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
12
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
13
|
Olías-Molero AI, de la Fuente C, Cuquerella M, Torrado JJ, Alunda JM. Antileishmanial Drug Discovery and Development: Time to Reset the Model? Microorganisms 2021; 9:2500. [PMID: 34946102 PMCID: PMC8703564 DOI: 10.3390/microorganisms9122500] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania species. The disease affects humans and animals, particularly dogs, provoking cutaneous, mucocutaneous, or visceral processes depending on the Leishmania sp. and the host immune response. No vaccine for humans is available, and the control relies mainly on chemotherapy. However, currently used drugs are old, some are toxic, and the safer presentations are largely unaffordable by the most severely affected human populations. Moreover, its efficacy has shortcomings, and it has been challenged by the growing reports of resistance and therapeutic failure. This manuscript presents an overview of the currently used drugs, the prevailing model to develop new antileishmanial drugs and its low efficiency, and the impact of deconstruction of the drug pipeline on the high failure rate of potential drugs. To improve the predictive value of preclinical research in the chemotherapy of leishmaniasis, several proposals are presented to circumvent critical hurdles-namely, lack of common goals of collaborative research, particularly in public-private partnership; fragmented efforts; use of inadequate surrogate models, especially for in vivo trials; shortcomings of target product profile (TPP) guides.
Collapse
Affiliation(s)
- Ana Isabel Olías-Molero
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Concepción de la Fuente
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Montserrat Cuquerella
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| | - Juan J. Torrado
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - José M. Alunda
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.I.O.-M.); (C.d.l.F.); (M.C.)
| |
Collapse
|
14
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
15
|
Castillo-Castañeda A, Herrera G, Ayala MS, Fuya P, Ramírez JD. Spatial and Temporal Variability of Visceral Leishmaniasis in Colombia, 2007 to 2018. Am J Trop Med Hyg 2021; 105:144-155. [PMID: 34232908 DOI: 10.4269/ajtmh.21-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/26/2021] [Indexed: 11/07/2022] Open
Abstract
Visceral leishmaniasis (VL) is a neglected tropical disease associated with poverty and is endemic in 56 countries worldwide. Brazil, Venezuela, and Colombia are the most affected countries in South America. In Colombia, the National Public Health Surveillance System (SIVIGILA) consolidates epidemiological information and monitors all VL cases nationwide. However, to date, no studies have investigated the occurrence of VL in Colombia using metadata analysis. We studied the demographic data, the spatial and temporal distribution of VL cases, and the association with vector distribution of Leishmania species in Colombia from 2007 to 2018. We found 306 VL cases reported to SIVIGILA for this period, with a coverage of 25.5 cases/year, and a mortality of 2.28% (seven deaths). The highest number of confirmed cases (N = 52) occurred in 2007; the lowest (N = 9) occurred in 2012. The cases were reported mainly in children (< 7 years) affiliated with the subsidized health regimen. Regarding the geographic distribution, the cases were reported by 42 municipalities distributed in 10 departments. The occurrence of VL cases toward the northeast of Colombia, and the distribution of vectors, such as Lutzomyia longipalpis and Lu. evansi, may be changing the panorama of VL in the country. We conclude that VL, mainly in recent years, shows a temporal and spatial variability associated with the occurrence of cases in new settings. Our findings increase our understanding and knowledge of this disease, and suggest the need to monitor and prioritize areas with changes in geographic expansion to improve prevention and control actions in the country.
Collapse
Affiliation(s)
- Adriana Castillo-Castañeda
- 1Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- 1Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Martha S Ayala
- 2Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Fuya
- 3Grupo de Entomología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan David Ramírez
- 1Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
16
|
Medina J, Cruz-Saavedra L, Patiño LH, Muñoz M, Ramírez JD. Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony. Parasit Vectors 2021; 14:419. [PMID: 34419127 PMCID: PMC8380399 DOI: 10.1186/s13071-021-04915-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.
