1
|
Sutter J, Hope JL, Wigdahl B, Miller V, Krebs FC. Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach. Viruses 2025; 17:600. [PMID: 40431612 PMCID: PMC12115788 DOI: 10.3390/v17050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Herpes simplex virus type 1 (HSV-1) causes a lifelong infection due to latency established in the trigeminal ganglia, which is the source of recurrent outbreaks of cold sores. The lifelong persistence of HSV-1 is further facilitated by the lack of cure strategies, unsuccessful vaccine development, and the inability of the host immune system to clear HSV-1. Despite the inefficiencies of the immune system, the course of HSV-1 infection remains under strict immunological control. Specifically, HSV-1 is controlled by a CD8+ T cell response that is cytotoxic to HSV-1-infected cells, restricts acute infection, and uses noncytolytic mechanisms to suppress reactivation in the TG. When this CD8+ T cell response is disrupted, reactivation of latent HSV-1 occurs. With antiviral therapies unable to cure HSV-1 and prophylactic vaccine strategies failing to stimulate a protective response, we propose non-thermal plasma (NTP) as a potential therapy effective against recurrent HSV-1 infection. We have demonstrated that NTP, when applied directly to HSV-1-infected cells, has antiviral effects and stimulates cellular stress and immunomodulatory responses. We further propose that the direct effects of NTP will lead to long-lasting indirect effects such as reduced viral seeding into the TG and enhanced HSV-1-specific CD8+ T cell responses that exert greater immune control over HSV-1 infection.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
| | - Jennifer L. Hope
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
- Immune Cell Regulation and Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium at Jefferson Health, Philadelphia, PA 19107, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, and Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (J.S.); (J.L.H.); (B.W.); (V.M.)
| |
Collapse
|
2
|
Qin H, Qiu H, Liu K, Hong B, Liu Y, Li C, Li M, An X, Song L, Robert E, Tong Y, Fan H, Wang R. Cold atmospheric plasma can effectively disinfect SARS-CoV-2 in the wastewater. EXPLORATION (BEIJING, CHINA) 2024; 4:20230012. [PMID: 38939868 PMCID: PMC11189572 DOI: 10.1002/exp.20230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 11/01/2023] [Indexed: 06/29/2024]
Abstract
COVID-19 is currently pandemic and the detection of SARS-CoV-2 variants in wastewater is causing widespread concern. Herein, cold atmospheric plasma (CAP) is proposed as a novel wastewater disinfection technology that effectively inactivates SARS-CoV-2 transcription- and replication-competent virus-like particles, coronavirus GX_P2V, pseudotyped SARS-CoV-2 variants, and porcine epidemic diarrhoea virus in a large volume of water within 180 s (inhibition rate > 99%). Further, CAP disinfection did not adversely affect the viability of various human cell lines. It is identified that CAP produced peroxynitrite (ONOO-), ozone (O3), superoxide anion radicals (O2 -), and hydrogen peroxide (H2O2) as the major active substances for coronavirus disinfection. Investigation of the mechanism showed that active substances not only reacted with the coronavirus spike protein and affected its infectivity, but also destroyed the nucleocapsid protein and genome, thus affecting virus replication. This method provides an efficient and environmentally friendly strategy for the elimination of SARS-CoV-2 and other coronaviruses from wastewater.
