1
|
Taylor B, Ofori KF, Parsaeimehr A, Akdemir Evrendilek G, Attarwala T, Ozbay G. Exploring the Complexities of Seafood: From Benefits to Contaminants. Foods 2025; 14:1461. [PMID: 40361542 PMCID: PMC12071223 DOI: 10.3390/foods14091461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Seafood plays a vital role in human diets worldwide, serving as an important source of high-quality protein, omega-3 fatty acids, and essential vitamins and minerals that promote health and prevent various chronic conditions. The health benefits of seafood consumption are well documented, including a reduced risk of cardiovascular diseases, improved cognitive function, and anti-inflammatory effects. However, the safety of seafood is compromised by multiple hazards that can pose significant health risks. Pathogenic microorganisms, including bacteria, viruses, and parasites, in addition to microbial metabolites, are prominent causes of the foodborne diseases linked to seafood consumption, necessitating reliable detection and monitoring systems. Molecular biology and digital techniques have emerged as essential tools for the rapid and accurate identification of these foodborne pathogens, enhancing seafood safety protocols. Additionally, the presence of chemical contaminants such as heavy metals (e.g., mercury and lead), microplastics, and per- and polyfluoroalkyl substances (PFASs) in seafood is of increasing concern due to their potential to accumulate in the food chain and adversely affect human health. The biogenic amines formed during the microbial degradation of the proteins and allergens present in certain seafood species also contribute to food safety challenges. This review aims to address the nutritional value and health-promoting effects of seafood while exploring the multifaceted risks associated with microbial contamination, chemical pollutants, and naturally occurring substances. Emphasis is placed on enhanced surveillance, seafood traceability, sustainable aquaculture practices, and regulatory harmonization as effective strategies for controlling the risks associated with seafood consumption and thereby contributing to a safer seafood supply chain.
Collapse
Affiliation(s)
- Bettina Taylor
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
| | - Kelvin Fynn Ofori
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Ali Parsaeimehr
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | | | - Tahera Attarwala
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | - Gulnihal Ozbay
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| |
Collapse
|
2
|
Raza S, Bończak B, Atamas N, Karpińska A, Ratajczyk T, Łoś M, Hołyst R, Paczesny J. The activity of indigo carmine against bacteriophages: an edible antiphage agent. Appl Microbiol Biotechnol 2025; 109:24. [PMID: 39862274 PMCID: PMC11762416 DOI: 10.1007/s00253-025-13414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC50 values ranging from 0.105 to 0.006 mg/mL while showing no activity against the RNA phage MS2. Fluorescence correlation spectroscopy (FCS) revealed that IC selectively binds to dsDNA, demonstrated by a significant reduction in the diffusion coefficient, whereas no binding was observed with ssDNA or RNA. Mechanistically, IC permeates the phage capsid, leading to genome ejection and capsid deformation, as confirmed by TEM imaging. Under optimal conditions (50 °C, 220 rpm), IC achieved up to a 7-log reduction in phage titer, with kinetic theory supporting the enhanced collision frequency induced by agitation. Additionally, IC protected E. coli cultures from phage-induced lysis without affecting bacterial growth or protein production, as demonstrated by GFP expression assays. IC's effectiveness and environmental safety, combined with its FDA approval and cost-effectiveness, make it a promising antiphage agent for industrial applications. KEY POINTS: • Indigo carmine effectively inactivates a broad spectrum of bacteriophages, offering protection to bacteria in industrial cultures. • A novel application of indigo carmine as a food-grade, environmentally safe, and FDA-approved antiphage agent protecting bacterial cultures. • Antiphage activity arises from indigo carmine's interaction with DNA within the phage capsid without harming bacterial cells or compromising protein production in bacterial cultures.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Nataliia Atamas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, Kiev, 03127, Ukraine
| | - Aneta Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Phage Consultants, Partyzantów 10/18, 80-254, Gdańsk, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
3
|
Ferri G, Olivieri V, Vergara A. Human enteric viruses' detection in mussels ( Mytilus galloprovincialis) farmed in the central Adriatic Sea. Ital J Food Saf 2024; 13:12349. [PMID: 39301144 PMCID: PMC11411409 DOI: 10.4081/ijfs.2024.12349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 09/22/2024] Open
Abstract