Collapse
Affiliation(s)
- Julián Medina
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología- UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
17
|
Tunes LG, Ascher DB, Pires DEV, Monte-Neto RL. The mutation G133D on Leishmania guyanensis AQP1 is highly destabilizing as revealed by molecular modeling and hypo-osmotic shock assay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183682. [PMID: 34175297 DOI: 10.1016/j.bbamem.2021.183682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
The Leishmania aquaglyceroporin 1 (AQP1) plays an important role in osmoregulation and antimony (Sb) uptake, being determinant for resistance to antimony. We have previously demonstrated that G133D mutation on L. guyanensis AQP1 (LgAQP1) leads to reduced Sb uptake. Here, we investigated the effects of G133D mutation on LgAQP1 structure, associated with Sb uptake and alterations in osmoregulation capacity. High confidence molecular models of wild-type LgAQP1 as well as the LgAQP1::G133D mutant were constructed and optimized via comparative homology modeling. Computational methods from the mCSM platform were used to evaluate the effects on protein stability and on its ability to bind to glycerol. Functional validation of the disruptive effect of the mutation on LgAQP1 was done by challenging the parasites with hypo-osmotic chock. Glycine 133 is on transmembrane helix 3, buried in the membrane in both open and closed conformation. G133D mutation was predicted to be highly destabilizing, as it alters the helical bundling arrangement in order to accommodate the aspartic acid side chain. The shift in helices also resulted in fewer favorable contacts with glycerol in the channel, which would explain the reduced affinity for similar small molecules as SbO3. Under hypo-osmotic condition, L. guyanensis AQP1G133D presented a 3-fold increase in cellular volume and pronounced delay to recover osmosis homeostasis when compared to the wild-type, a profile that was enhanced in LgAQP1-/- mutants. In conclusion, G133D is a highly disruptive mutation that will destabilize the monomer, compromise tetramer formation and alter pore conformation, leading to reduced Sb uptake and deficient osmoregulation.
Collapse
Affiliation(s)
- Luiza G Tunes
- Biotechnology Applied to Pathogens Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz Minas), Av. Augusto de Lima, 1715, Belo Horizonte 30190-009, MG, Brazil; The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-8511 Dallas, TX, USA.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3052, Melbourne, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, VIC 3004, Melbourne, Australia.
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, The University of Melbourne, Bio21 Institute, 30 Flemington Rd, Parkville, VIC 3052, Melbourne, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, VIC 3004, Melbourne, Australia; School of Computing and Information Systems, The University of Melbourne, Doug McDonell Building, VIC 3010, Parkville, Melbourne, Australia.
| | - Rubens L Monte-Neto
- Biotechnology Applied to Pathogens Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz Minas), Av. Augusto de Lima, 1715, Belo Horizonte 30190-009, MG, Brazil.
| |
Collapse
|
18
|
Tang N, Song X, Yang T, Qiu R, Yin SF. Synthesis and structure of the bimetallic organoantimony catalyst and its application in diastereoselective direct Mannich reaction as facile separation catalytic system. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Neumann LSM, Dias AHS, Skaf MS. Molecular Modeling of Aquaporins from Leishmania major. J Phys Chem B 2020; 124:5825-5836. [PMID: 32551664 DOI: 10.1021/acs.jpcb.0c03550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aquaporins are membrane proteins responsible for permeating water, ions, dissolved gases, and other small molecular weight compounds through the protective cell membranes of living organisms. These proteins have been gaining increased importance as targets for treating a variety of parasitic diseases, since they control key physiological processes in the life cycle of parasitic protozoans, such as the uptake of nutrients, release of metabolites, and alleviation of osmotic stress. In this work, we use homology modeling to build three-dimensional structures for the four main aquaporins encoded and expressed by Leishmania major, a protozoan that causes leishmaniasis and affects millions of people worldwide. Physico-chemical properties of the proposed models for LmAQP1, LmAQPα, LmAQPβ, and LmAQPγ are then investigated using molecular dynamics simulations and the reference interaction site model (RISM) molecular theory of solvation. Pore characteristics, water permeation, and potential of mean force across the AQP channels for water, methanol, urea, ammonia, and carbon dioxide are examined and compared with results obtained for a protozoan (Plasmodium falciparum) aquaporin for which a crystal structure is available.