Collapse
Affiliation(s)
- Hongbo Qin
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Hengju Qiu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Ke Liu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Bixia Hong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yuchen Liu
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chun Li
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Mengzhe Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Xiaoping An
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Lihua Song
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | | | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ruixue Wang
- College of Mechanical and Electrical EngineeringBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
3
|
Filipić A, Dobnik D, Gutiérrez-Aguirre I, Ravnikar M, Košir T, Baebler Š, Štern A, Žegura B, Petkovšek M, Dular M, Mozetič M, Zaplotnik R, Primc G. Cold plasma within a stable supercavitation bubble - A breakthrough technology for efficient inactivation of viruses in water. ENVIRONMENT INTERNATIONAL 2023; 182:108285. [PMID: 37972530 DOI: 10.1016/j.envint.2023.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Tamara Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Martin Petkovšek
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rok Zaplotnik
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Hamza IA, El-Kalliny AS, Abd-Elmaksoud S, Marouf MA, Abdel-Wahed MS, El-Liethy MA, Hefny MM. Cold atmospheric plasma: a sustainable approach to inactivating viruses, bacteria, and protozoa with remediation of organic pollutants in river water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116214-116226. [PMID: 37910365 PMCID: PMC10682252 DOI: 10.1007/s11356-023-30298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023]
Abstract
Innovative technologies are needed to enhance access to clean water and avoid waterborne diseases. We investigated the performance of cold atmospheric plasma (CAP), a clean and sustainable approach for microbial inactivation and total organic carbon (TOC) degradation in environmental water. Water matrices played a crucial role in the performance of CAP efficacy; for example, complete removal of ɸX174 from dH2O required 1 min of treatment, while ɸX174 reductions of ~ 2log10 and 4log10 were obtained after 10 min of CAP exposure in river water and wastewater samples, respectively. Similarly, after 10 min of CAP treatment, bacterial concentrations decreased by 3 log10 and 4 log10, in river and wastewater samples, respectively. In contrast, after 30 s of contact time, a 4 log10 reduction of bacteria was accomplished in dH2O. Complete removal of Acanthamoeba from dH2O was found after 30 min of CAP treatment, whereas it was not removed from surface water or wastewater at the same exposure time. Additionally, the approach successfully reduced TOC, and the degradation kinetics of TOC were represented by pseudo-first-order. CAP showed higher rates of TOC degradation in the final effluent of the wastewater treatment plant compared to surface water. The difference in CAP performance between river water and wastewater could be attributed to the bulk structure of humic acids in river water compared to small organic byproducts in the final effluent of WWTP. Overall, the findings reported here support the idea that CAP holds promise as a sustainable solution for controlling pathogens, removing organic water pollution, and integrating with traditional purification processes. Low-cost systems may advance CAP technology and increase its widespread use.
Collapse
Affiliation(s)
- Ibrahim Ahmed Hamza
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt.
| | - Amer S El-Kalliny
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Sherif Abd-Elmaksoud
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed A Marouf
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud S Abdel-Wahed
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, National Research Centre, 33 El Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mohamed Mokhtar Hefny
- Engineering Mathematics and Physics Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
5
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Fu J, Xu Y, Arts EJ, Bai Z, Chen Z, Zheng Y. Viral disinfection using nonthermal plasma: A critical review and perspectives on the plasma-catalysis system. CHEMOSPHERE 2022; 309:136655. [PMID: 36191766 DOI: 10.1016/j.chemosphere.2022.136655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The transmission of viral infections via aerosol has become a serious threat to public health. This has produced an ever-increasing demand for effective forms of viral inactivation technology/processes. Plasma technology is rising in popularity and gaining interest for viral disinfection use. Due to its highly effectively disinfection and flexible operation, non-thermal plasma (NTP) is a promising technology in decontaminating bacteria or virus from air or surfaces. This review discusses the fundamentals of non-thermal plasma and the disinfection mechanisms of the biocidal agents produced in plasma, including ultraviolet (UV) photons, reactive oxygen species, and reactive nitrogen species. Perspectives on the role of catalysts and its potential applications in cold plasma disinfection are discussed.
Collapse
Affiliation(s)
- Jile Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China; Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Yiyi Xu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada
| | - Eric J Arts
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Zhengyu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Fine Chemicals Green Manufacturing, Henan Normal University, Xinxiang, 453007, China.
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario, Canada.
| |
Collapse
|
7
|
Beseda M, Paláček S, Gadéa F, Leininger T, Kalus R, Benhenni M, Yousfi M. Ab initio approaches for N2+ and N2+/He ions towards modeling of the N2+ ion in cold helium plasma. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55321-55335. [PMID: 35661305 PMCID: PMC9165927 DOI: 10.1007/s11356-022-21160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Mohamed Majdi Cherif
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology, Giza, 12588, Egypt
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | | |
Collapse
|
9
|
Jenns K, Sassi HP, Zhou R, Cullen PJ, Carter D, Mai-Prochnow A. Inactivation of foodborne viruses: Opportunities for cold atmospheric plasma. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
11
|
Priatama RA, Pervitasari AN, Park S, Park SJ, Lee YK. Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth. Int J Mol Sci 2022; 23:4609. [PMID: 35562997 PMCID: PMC9105374 DOI: 10.3390/ijms23094609] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows pesticide removal, and enhances biomass and yield. Currently, the complex molecular mechanisms of plasma treatment in plasma agriculture are fully unexplored, especially those related to seed germination and plant growth. Therefore, in this review, we have summarized the current progress in the application of the plasma treatment technique in plants, including plasma treatment methods, physical and chemical effects, and the molecular mechanism underlying the effects of low-temperature plasma treatment. Additionally, we have discussed the interactions between plasma and seed germination that occur through seed coat modification, reactive species, seed sterilization, heat, and UV radiation in correlation with molecular phenomena, including transcriptional and epigenetic regulation. This review aims to present the mechanisms underlying the effects of plasma treatment and to discuss the potential applications of plasma as a powerful tool, priming agent, elicitor or inducer, and disinfectant in the future.
