1
|
Lauzier AM, Douette É, Labrie A, Jubinville É, Goulet-Beaulieu V, Hamon F, Jean J. Comparison of sample pretreatments used to distinguish between infectious and non-infectious foodborne viruses by RT-qPCR. J Virol Methods 2025; 335:115130. [PMID: 39993658 DOI: 10.1016/j.jviromet.2025.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
To detect viruses such as hepatitis A virus (HAV) and human norovirus (HuNoV) in foods, RT-qPCR or other molecular methods are used, which cannot distinguish between infectious and non-infectious virions. Samples can be pretreated to limit detection to intact and presumably infectious virions. We compared propidium monoazide (PMA or PMAxx), platinum (IV) chloride (PtCl4), magnetic silica beads and centrifugal filter using HAV or HuNoV inactivated by heat, pulsed light, or sodium hypochlorite (NaOCl). PMAxx completely or nearly eliminated (3.96 ± 1.24 log gc) the RT-qPCR signal of HAV inactivated at 100°C for 10 min. Pretreatments could not reduce significantly RT-qPCR signal of HAV after pulsed light (0.74 ± 0.36 log gc) and NaOCl (0.24 ± 0.14 log gc) inactivation. Enzymatic treatments did not improve the results obtained with PMAxx. The exudate of raspberry, strawberry or oyster used as food matrices needed dilution by at least tenfold for PMAxx to to yield results comparable to virions without a food matrix. Overall, PMAxx shows good potential to discriminate between infectious and non-infectious despite some remaining limitations.
Collapse
Affiliation(s)
- Anne-Marie Lauzier
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Émilie Douette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Antoine Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | - Éric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada
| | | | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC, Canada.
| |
Collapse
|
2
|
Raymond P, Blain R, Nasheri N. Detection of Foodborne Viruses in Dates Using ISO 15216 Methodology. Viruses 2025; 17:174. [PMID: 40006929 PMCID: PMC11860475 DOI: 10.3390/v17020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Foodborne viruses such as human norovirus (HuNoV) and hepatitis A virus (HAV) are the major causes of foodborne illnesses worldwide. These viruses have a low infectious dose and are persistent in the environment and food for weeks. Ready-to-eat (RTE) low moisture foods (LMFs) undergo minimal pathogen reduction processes. In recent years, multiple foodborne HAV outbreaks involving hundreds of individuals were associated with the consumption of dates, indicating that they could be important vehicles for foodborne infection. There is no standard method for the extraction and detection of foodborne viruses from dates, but herein we have compared the efficiency of three different protocols based on the ISO 15216 method in the extraction of murine norovirus (MNV) from whole Medjool dates and successfully employed the best performing method in the extraction of HAV, HuNoV GI, and GII and determined the limit of detection (LOD95) of 61, 148, and 184 genomic equivalent (gEq) per 25 g, respectively. Finally, we tested the adopted method on various varieties of dates including pitted ones and reported the detection of HuNoV GI and GII from four naturally contaminated date varieties. This ISO 15216 protocol could be employed for surveillance purposes and outbreak management related to dates.