Collapse
Affiliation(s)
- Lucas S M Neumann
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Artur H S Dias
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| | - Munir S Skaf
- Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas, Campinas, SP 13084-862, Brazil
| |
Collapse
|
20
|
Bar Routaray C, Bhor R, Bai S, Kadam NS, Jagtap S, Doshi PJ, Sundar S, Sawant S, Kulkarni MJ, Pai K. SWATH-MS based quantitative proteomics analysis to evaluate the antileishmanial effect of Commiphora wightii- Guggul and Amphotericin B on a clinical isolate of Leishmania donovani. J Proteomics 2020; 223:103800. [DOI: 10.1016/j.jprot.2020.103800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
|
21
|
Mirzaee M, Semnani S, Roshandel G, Nejabat M, Hesari Z, Joshaghani H. Strontium and antimony serum levels in healthy individuals living in high- and low-risk areas of esophageal cancer. J Clin Lab Anal 2020; 34:e23269. [PMID: 32319138 PMCID: PMC7370749 DOI: 10.1002/jcla.23269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023] Open
Abstract
Background It has been shown there is an upward trend for strontium (Sr) and antimony (Sb) levels from low‐risk (LR) to high‐risk (HR) areas of etiology of esophageal cancer in water, soil, and grains grown in Golestan province. In the present study, the serum levels of Sr and Sb were determined in healthy individuals living in these areas. Methods This cross‐sectional study was performed on fasting blood serum of adult healthy individuals collected by cluster sampling. Subjects were divided into two groups, those living in either HR or LR areas. Strontium and antimony serum levels were measured using a graphite furnace atomic absorption spectroscopy. Results A total of 200 volunteers were enrolled from which 96 persons (48%) and 104 persons (52%) were from either HR or LR areas, respectively. The sex distribution was 40.9% male and 59.1% female, and the average age of enrolled people was 50.9 years. The average strontium levels were 30.44 ± 4.05 and 30.29 ± 3.74 μg/L in LR and HR, respectively. It also has been shown the average antimony levels were 15.21 ± 3.40, 14.81 ± 3.17, 15.13 ± 3.62, and 15.07 ± 3.62 μg/L in LR, HR, urban, and rural populations, respectively. Conclusion The serum levels of strontium and antimony were not significantly different in healthy adults living in high‐ and low‐risk areas of esophageal cancer. However, the average antimony serum levels in Golestan Province were above the reference interval in different countries.
Collapse
Affiliation(s)
- Majid Mirzaee
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahryar Semnani
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - GholamReza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamidreza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
22
|
Environmental Conditions May Shape the Patterns of Genomic Variations in Leishmania panamensis. Genes (Basel) 2019; 10:genes10110838. [PMID: 31652919 PMCID: PMC6896075 DOI: 10.3390/genes10110838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/23/2022] Open
Abstract
Due to the absence of transcriptional regulation of gene expression in Leishmania parasites, it is now well accepted that several forms of genomic variations modulate the levels of critical proteins through changes in gene dosage. We previously observed many of these variations in our reference laboratory strain of L. panamensis (PSC-1 strain), including chromosomes with an increased somy and the presence of a putative linear minichromosome derived from chromosome 34. Here, we compared the previously described genomic variations with those occurring after exposure of this strain to increasing concentrations of trivalent antimony (SbIII), as well as those present in two geographically unrelated clinical isolates of L. panamensis. We observed changes in the somy of several chromosomes, amplifications of several chromosomal regions, and copy number variations in gene arrays after exposure to SbIII. Occurrence of amplifications potentially beneficial for the Sb-resistant phenotype appears to be associated with the loss of other forms of amplification, such as the linear minichromosome. In contrast, we found no evidence of changes in somy or amplification of relatively large chromosomal regions in the clinical isolates. In these isolates, the predominant amplifications appear to be those that generate genes arrays; however, in many cases, the amplified arrays have a notably higher number of copies than those from the untreated and Sb-treated laboratory samples.