Collapse
Affiliation(s)
- Ryza A. Priatama
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Aditya N. Pervitasari
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Young Koung Lee
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjangsan-ro, Gunsan 54004, Korea; (R.A.P.); (S.P.)
| |
Collapse
|
12
|
Gao Y, Francis K, Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 2022; 157:111246. [DOI: 10.1016/j.foodres.2022.111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
13
|
Abstract
Cold atmospheric plasma (CAP) is a tunable source of reactive species and other physical factors. It exerts luxuriant biochemical effects on diverse cells, including bacterial cells, mammalian cells, and plant cells. Over the past decade, CAP has shown promising application in modern agriculture. Here, we focused on the state of the art of plasma agriculture, particularly the improvement of seed germination rates. Typical plasma sources, underlying physical principles, and the chemical and cellular mechanism of plasma’s effect on plants seeds have been discussed in depth.
Collapse
|
14
|
Filipić A, Lukežič T, Bačnik K, Ravnikar M, Ješelnik M, Košir T, Petkovšek M, Zupanc M, Dular M, Aguirre IG. Hydrodynamic cavitation efficiently inactivates potato virus Y in water. ULTRASONICS SONOCHEMISTRY 2022; 82:105898. [PMID: 34973580 PMCID: PMC8799611 DOI: 10.1016/j.ultsonch.2021.105898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/26/2021] [Indexed: 05/24/2023]
Abstract
Waterborne plant viruses can destroy entire crops, leading not only to high financial losses but also to food shortages. Potato virus Y (PVY) is the most important potato viral pathogen that can also affect other valuable crops. Recently, it has been confirmed that this virus is capable of infecting host plants via water, emphasizing the relevance of using proper strategies to treat recycled water in order to prevent the spread of the infectious agents. Emerging environmentally friendly methods such as hydrodynamic cavitation (HC) provide a great alternative for treating recycled water used for irrigation. In the experiments conducted in this study, laboratory HC based on Venturi constriction with a sample volume of 1 L was used to treat water samples spiked with purified PVY virions. The ability of the virus to infect plants was abolished after 500 HC passes, corresponding to 50 min of treatment under pressure difference of 7 bar. In some cases, shorter treatments of 125 or 250 passes were also sufficient for virus inactivation. The HC treatment disrupted the integrity of viral particles, which also led to a minor damage of viral RNA. Reactive species, including singlet oxygen, hydroxyl radicals, and hydrogen peroxide, were not primarily responsible for PVY inactivation during HC treatment, suggesting that mechanical effects are likely the driving force of virus inactivation. This pioneering study, the first to investigate eukaryotic virus inactivation by HC, will inspire additional research in this field enabling further improvement of HC as a water decontamination technology.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Tadeja Lukežič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Katarina Bačnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Meta Ješelnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Tamara Košir
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Mojca Zupanc
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Abbasi E, Mehrabadi JF, Nourani M, Namini YN, Mohammadi S, Esmaeili D, Abbasi A. Evaluation of cold atmospheric-pressure plasma against burn wound infections and gene silencing. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:544-552. [PMID: 34557284 PMCID: PMC8421582 DOI: 10.18502/ijm.v13i4.6982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives Non-thermal atmospheric-pressure plasma or cold plasma is defined as an ionized gas. This study aimed to investigate the effect of cold plasma on Pseudomonas aeruginosa strains. Also, the expression level of the alp virulence gene before and after treatment with cold plasma was compared with the Housekeeping gene gyrA. Materials and Methods P. aeruginosa isolates recovered from hospitalized burn patients at Shahid Motahari Burns Hospital, Tehran, Iran. The Kirby Bauer disk diffusion method was used to determine the antimicrobial susceptibility test. Then, the antibacterial effect of atmospheric non-thermal plasma was evaluated on P. aeruginosa in as in vitro and in vivo studies at different times on Muller Hinton agar and in mouse model (treated by plasma every day/ 90 sec). The histopathological study was evaluated by Hematoxylin-Eosin staining. Data were analyzed using SPSS software by the Chi-square test and Pvalues less than 0.05 considered as statistically significant. Results Results indicated that non-thermal atmospheric plasma inhibited the growth of P. aeruginosa. The non-thermal helium plasma accelerates wound healing for 6 days. Results showed that cold plasma decreased virulence gene expression alp after treatment. Therefore, cold plasma can be suggested as a complementary therapeutic protocol to reduce bacterial infection and accelerate wound healing and reduce the expression of virulence genes of pathogens. Conclusion Cold plasma showed pathogen inhibitory properties of P. aeruginosa and virulence alkaline protease and wound healing properties in animal models, so this inexpensive and suitable method can be presented to the medical community to disinfect burn wounds and improve wound healing.