Collapse
Affiliation(s)
- Philippe Raymond
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Roxanne Blain
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Neda Nasheri
- Food Virology Laboratory, Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| |
Collapse
|
3
|
Stoufer S, Kim M, De Silva S, Anderson JL, Brehm-Stecher BF, Moore MD. Evaluating the capacity of magnetic ionic liquids for separation and concentration of non-enveloped viral particles and free viral genomic RNA. Anal Bioanal Chem 2025; 417:435-445. [PMID: 39604533 PMCID: PMC11698852 DOI: 10.1007/s00216-024-05662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Magnetic ionic liquids (MILs) have proven effective as capture reagents for foodborne bacterial pathogens; however, there are currently no published studies regarding their use with foodborne, non-enveloped viruses. In this study, a protocol was evaluated for capture and recovery of bacteriophage MS2, a human norovirus surrogate, and purified viral genomic single stranded RNA (ssRNA) from an aqueous suspension using MILs. Transition metal-based MILs showed similar capture and recovery efficiency for both targets. A rare earth metal-based MIL showed much greater capture efficiency than the transition metal-based MILs, but displayed similar recovery. All tested MILs showed slightly higher capture and recovery efficiency for free RNA in comparison to intact virus, though overall trends were similar, and most MILs could recover both targets at as little as 102 PFU/mL intact MS2 or copies/mL purified RNA. A plaque assay confirmed that contact with MILs did not significantly reduce viral infectivity. Adjusting MIL volume gave no significant changes in capture or recovery, likely due to interplay between volume for the hydrophobic MIL and dispersion. Reducing the elution volume gave a slight increase in recovery, indicating MILs could be used for target enrichment after further optimization. MILs could also capture MS2 from romaine lettuce rinsate at comparable or even higher levels than from pure suspension, though loss in recovery was observed when the rinsate was prepared in an alkaline elution buffer. Overall, these results demonstrate the potential utility of MILs as concentration reagents for foodborne viruses, particularly for in-field applications.
Collapse
Affiliation(s)
- Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | | | | | - Byron F Brehm-Stecher
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Stoufer S, Soorneedi AR, Kim M, Moore MD. Sample Processing and Concentration Methods for Viruses from Foods and the Environment Prior to Detection. Annu Rev Food Sci Technol 2024; 15:455-472. [PMID: 38277693 DOI: 10.1146/annurev-food-072023-034431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Viruses are the leading cause of foodborne illness globally. Concentration of viruses from samples is important for detection because viral contamination of foods often occurs at low levels. In general, virus concentration methods can be classified as either nonspecific, exploiting the relatively homogeneous physicochemical properties of the virus to separate/concentrate it from the sample matrix, or specific, relying on recognition elements such as antibodies to specifically capture and separate viruses from foods. Numerous nonspecific and specific techniques for virus concentration have been reported, each with its own advantages and limitations. Factors to consider can include reagent and equipment costs, time-to-result, ease of use, and potential to eliminate matrix-associated inhibitors. The purpose of this review is to survey the different foodborne virus concentration techniques and their efficacy in various food and environmental matrices as well as discuss some emerging techniques for purification and concentration of viral pathogens from food samples.
Collapse
Affiliation(s)
- Sloane Stoufer
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Anand R Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Minji Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA;
| |
Collapse
|
5
|
Raymond P, St-Germain F, Paul S, Chabot D, Deschênes L. Impact of Nanoparticle-Based TiO 2 Surfaces on Norovirus Capsids and Genome Integrity. Foods 2024; 13:1527. [PMID: 38790828 PMCID: PMC11121413 DOI: 10.3390/foods13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human noroviruses (HuNoVs) are among the main causes of acute gastroenteritis worldwide. HuNoVs can survive for several days up to weeks at room temperature in the environment, on food, and on food handling and processing surfaces. As a result, this could lead to viral spread through the ingestion of food in contact with contaminated surfaces. The development of stable surface materials with antiviral activity might be useful to reduce viral outbreaks. Metal-based compounds, including photoactivated titanium nanoparticles (TiO2 NPs), are known for their antiviral activity. In this study, we tested the impact of 2000 µg/mL TiO2 NPs, with or without UV activation, on HuNoV GII and murine norovirus. Their recovery rates were reduced by 99.6%. We also evaluated a new TiO2 NP-coating process on a polystyrene surface. This process provided a homogenous coated surface with TiO2 NPs ranging between 5 nm and 15 nm. Without photoactivation, this TiO2 NP-coated polystyrene surface reduced the recovery rates of intact HuNoV GII by more than 94%. When a capsid integrity treatment with PtCl4 or a longer reverse transcription polymerase chain detection approach was used to evaluate virus integrity following contact with the TiO2 NP-coated polystyrene, the HuNoV GII recovery yield reduction varied between 97 and 100%. These results support the hypothesis that TiO2 NP-coated surfaces have the potential to prevent viral transmission associated with contaminated food surfaces.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - François St-Germain