Collapse
|
23
|
Patino LH, Muskus C, Ramírez JD. Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasit Vectors 2019; 12:348. [PMID: 31300064 PMCID: PMC6626383 DOI: 10.1186/s13071-019-3603-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background In the last decade, resistance to antimonials has become a serious problem due to the emergence of drug-resistant strains. Therefore, understanding the mechanisms used by Leishmania parasites to survive under drug pressure is essential, particularly for species of medical-veterinary importance such as L. amazonensis. Methods Here, we used RNA-seq technology to analyse transcriptome profiles and identify global changes in gene expression between antimony-resistant and -sensitive L. amazonensis promastigotes. Results A total of 723 differentially expressed genes were identified between resistant and sensitive lines. Comparative transcriptomic analysis revealed that genes encoding proteins involved in metabolism (fatty acids) and stress response, as well as those associated with antimony resistance in other Leishmania species, were upregulated in the antimony-resistant line. Most importantly, we observed upregulation of genes encoding autophagy proteins, suggesting that in the presence of trivalent stibogluconate (SbIII) L. amazonensis can activate these genes either as a survival strategy or to induce cell death, as has been observed in other parasites. Conclusions This work identified global transcriptomic changes in an in vitro-adapted strain in response to SbIII. Our results provide relevant information to continue understanding the mechanism used by parasites of the subgenus Leishmania (L. amazonensis) to generate an antimony-resistant phenotype. Electronic supplementary material The online version of this article (10.1186/s13071-019-3603-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
24
|
Major changes in chromosomal somy, gene expression and gene dosage driven by Sb III in Leishmania braziliensis and Leishmania panamensis. Sci Rep 2019; 9:9485. [PMID: 31263131 PMCID: PMC6603004 DOI: 10.1038/s41598-019-45538-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Leishmania braziliensis and Leishmania panamensis are two species clinically and epidemiologically important, among others because of their relative resistance to first-line drugs (antimonials). The precise mechanism underlying the ability of these species to survive antimony treatment remains unknown. Therefore, elucidating the pathways mediating drug resistance is essential. We herein experimentally selected resistance to trivalent antimony (SbIII) in the reference strains of L. braziliensis (MHOM/BR75/M2904) and L. panamensis (MHOM/COL/81L13) and compared whole genome and transcriptome alterations in the culture promastigote stage. The results allowed us to identify differences in somy, copy number variations in some genes related to antimony resistance and large-scale copy number variations (deletions and duplications) in chromosomes with no somy changes. We found mainly in L. braziliensis, a direct relation between the chromosomal/local copy number variation and the gene expression. We identified differentially expressed genes in the resistant lines that are involved in antimony resistance, virulence, and vital biological processes in parasites. The results of this study may be useful for characterizing the genetic mechanisms of these Leishmania species under antimonial pressure, and for clarifying why the parasites are resistant to first-line drug treatments.
Collapse
|
25
|
Abstract
Abstract
Leishmaniasis is a group of zoonotic diseases caused by a trypanosomatid parasite mostly in impoverished populations of low-income countries. In their different forms, leishmaniasis is prevalent in more than 98 countries all over the world and approximately 360-million people are at risk. Since no vaccine is currently available to prevent any form of the disease, the control strategy of leishmaniasis mainly relies on early case detection followed by adequate pharmacological treatment that may improve the prognosis and can reduce transmission. A handful of compounds and formulations are available for the treatment of leishmaniasis in humans, but only few of them are currently in use since most of these agents are associated with toxicity problems such as nephrotoxicity and cardiotoxicity in addition to resistance problems. In recent decades, very few novel drugs, new formulations of standard drugs or combinations of them have been approved against leishmaniasis. This review highlights the current drugs and combinations that are used medical practice and recent advances in new treatments against leishmaniasis that were pointed out in the recent 2nd Conference, Global Challenges in Neglected Tropical Diseases, held in San Juan, Puerto Rico in June 2018, emphasizing the plethora of new families of molecules that are bridging the gap between preclinical and first-in-man trials in next future.