Collapse
Affiliation(s)
- Ensieh Abbasi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jalil Fallah Mehrabadi
- Departman of Microbiology, Faculty of Pharmaceutical Science, Islamic Azad University, Tehran, Iran
| | - Mohamadreza Nourani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yasaman Nazar Namini
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Siamak Mohammadi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Asieh Abbasi
- Departman of Microbiology, Faculty of Pharmaceutical Science, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
Aman Mohammadi M, Ahangari H, Zabihzadeh Khajavi M, Yousefi M, Scholtz V, Hosseini SM. Inactivation of viruses using nonthermal plasma in viral suspensions and foodstuff: A short review of recent studies. J Food Saf 2021. [DOI: 10.1111/jfs.12919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masoud Aman Mohammadi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Maryam Zabihzadeh Khajavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology, Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| | - Vladimír Scholtz
- Department of Physics and Measurements University of Chemistry and Technology Prague Prague Czech Republic
| | - Seyede Marzieh Hosseini
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
17
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
18
|
Bandala ER, Kruger BR, Cesarino I, Leao AL, Wijesiri B, Goonetilleke A. Impacts of COVID-19 pandemic on the wastewater pathway into surface water: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145586. [PMID: 33607440 PMCID: PMC7862925 DOI: 10.1016/j.scitotenv.2021.145586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 05/16/2023]
Abstract
With global number of cases 106 million and death toll surpassing 2.3 million as of mid-February 2021, the COVID-19 pandemic is certainly one of the major threats that humankind have faced in modern history. As the scientific community navigates through the overwhelming avalanche of information on the multiple health impacts caused by the pandemic, new reports start to emerge on significant ancillary effects associated with the treatment of the virus. Besides the evident health impacts, other emerging impacts related to the COVID-19 pandemic, such as water-related impacts, merits in-depth investigation. This includes strategies for the identification of these impacts and technologies to mitigate them, and to prevent further impacts not only in water ecosystems, but also in relation to human health. This paper has critically reviewed currently available knowledge on the most significant potential impacts of the COVID-19 pandemic on the wastewater pathway into surface water, as well as technologies that may serve to counteract the major threats posed, key perspectives and challenges. Additionally, current knowledge gaps and potential directions for further research and development are identified. While the COVID-19 pandemic is an ongoing and rapidly evolving situation, compiling current knowledge of potential links between wastewater and surface water pathways as related to environmental impacts and relevant associated technologies, as presented in this review, is a critical step to guide future research in this area.
Collapse
Affiliation(s)
- Erick R Bandala
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA.