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - Denise Chabot
- Agriculture and Agri-Food Canada (AAFC), Ottawa Food Research and Development Centre, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Louise Deschênes
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
6
|
Trudel-Ferland M, Collard MÈ, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Evaluation of a new automated viral RNA extraction platform for hepatitis A virus and human norovirus in testing of berries, lettuce, and oysters. Int J Food Microbiol 2024; 416:110664. [PMID: 38492524 DOI: 10.1016/j.ijfoodmicro.2024.110664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Fruits, vegetables, and shellfish are often associated with outbreaks of illness caused particularly by human norovirus (HuNoV) and hepatitis A virus (HAV), the leading causative agents of foodborne illness worldwide. The aim of this study was to evaluate a new automated nucleic acid extraction platform (EGENE-UP EASYPREP) for enteric viruses in several at-risk food matrices and to test its limit of detection in comparison to a semi-automated method (EGENE-UP) using Boom methodology for nucleic acid extraction as suggested in the reference method ISO 15216-2:2019. Fresh and frozen raspberries, frozen blackberries, romaine lettuce and oyster digestive glands were artificially contaminated with HAV, HuNoV GII.4 or HuNoV GI.7 at 102, 103 or 104 genome copies/sample. Virus was then recovered from the food matrix using the ISO method. Viral RNA extracted from frozen berry samples by the automated system was purified on a column for additional removal of RT-qPCR inhibitors. For fresh raspberry, oysters, and romaine lettuce, the two extraction platforms were deemed equivalent. For frozen raspberry, the automated platform appeared to be more efficient for viral recovery, particularly for HAV and HuNoV GI at lower concentrations. With frozen blackberries, the two platforms may be considered equivalent for all targeted viruses. However, the automated method led to less sample-associated inhibition of the PCR, 56.5 % of samples versus 95.0 % for the semi-automated. We thus found that the automated extraction can be performed easily by users while obtaining equivalent or even superior results to the ISO 15216-2:2019 method, and therefore appears to be suitable for routine sanitary monitoring in food processing and for tracing outbreaks of illness.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Collard
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
7
|
Trudel-Ferland M, Levasseur M, Goulet-Beaulieu V, Jubinville E, Hamon F, Jean J. Concentration of foodborne viruses eluted from fresh and frozen produce: Applicability of ultrafiltration. Int J Food Microbiol 2024; 416:110687. [PMID: 38554558 DOI: 10.1016/j.ijfoodmicro.2024.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Foodborne illnesses involving raw and minimally processed foods are often caused by human noroviruses (HuNoV) and hepatitis A virus (HAV). Since food is contaminated usually with small numbers of virions, these must be eluted from the food surface and then concentrated for detection. The objective of this study was to optimize an ultrafiltration (UF) concentration method for HAV and HuNoVs present on various fresh and frozen produce. The detection range of the optimized method and its applicability to different food matrices was compared to the reference method ISO 15216-1:2017. Strawberry, raspberry, blackberry, lettuce, and green onion (25 g) were contaminated with HAV, HuNoV GI.7 and HuNoV GII.4 and then recovered therefrom by elution. A commercial benchtop UF device was used for the concentration step. Viral RNA was extracted and detected by RT-qPCR. From fresh strawberries, recovery of HAV loaded at 104 genome copies per sample was 30 ± 13 %, elution time had no significant impact, and UF membrane with an 80-100 kDa cut-off in combination with Tris-glycine elution buffer at pH 9.5 was found optimal. At lower copy numbers on fresh strawberry, at least 1 log lower numbers of HuNoV were detectable by the UF method (103 vs 104 GII.4 copies/sample and 101 vs 103 GI.7 copies/sample), while HAV was detected at 101 genome copies/sample by both methods. Except on raspberry, the UF method was usually equivalent to the ISO method regardless of the virus tested. The UF method makes rapid viral concentration possible, while supporting the filtration of large volume of sample. With fewer steps and shorter analysis time than the ISO method, this method could be suitable for routine analysis of viruses throughout the food production and surveillance chain.