Collapse
|
26
|
Lei J, Peng L, Qiu R, Liu Y, Chen Y, Au CT, Yin SF. Establishing the correlation between catalytic performance and N→Sb donor–acceptor interaction: systematic assessment of azastibocine halide derivatives as water tolerant Lewis acids. Dalton Trans 2019; 48:8478-8487. [DOI: 10.1039/c9dt01100e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of organoantimony(iii) halide complexes with a tetrahydrodibenzo[c,f][1,5]azastibocine framework were synthesized and employed as water tolerant Lewis acid catalysts.
Collapse
Affiliation(s)
- Jian Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Lingteng Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yongping Liu
- School of Medicine
- Hunan University of Chinese Medicine
- Changsha 410208
- P. R. China
| | - Yi Chen
- School of Medicine
- Hunan University of Chinese Medicine
- Changsha 410208
- P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan
- P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
27
|
In-vitro and in-vivo antileishmanial activity of inexpensive Amphotericin B formulations: Heated Amphotericin B and Amphotericin B-loaded microemulsion. Exp Parasitol 2018; 192:85-92. [DOI: 10.1016/j.exppara.2018.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022]
|
28
|
Genistein and Ascorbic Acid Reduce Oxidative Stress-Derived DNA Damage Induced by the Antileishmanial Meglumine Antimoniate. Antimicrob Agents Chemother 2018; 62:AAC.00456-18. [PMID: 29941649 DOI: 10.1128/aac.00456-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Meglumine antimoniate (Glucantime) is a pentavalent antimonial used to treat leishmaniasis, despite its acknowledged toxic effects, such as its ability to cause oxidative damage to lipids and proteins. Recently, our group demonstrated that meglumine antimoniate causes oxidative stress-derived DNA damage. Knowing that antioxidants modulate reactive oxygen species, we evaluated the capacity of genistein and ascorbic acid for preventing genotoxicity caused by meglumine antimoniate. For that, mice (n = 5/group) received genistein (via gavage) in doses of 5, 10, and 20 mg/kg for three consecutive days. After this period, they were treated with 810 mg/kg meglumine antimoniate via intraperitoneal (i.p.) route. Furthermore, mice (n = 5/group) simultaneously received ascorbic acid (i.p.) in doses of 30, 60, and 120 mg/kg and 810 mg/kg meglumine antimoniate. We also conducted post- and pretreatment assays, in which animals received ascorbic acid (60 mg/kg) 24 h prior to or after receiving meglumine antimoniate. Genomic instability and mutagenicity were analyzed through conventional comet assay and enzymatic assay using formamide pyrimidine DNA glycosylase (Fpg) enzyme, as well as the micronucleus test, respectively. Meglumine antimoniate induced an increase in the DNA damage after digestion with Fpg, reinforcing its mutagenic potential by oxidizing DNA bases, which was prevented by genistein. Similarly, ascorbic acid was capable of reducing mutagenic effects in simultaneous treatment as well as in posttreatment. Therefore, our results demonstrate that both compounds are efficient in preventing mutations in mammalian cells treated with meglumine antimoniate.