| | - Brittany R Kruger
- Division of Hydrologic Sciences, Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV 89119, USA
| | - Ivana Cesarino
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Alcides L Leao
- São Paulo State University (UNESP), School of Agriculture, Botucatu, Brazil
| | - Buddhi Wijesiri
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| | - Ashantha Goonetilleke
- Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
19
|
Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS OMEGA 2021; 6:6509-6527. [PMID: 33748563 PMCID: PMC7944398 DOI: 10.1021/acsomega.0c06335] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seth C. Cordts
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Myra Kurosu Jalil
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin S. Zhang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Saisneha Koppaka
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alison D. Bick
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rajorshi Paul
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Filipić A, Dobnik D, Tušek Žnidarič M, Žegura B, Štern A, Primc G, Mozetič M, Ravnikar M, Žel J, Gutierrez Aguirre I. Inactivation of Pepper Mild Mottle Virus in Water by Cold Atmospheric Plasma. Front Microbiol 2021; 12:618209. [PMID: 33584622 PMCID: PMC7877120 DOI: 10.3389/fmicb.2021.618209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/04/2021] [Indexed: 11/18/2022] Open
Abstract
Water scarcity is one of the greatest threats for human survival and quality of life, and this is increasingly contributing to the risk of human, animal and plant infections due to waterborne viruses. Viruses are transmitted through polluted water, where they can survive and cause infections even at low concentrations. Plant viruses from the genus Tobamovirus are highly mechanically transmissible, and cause considerable damage to important crops, such as tomato. The release of infective tobamoviruses into environmental waters has been reported, with the consequent risk for arid regions, where these waters are used for irrigation. Virus inactivation in water is thus very important and cold atmospheric plasma (CAP) is emerging in this field as an efficient, safe, and sustainable alternative to classic waterborne virus inactivation methods. In the present study we evaluated CAP-mediated inactivation of pepper mild mottle virus (PMMoV) in water samples. PMMoV is a very resilient water-transmissible tobamovirus that can survive transit through the human digestive tract. The efficiency of PMMoV inactivation was characterized for infectivity and virion integrity, and at the genome level, using test plant infectivity assays, transmission electron microscopy, and molecular methods, respectively. Additionally, the safety of CAP treatment was determined by testing the cytotoxic and genotoxic properties of CAP-treated water on the HepG2 cell line. 5-min treatment with CAP was sufficient to inactivate PMMoV without introducing any cytotoxic or genotoxic effects in the in-vitro cell model system. These data on inactivation of such stable waterborne virus, PMMoV, will encourage further examination of CAP as an alternative for treatment of potable and irrigation waters, and even for other water sources, with emphasis on inactivation of various viruses including enteric viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Magda Tušek Žnidarič
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Alja Štern
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.,University of Nova Gorica, Nova Gorica, Slovenia
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
21
|
Filipić A, Gutierrez-Aguirre I, Primc G, Mozetič M, Dobnik D. Cold Plasma, a New Hope in the Field of Virus Inactivation. Trends Biotechnol 2020; 38:1278-1291. [PMID: 32418663 PMCID: PMC7164895 DOI: 10.1016/j.tibtech.2020.04.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Viruses can infect all cell-based organisms, from bacteria to humans, animals, and plants. They are responsible for numerous cases of hospitalization, many deaths, and widespread crop destruction, all of which result in an enormous medical, economical, and biological burden. Each of the currently used decontamination methods has important drawbacks. Cold plasma (CP) has entered this field as a novel, efficient, and clean solution for virus inactivation. We present recent developments in this promising field of CP-mediated virus inactivation, and describe the applications and mechanisms of the inactivation. This is particularly relevant because viral pandemics, such as COVID-19, highlight the need for alternative virus inactivation methods to replace, complement, or upgrade existing procedures. Pathogenic viruses are becoming an increasing burden for health, agriculture, and the global economy. Classic disinfection methods have several drawbacks, and innovative solutions for virus inactivation are urgently needed. CP can be used as an environmentally friendly tool for virus inactivation. It can inactivate different human, animal, and plant viruses in various matrices. When using CP for virus inactivation it is important to set the correct parameters and to choose treatment durations that allow particles to interact with the contaminated material. Reactive oxygen and/or nitrogen species have been shown to be responsible for virus inactivation through effects on capsid proteins and/or nucleic acids. The development of more accurate methods will provide information on which plasma particles are crucial in each experiment, and how exactly they affect viruses.
Collapse
Affiliation(s)
- Arijana Filipić
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, 1000 Ljubljana, Slovenia.
| | - Ion Gutierrez-Aguirre
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Primc
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Sakudo A, Yagyu Y, Onodera T. Disinfection and Sterilization Using Plasma Technology: Fundamentals and Future Perspectives for Biological Applications. Int J Mol Sci 2019; 20:ijms20205216. [PMID: 31640211 PMCID: PMC6834201 DOI: 10.3390/ijms20205216] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that plasma can efficiently inactivate microbial pathogens such as bacteria, fungi, and viruses in addition to degrading toxins. Moreover, this technology is effective at inactivating pathogens on the surface of medical and dental devices, as well as agricultural products. The current practical applications of plasma technology range from sterilizing therapeutic medical devices to improving crop yields, as well as the area of food preservation. This review introduces recent advances and future perspectives in plasma technology, especially in applications related to disinfection and sterilization. We also introduce the latest studies, mainly focusing on the potential applications of plasma technology for the inactivation of microorganisms and the degradation of toxins.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime 794-8555, Japan.
| | - Yoshihito Yagyu
- Department of Electrical and Electric Engineering, National Institute of Technology Sasebo College, Nagasaki 857-1193, Japan.
| | - Takashi Onodera
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|