Collapse
Affiliation(s)
- Mathilde Trudel-Ferland
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Marianne Levasseur
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Valérie Goulet-Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | - Eric Jubinville
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| | | | - Julie Jean
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
8
|
Wales SQ, Kulka M, Keinard B, Ngo D, Papafragkou E. Use of Human Intestinal Enteroids for Recovery of Infectious Human Norovirus from Berries and Lettuce. Foods 2023; 12:4286. [PMID: 38231763 DOI: 10.3390/foods12234286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Norovirus (NoV) is the leading cause of viral foodborne gastroenteritis globally. Currently, the gold standard for detecting NoV in clinical, food, and environmental samples is via molecular-based methods, primarily RT-PCR. Nevertheless, there is a great need for confirmatory assays that can determine the infectivity of viral particles recovered from contaminated matrices. The use of the human intestinal enteroids system (HIEs) has allowed for the expansion of norovirus replication, although it still suffers from limitations of strain preferences and the requirement of high titer stocks for infection. In this study, we wanted to explore the feasibility of using the HIEs to support the replication of NoV that had been recovered from representative food matrices that have been associated with foodborne illness. We first confirmed that HIEs can support the replication of several strains of NoV as measured by RT-qPCR. We subsequently chose two of those strains that reproducibly replicated, GII.4 and GII.6, to evaluate in a TCID50 assay and for future experiments. Infectious NoV could be recovered and quantified in the HIEs from lettuce, frozen raspberries, or frozen strawberries seeded with high titers of either of these strains. While many experimental challenges still remain to be overcome, the results of this study represent an important step toward the detection of infectious norovirus from representative produce items.
Collapse
Affiliation(s)
- Samantha Q Wales
- Office of Applied Research and Safety Assessment, CFSAN FDA, Laurel, MD 20708, USA
| | - Michael Kulka
- Office of Applied Research and Safety Assessment, CFSAN FDA, Laurel, MD 20708, USA
| | - Brianna Keinard
- Office of Applied Research and Safety Assessment, CFSAN FDA, Laurel, MD 20708, USA
| | - Diana Ngo
- Office of Applied Research and Safety Assessment, CFSAN FDA, Laurel, MD 20708, USA
| | | |
Collapse
|
9
|
Yu Z, Xu Z, Chen J, Chen L, Liao N, Zhang R, Cheng D. Quantitative Risk Assessment of Five Foodborne Viruses in Shellfish Based on Multiplex qPCR. Foods 2023; 12:3462. [PMID: 37761170 PMCID: PMC10530164 DOI: 10.3390/foods12183462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/09/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Foodborne diseases are currently the most critical food safety issue in the world. There are not many hazard identification and exposure assessments for foodborne viruses (Norovirus GI, GII, Hepatitis A Virus, Rotavirus, Adenovirus) in shellfish. Multiplex qPCR for the simultaneous detection of five foodborne viruses was established and used to assess infection risk based on a 1-year pathogenesis study. The sensitivity, specificity and reproducibility of the multiplex qPCR method are consistent with that of conventional qPCR, which saves more time and effort. Overall, 37.86% of shellfish samples had one or more foodborne viruses. Risk assessment formulae and matrices were used to develop risk assessments for different age groups, different seasons and different shellfish. The annual probability of contracting a foodborne virus infection from shellfish is greater than 1.6 × 10-1 for all populations, and even for infants aged 0-4 years, it is greater than 1.5 × 10-2, which is much higher than the risk thresholds recommended by WHO (10-6) and the US EPA (10-4). High risk (level IV) is associated with springtime, and medium risk (level III) is associated with Mussel consumption. This study provides a basis for the risk of foodborne viral infections in people of different ages, in different seasons, and by consuming different shellfish.
Collapse
Affiliation(s)
- Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Y.)
| | - Zhangkai Xu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Y.)
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, China
| | - Jiang Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Y.)