Collapse
|
29
|
Gitari JW, Nzou SM, Wamunyokoli F, Kinyeru E, Fujii Y, Kaneko S, Mwau M. Leishmaniasis recidivans by Leishmania tropica in Central Rift Valley Region in Kenya. Int J Infect Dis 2018; 74:109-116. [PMID: 30017946 DOI: 10.1016/j.ijid.2018.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES This study sought to determine the endemic Leishmania species, the clinical features of cutaneous leishmaniasis (CL) in the Central Rift Valley in Kenya and to give an account on unresponsiveness to treatment in the region. METHODS Participants were clinically identified and grouped into untreated, classical and recidivate based on clinical manifestation and clinical data. Leishmaniasis recidivans lesions were scaly hyperemic papules that appeared before the classic lesion had healed or after healing. The demographics and socio-economic data were recorded and lesion scraping samples screened through microscopy and Internal Transcribed Spacer 1-PCR. Leishmania species were identified using Restriction Fragment Length Polymorphism. RESULTS A total of 52 participants were sampled, of which, 44.2% of the cases were recidivate and L. tropica the only species identified. All patients had been treated using sodium stibogluconate (SSG) which is the recommended first-line drug in Kenya. 60% of the patients experienced prolonged exposure to the drug (>30 days). CONCLUSION L. tropica is the endemic Leishmania species for CL leading to classical and leishmaniasis recidivans. Treatment of CL in the area is not effective hence, alternative measures/therapy should be considered to cope with the unresponsiveness.
Collapse
Affiliation(s)
- Joseph Wambugu Gitari
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Samson Muuo Nzou
- Center for Infectious Parasitic Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya; Nagasaki University, Institute of Tropical Medicine, Kenya Medical Research Institute Project (NUITM-KEMRI Project), Nairobi, Kenya.
| | - Fred Wamunyokoli
- Department of Molecular Biology and Biotechnology, Pan African University Institute of Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | | | - Yoshito Fujii
- Institute of Tropical Medicine, Eco-epidemiology Department (NEKKEN), Nagasaki University, Japan
| | - Satoshi Kaneko
- Nagasaki University, Institute of Tropical Medicine, Kenya Medical Research Institute Project (NUITM-KEMRI Project), Nairobi, Kenya; Institute of Tropical Medicine, Eco-epidemiology Department (NEKKEN), Nagasaki University, Japan
| | - Matilu Mwau
- Center for Infectious Parasitic Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
30
|
Biagiotti M, Dominguez S, Yamout N, Zufferey R. Lipidomics and anti-trypanosomatid chemotherapy. Clin Transl Med 2017; 6:27. [PMID: 28766182 PMCID: PMC5539062 DOI: 10.1186/s40169-017-0160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Trypanosomatids such as Leishmania, Trypanosoma brucei and Trypanosoma cruzi belong to the order Kinetoplastida and are the source of many significant human and animal diseases. Current treatment is unsatisfactory and is compromised by the rising appearance of drug resistant parasites. Novel and more effective chemotherapeutics are urgently needed to treat and prevent these devastating diseases, which relies on the identification of essential, parasite specific targets that are absent in the host. Lipids constitute essential components of the cell and carry out multiple critical functions from building blocks of biological membranes to regulatory roles in signal transduction, organellar biogenesis, energy storage, and virulence. The recent technological advances of lipidomics has facilitated the broadening of our knowledge in the field of cellular lipid content, structure, functions, and metabolic pathways. MAIN BODY This review highlights the application of lipidomics (i) in the characterization of the lipidome of kinetoplastid parasites or of their subcellular structure(s), (ii) in the identification of unique lipid species or metabolic pathways that can be targeted for novel drug therapies, (iii) as an analytic tool to gain a deeper insight into the roles of specific enzymes in lipid metabolism using genetically modified microorganisms, and (iv) in deciphering the mechanism of action of anti-microbial drugs on lipid metabolism. Lastly, an outlook stating where the field is evolving is presented. CONCLUSION Lipidomics has contributed to the expanding knowledge related to lipid metabolism, mechanism of drug action and resistance, and pathogen-host interaction of trypanosomatids, which provides a solid basis for the development of better anti-parasitic pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Nader Yamout
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA
| | - Rachel Zufferey
- St John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| |
Collapse
|
31
|
Dos Reis PG, do Monte-Neto RL, Melo MN, Frézard F. Biophysical and Pharmacological Characterization of Energy-Dependent Efflux of Sb in Laboratory-Selected Resistant Strains of Leishmania ( Viannia) Subgenus. Front Cell Dev Biol 2017; 5:24. [PMID: 28393067 PMCID: PMC5364148 DOI: 10.3389/fcell.2017.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 03/07/2017] [Indexed: 12/02/2022] Open