Human enteric viruses, such as hepatitis A virus (HAV), hepatitis E virus (HEV), and norovirus genogroups I and II (NoVGI and NoVGII), cause infections, and it has been largely demonstrated that mussels play an important role if consumed as raw or undercooked food matrices. This study aimed to investigate, through qualitative and quantitative biomolecular assays, the detection of partial genomic regions belonging to the most relevant enteropathogenic viruses for humans (HAV, HEV, NoVGI and NoVGII) in mussels (Mytilus galloprovincialis) farmed along the coasts of two Italian regions on the central Adriatic Sea: Abruzzo (Casalbordino, Chieti) and Molise (Termoli, Campobasso). A total of 425 animals were sampled, and the respective georeferentiations were registered. A total of 85 pools, each composed of five sub-jects/aliquots, were formed (22 from Abruzzo and 63 from Molise regions). This step was followed by homogenization and RNA extraction, and then the biomolecular assays [nested reverse transcription polymerase chain reaction (PCR) and real-time reverse transcription-quantitative PCR] were performed. 1.17% of the pool was positive for HAV RNA detection (102 copies/mL), 9.41% for HEV (102-103 copies/µL), 2.35% for NoVGI (101 copies/µL), and no pool was positive for NoVGII. This study demonstrated the human enteric viruses' presence in mussels farmed in a low-investigated marine area. Based on a one-health point of view, this paper aims to enforce the importance of biomolecular and epidemiological screenings as surveillance systems to guarantee human, animal, and environmental health.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Italy
| | - Vincenzo Olivieri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Italy
| | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Piano d'Accio, Italy
| |
Collapse
|
4
|
Kusior A, Mazurkow J, Jelen P, Bik M, Raza S, Wdowiak M, Nikiforov K, Paczesny J. Copper Oxide Electrochemical Deposition to Create Antiviral and Antibacterial Nanocoatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14838-14846. [PMID: 38978473 PMCID: PMC11270987 DOI: 10.1021/acs.langmuir.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The impact of the reaction environment on the formation of the polycrystalline layer and its biomedical (antimicrobial) applications were analyzed in detail. Copper oxide layers were synthesized using an electrodeposition technique, with varying additives influencing the morphology, thickness, and chemical composition. Scanning electron microscopy (SEM) images confirmed the successful formation of polyhedral structures. Unmodified samples (CuL) crystallized as a mixture of copper oxide (I) and (II), with a thickness of approximately 1.74 μm. The inclusion of the nonconductive polymer polyvinylpyrrolidone (PVP) during synthesis led to a regular and compact CuO-rich structure (CuL-PVP). Conversely, adding glucose resulted in forming a Cu2O-rich nanostructured layer (CuL-D(+)G). Both additives significantly reduced the sample thickness to 617 nm for CuL-PVP and 560 nm for CuL-D(+)G. The effectiveness of the synthesized copper oxide layers was demonstrated in their ability to significantly reduce the T4 phage titer by approximately 2.5-3 log. Notably, CuL-PVP and CuL-D(+)G showed a more substantial reduction in the MS2 phage titer, achieving about a 5-log decrease. In terms of antibacterial activity, CuL and CuL-PVP exhibited moderate efficacy against Escherichia coli, whereas CuL-D(+)G reduced the E. coli titer to undetectable levels. All samples induced similar reductions in Staphylococcus aureus titer. The study revealed differential susceptibilities, with Gram-negative bacteria being more vulnerable to CuL-D(+)G due to its unique composition and morphology. The antimicrobial properties were attributed to the redox cycling of Cu ions, which generate ROS, and the mechanical damage caused by nanostructured surfaces. A crucial finding was the impact of surface composition rather than surface morphology on antimicrobial efficacy. Samples with a dominant Cu2O composition exhibited potent antibacterial and antiviral properties, whereas CuO-rich materials showed predominantly enhanced antiviral activity. This research highlights the significance of phase composition in determining the antimicrobial properties of copper oxide layers synthesized through electrodeposition.
Collapse
Affiliation(s)
- Anna Kusior
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Julia Mazurkow
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Piotr Jelen
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Maciej Bik
- AGH
University of Krakow, Faculty of Material
Sciences and Ceramics, Mickiewicza 30, Kraków 30-059, Poland
| | - Sada Raza
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Mateusz Wdowiak
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Kostyantyn Nikiforov
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| | - Jan Paczesny
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, Warszawa 01-224, Poland
| |
Collapse
|
5
|
Yang ZC, Wang WL, Jing ZB, Jiang YQ, Zhang HQ, Lee MY, Peng L, Wu QY. Ozone, hydrogen peroxide, and peroxymonosulfate disinfection of MS2 coliphage in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:824-831. [PMID: 38323647 DOI: 10.1039/d3em00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.
Collapse
Affiliation(s)
- Zi-Chen Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yi-Qing Jiang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - He-Qing Zhang
- CSCEC Scimee Sci.&Tech. Co., Ltd., Beijing 100084, PR China
| | - Min-Yong Lee
- National Institute of Environment Research, Ministry of Environment, Incheon 22689, Republic of Korea
| | - Lu Peng
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|