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ningbo Liao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Z.Y.)
| |
Collapse
|
10
|
Raymond P, Paul S, Guy RA. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods 2023; 12:foods12040826. [PMID: 36832901 PMCID: PMC9957022 DOI: 10.3390/foods12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Human norovirus (HuNoV) is the leading pathogen responsible for food-borne illnesses. However, both infectious and non-infectious HuNoV can be detected by RT-qPCR. This study evaluated the efficiency of different capsid integrity treatments coupled with RT-qPCR or a long-range viral RNA (long RT-qPCR) detection to reduce the recovery rates of heat inactivated noroviruses and fragmented RNA. The three capsid treatments evaluated (RNase, the intercalating agent PMAxx and PtCl4) reduced the recovery of heat inactivated HuNoV and murine norovirus (MNV) spiked on lettuce, when combined with the ISO 15216-1:2017 extraction protocols. However, PtCl4 also reduced non-heat-treated noroviruses recovery as estimated by RT-qPCR. The PMAxx and RNase treatments had a similar effect on MNV only. The most efficient approaches, the RNase and PMAxx treatments, reduced the heat-inactivated HuNoV recovery rates estimated using RT-qPCR by 2 and >3 log, respectively. The long RT-qPCR detection approach also reduced the recovery rates of heat inactivated HuNoV and MNV by 1.0 and 0.5 log, respectively. Since the long-range viral RNA amplification could be applied to verify or confirm RT-qPCR results, it also provides some advantages by reducing the risk of false positive HuNoV results.
Collapse
Affiliation(s)
- Philippe Raymond
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
- Correspondence:
| | - Sylvianne Paul
- St-Hyacinthe Laboratory—Food Virology, Canadian Food Inspection Agency (CFIA), St-Hyacinthe, QC J2S 8E3, Canada
| | - Rebecca A. Guy
- National Microbiology Laboratory, Division of Enteric Diseases, Public Health Agency of Canada (PHAC), Guelph, ON N1G 3W4, Canada
| |
Collapse
|
11
|
Larocque É, Lévesque V, Lambert D. Crystal digital RT-PCR for the detection and quantification of norovirus and hepatitis A virus RNA in frozen raspberries. Int J Food Microbiol 2022; 380:109884. [PMID: 36055105 DOI: 10.1016/j.ijfoodmicro.2022.109884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 10/31/2022]
Abstract
Berries are important vehicles for norovirus (NoV) and hepatitis A virus (HAV) foodborne outbreaks. Sensitive and quantitative detection of these viruses in food samples currently relies on RT-qPCR, but remains challenging due to their low concentration and the presence of RT-qPCR inhibitors. Moreover, quantification requires a standard curve. In this study, crystal digital RT-PCR (RT-cdPCR) assays were adapted from RT-qPCR sets of primers and probe currently used in our diagnostic laboratory for the detection and precise quantification of norovirus genogroups I and II (NoV GI, GII) and hepatitis A virus (HAV) RNA in frozen raspberry samples. We selected assay conditions based on optimal separation of positive and negative droplets, and peak resolution. Using virus-specific in vitro RNA transcripts diluted in raspberry RNA extracts, we showed that all three RT-cdPCR assays were sensitive, and we estimated the 95 % detection limit at 9 copies per RT-cdPCR reaction for NoV GI, 3 for NoV GII, and 14 for HAV. Serial dilutions of the RNA transcripts showed excellent linearity over a range of four orders of magnitude. We achieved precise quantification (CV ≤ 35 %) of the RNA transcripts between runs down to 15-145 copies per reaction for NoV GI, <20 for NoV GII, and < 15 for HAV. The three RT-cdPCR assays also proved to be tolerant to inhibitors from frozen raspberries, although not as tolerant as the RT-qPCR assays in the case of NoV GI and HAV. We further evaluated the assays with inoculated frozen raspberry samples and compared their performance to that of the RT-qPCR assays. As compared to the corresponding RT-qPCR assays, the NoV GI and HAV RT-cdPCR assays showed a decreased qualitative sensitivity, while the NoV GII RT-cdPCR assay had an increased sensitivity. As for quantification, the NoV GI and NoV GII RT-cdPCR assays produced similar estimates of RNA copy number than their respective RT-qPCR assays, whereas for HAV, the RT-cdPCR assay produced lower estimates than the RT-qPCR assay. However, all the RT-cdPCR assays provided more precise quantitative measurements at low levels of contamination than the RT-qPCR assays. In conclusion, the potential of the RT-cdPCR assays in this study to detect viral RNA from frozen raspberries varied according to assay, but these RT-cdPCR assays should be considered for precise absolute quantification in difficult matrices such as frozen raspberries.