Abstract
The growing resistance of leishmaniasis to first-line drugs like antimonials in some regions limits the control of this parasitic disease. The precise mechanisms involved in Leishmania antimony resistance are still subject to debate. The reduction of intracellular SbIII accumulation is a common change observed in both laboratory-selected and field isolated resistant Leishmania strains, but the exact transport pathways involved in antimony resistance have not yet been elucidated. In order to functionally characterize the antimony transport routes responsible for resistance, we performed systematic transport studies of SbIII in wild-type and resistant strains of L. (Viannia) guyanensis and L. (V.) braziliensis. Those include influx and efflux assays and the influence of ABC transporters and metabolism inhibitors: prochlorperazine, probenecid, verapamil, BSO, and sodium azide. The mRNA levels of genes associated with antimony resistance (MRPA, GSH1, ODC, AQP1, ABCI4, and ARM58) were also investigated in addition to intracellular thiol levels. A strong reduction of Sb influx was observed in L. guyanensis resistant mutant (LgSbR), but not in L. braziliensis (LbSbR). Both mutants showed increased energy-dependent efflux of SbIII, when compared to their respective parental strains. In LgSbR, BSO and prochlorperazine inhibited antimony efflux and resistance was associated with increased MRPA and GSH1 mRNA levels, while in LbSbR antimony efflux was inhibited by probenicid and prochlorperazine in absence of resistance-associated gene modulation. Intracellular thiol levels were increased in both Sb-resistant mutants. An energy-dependent SbIII efflux pathway sensitive to prochlorperazine was clearly evidenced in both Sb-resistant mutants. In conclusion, the present study allowed the biophysical and pharmacological characterization of energy-dependent Sb efflux pathway apparently independent of MRPA, ABCI4, and ARM58 upregulation, in Leishmania (Vianna) mutant selected in vitro for resistance to SbIII. Prochlorperazine has also been identified as an effective chemosensitizer in both Sb resistant mutants, which acts through inhibition of the active efflux of Sb.
Collapse
Affiliation(s)
- Priscila G Dos Reis
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil; Departamento de Farmácia/Ensino e Pesquisa, Hospital João XXIII - Fundação Hospitalar do Estado de Minas GeraisBelo Horizonte, Brazil
| | - Rubens L do Monte-Neto
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou - CPqRR/FIOCRUZ Belo Horizonte, Brazil
| | - Maria N Melo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| |
Collapse
|
32
|
Chaves JDS, Tunes LG, de J. Franco CH, Francisco TM, Corrêa CC, Murta SM, Monte-Neto RL, Silva H, Fontes APS, de Almeida MV. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. Eur J Med Chem 2017; 127:727-739. [DOI: 10.1016/j.ejmech.2016.10.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/24/2022]
|
33
|
Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species. Antimicrob Agents Chemother 2016; 60:4482-9. [PMID: 27161624 DOI: 10.1128/aac.00768-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/30/2016] [Indexed: 01/05/2023] Open
Abstract
Antimony (Sb) resistance in leishmaniasis chemotherapy has become one of the major challenges to the control of this spreading worldwide public health problem. Since the plasma membrane pore-forming protein aquaglyceroporin 1 (AQP1) is the major route of Sb uptake in Leishmania, functional studies are relevant to characterize drug transport pathways in the parasite. We generated AQP1-overexpressing Leishmania guyanensis and L. braziliensis mutants and investigated their susceptibility to the trivalent form of Sb (Sb(III)) in the presence of silver and nitrate salts. Both AQP1-overexpressing lines presented 3- to 4-fold increased AQP1 expression levels compared with those of their untransfected counterparts, leading to an increased Sb(III) susceptibility of about 2-fold. Competition assays using silver nitrate, silver sulfadiazine, or silver acetate prior to Sb(III) exposure increased parasite growth, especially in AQP1-overexpressing mutants. Surprisingly, Sb(III)-sodium nitrate or Sb(III)-potassium nitrate combinations showed significantly enhanced antileishmanial activities compared to those of Sb(III) alone, especially against AQP1-overexpressing mutants, suggesting a putative nitrate-dependent modulation of AQP1 activity. The intracellular level of antimony quantified by graphite furnace atomic absorption spectrometry showed that the concomitant exposure to Sb(III) and nitrate favors antimony accumulation in the parasite, increasing the toxicity of the drug and culminating with parasite death. This is the first report showing evidence of AQP1-mediated Sb(III) susceptibility modulation by silver in Leishmania and suggests the potential antileishmanial activity of the combination of nitrate salts and Sb(III).