Collapse
Affiliation(s)
- Émilie Larocque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada.
| | - Valérie Lévesque
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| | - Dominic Lambert
- Food Virology National Reference Centre, St. Hyacinthe Laboratory, Canadian Food Inspection Agency (CFIA), 3400 Casavant Boulevard West, St. Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
12
|
Steele M, Lambert D, Bissonnette R, Yamamoto E, Hardie K, Locas A. Norovirus GI and GII and hepatitis A virus in berries and pomegranate arils in Canada. Int J Food Microbiol 2022; 379:109840. [PMID: 35905649 DOI: 10.1016/j.ijfoodmicro.2022.109840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022]
Abstract
Between 2016 and 2021, the Canadian Food Inspection Agency (CFIA) collected 4218 samples of fresh and frozen berries (blackberries, blueberries, raspberries, strawberries and mixed berries) and pomegranate arils at retail across 11 major cities in Canada and tested these samples for the presence of norovirus GI, norovirus GII and hepatitis A virus RNA. The purpose of this testing was to provide information on the prevalence of these viruses in berries and pomegranate arils on the Canadian marketplace. Of the 926 fresh fruit samples tested, norovirus GI RNA was detected in one raspberry sample and norovirus GII RNA was detected in one strawberry sample. Of the 3292 frozen fruit samples tested, norovirus GI RNA was detected in one blackberry sample, one raspberry sample and one strawberry sample, and norovirus GII RNA was detected in one blueberry sample, three raspberry samples, four strawberry samples, one pomegranate arils sample and one mixed berry sample. None of the fresh or frozen fruit samples tested positive for hepatitis A virus RNA. No statistically significant associations were observed between the prevalence of viral RNA in samples of fresh and frozen fruit, between the prevalence of viral RNA in samples of domestic and imported fruit or between the prevalence of viral RNA in samples of specific fruit types. Overall, the prevalence of norovirus GI and GII RNA together in fresh and frozen fruit samples in Canada was 0.36 %. The results of this study may be used to refine surveillance programs for norovirus and hepatitis A virus in fresh and frozen berries and pomegranate arils, e.g. by adapting the commodities tested and/or the numbers of planned samples to better target these hazards. This information may also be used to inform other Government of Canada approaches to better understand the controls associated norovirus and hepatitis A virus in fresh and frozen berries and pomegranate arils.
Collapse
Affiliation(s)
- Marina Steele
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9.