Collapse
|
34
|
de Souza Moreira D, Ferreira RF, Murta SMF. Molecular characterization and functional analysis of pteridine reductase in wild-type and antimony-resistant Leishmania lines. Exp Parasitol 2015; 160:60-6. [PMID: 26689884 DOI: 10.1016/j.exppara.2015.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/21/2015] [Accepted: 12/09/2015] [Indexed: 01/24/2023]
Abstract
Pteridine reductase (PTR1) is an NADPH-dependent reductase that participates in the salvage of pteridines, which are essential to maintain growth of Leishmania. In this study, we performed the molecular characterization of ptr1 gene in wild-type (WTS) and SbIII-resistant (SbR) lines from Leishmania guyanensis (Lg), Leishmania amazonensis (La), Leishmania braziliensis (Lb) and Leishmania infantum (Li), evaluating the chromosomal location, mRNA levels of the ptr1 gene and PTR1 protein expression. PFGE results showed that the ptr1 gene is located in a 797 kb chromosomal band in all Leishmania lines analyzed. Interestingly, an additional chromosomal band of 1070 kb was observed only in LbSbR line. Northern blot results showed that the levels of ptr1 mRNA are increased in the LgSbR, LaSbR and LbSbR lines. Western blot assays using the polyclonal anti-LmPTR1 antibody demonstrated that PTR1 protein is more expressed in the LgSbR, LaSbR and LbSbR lines compared to their respective WTS counterparts. Nevertheless, no difference in the level of mRNA and protein was observed between the LiWTS and LiSbR lines. Functional analysis of PTR1 enzyme was performed to determine whether the overexpression of ptr1 gene in the WTS L. braziliensis and L. infantum lines would change the SbIII-resistance phenotype of transfected parasites. Western blot results showed that the expression level of PTR1 protein was increased in the transfected parasites compared to the non-transfected ones. IC50 analysis revealed that the overexpression of ptr1 gene in the WTS L. braziliensis line increased 2-fold the SbIII-resistance phenotype compared to the non-transfected counterpart. Furthermore, the overexpression of ptr1 gene in the WTS L. infantum line did not change the SbIII-resistance phenotype. These results suggest that the PTR1 enzyme may be implicated in the SbIII-resistance phenotype in L. braziliensis line.
Collapse
Affiliation(s)
- Douglas de Souza Moreira
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Av. Augusto de Lima 1715, CEP 30190-002, Belo Horizonte, MG, Brazil
| | - Rafael Fernandes Ferreira
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Av. Augusto de Lima 1715, CEP 30190-002, Belo Horizonte, MG, Brazil
| | - Silvane M F Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou CPqRR/Fiocruz, Av. Augusto de Lima 1715, CEP 30190-002, Belo Horizonte, MG, Brazil.
| |
Collapse
|