| | - Dominic Lambert
- Food Virology National Reference Centre, Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Casavant Boulevard West, St-Hyacinthe J2S 8E3, QC, Canada
| | - Rachel Bissonnette
- Food Virology National Reference Centre, Canadian Food Inspection Agency, St-Hyacinthe Laboratory, 3400 Casavant Boulevard West, St-Hyacinthe J2S 8E3, QC, Canada
| | - Etsuko Yamamoto
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| | - Kate Hardie
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| | - Annie Locas
- Food Safety Science Directorate, Canadian Food Inspection Agency, 1400 Merivale Rd., Ottawa, ON, Canada K1A 0Y9
| |
Collapse
|
13
|
Kerachian MA, Amel Jamehdar S, Azghandi M, Keyvanlou N, Mozaffari-Jovin S, Javadmanesh A, Amini M. Developing novel liquid biopsy by selective capture of viral RNA on magnetic beads to detect COVID-19. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:762-766. [PMID: 35949306 PMCID: PMC9320198 DOI: 10.22038/ijbms.2022.65260.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/07/2022]
Abstract
Objectives Early, specific, and sensitive detection methods of COVID-19 are essential for force stopping its worldwide infection. Although CT images of the lung and/or viral RNA extraction followed by real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) are widely used; they have some limitations. Here, we developed a highly sensitive magnetic bead-based viral RNA extraction assay followed by rRT-PCR. Materials and Methods Case group included oropharyngeal/nasopharyngeal and blood samples from 30 patients diagnosed positive by PCR test for COVID-19 and control group included 30 same samples from COVID-19 negative PCR test individuals. RNA was extracted, using viral RNA extraction kit as well as using our hand-made capture bead-based technique. A one-step cDNA synthesis and Real Time PCR was conducted. A two-step comparison of the different viral RNA extraction methods for oropharyngeal/nasopharyngeal and blood samples was performed. Student t-test was applied with a P<0.05 considered statistically significant. Results In the case group, all 30 mucosal samples extracted either with viral RNA extraction kit or with beads-based assay were COVID-19 positive although in the latter category, Cqs were much lower. Although 43% of plasma samples extracted by bead-based method were found to be positive but no plasma samples extracted with column-based kit were detected positive by Real Time PCR. Conclusion Bead-based RNA extraction method can reduce RNA loss by its single-tube performance and enhance the test sensitivity. It is also more sensitive to lower viral loads as shown in the detection of blood samples and the lower Cqs of mucosal samples.
Collapse
Affiliation(s)
- Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran,Corresponding author: Mohammad Amin Kerachian. Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/ Fax: +98-5138002244;
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Azghandi
- Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran,Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nasrin Keyvanlou
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Mozaffari-Jovin
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran,Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahnaz Amini
- Lung Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Raymond P, Paul S, Perron A, Bellehumeur C, Larocque É, Charest H. Detection and Sequencing of Multiple Human Norovirus Genotypes from Imported Frozen Raspberries Linked to Outbreaks in the Province of Quebec, Canada, in 2017. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:40-58. [PMID: 35066807 PMCID: PMC8881426 DOI: 10.1007/s12560-021-09507-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Human noroviruses are among the main causes of acute gastroenteritis worldwide. Frozen raspberries have been linked to several norovirus food-related outbreaks. However, the extraction of norovirus RNA from frozen raspberries remains challenging. Recovery yields are low and PCR inhibitors limit the sensitivity of the detection methodologies. In 2017, 724 people from various regions of the Province of Quebec, Canada, were infected by noroviruses and the outbreak investigation pointed to frozen raspberries as a putative source. A new magnetic silica bead approach was used for the extraction of viruses from different outbreak samples. The RNA extracts were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and five samples were confirmed positive for norovirus by RT-qPCR amplicon sequencing. A multiplex long-range two-step RT-PCR approach was developed to amplify norovirus ORF2 and ORF3 capsid genes from the positive frozen raspberry RNA extracts and other sequencing strategies were also explored. These capsid genes were sequenced by Next-Generation Sequencing. Phylogenetic analyses confirmed the presence of multiple genotypes (GI.3, GI.6, and GII.17) and intra-genotype variants in some of the frozen raspberry samples. Variants of genotype GI.3 and GI.6 had 100% homology with sequences from patient samples. Similar strains were also reported in previous outbreaks. Confirmation approaches based on sequencing the norovirus capsid genes using Next-Generation Sequencing can be applied at trace level contaminations and could be useful to assess risk and assist in source tracking.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada.
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - André Perron
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Christian Bellehumeur
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Émilie Larocque
- Canadian Food Inspection Agency (CFIA), Saint-Hyacinthe Laboratory - Food Virology, Saint-Hyacinthe, QC, Canada
| | - Hugues Charest
- Laboratoire de santé publique du Québec et Université de Montréal, département de microbiologie, infectiologie et immunologie, Montréal, QC, Canada
| |
Collapse
|