1
|
Li W, Saeki H, Yang B, Shimizu Y, Joe GH. Enhanced anti-inflammatory effect of fish myofibrillar protein by introducing pectin oligosaccharide and its molecular mechanisms. Food Chem 2025; 463:141082. [PMID: 39276689 DOI: 10.1016/j.foodchem.2024.141082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
This study investigated the efficacy of glycation with edible uronic acid-containing oligosaccharides via the Maillard reaction to enhance the anti-inflammatory effect of fish myofibrillar protein (Mf). Lyophilized Mf was reacted with pectin oligosaccharide (PO, half of the total protein weight) at 60 °C and 35 % relative humidity for up to 12 h to produce glycated Mf (Mf-PO). After pepsin and trypsin digestion, the anti-inflammatory effect was assessed by measuring the secretions of proinflammatory cytokines in LPS-stimulated RAW 264.7 macrophages, and the anti-inflammatory effect of Mf was enhanced by PO-glycation without marked lysine loss and browning. The effects on the expressions of genes related to the LPS-stimulated signaling pathway in macrophages were also examined. PO-glycation suppressed LPS-stimulated inflammation by suppressing expression of cd14 and enhancing suppressive effect of Mf on the TLR4-MyD88-dependent inflammatory signaling pathway. Therefore, as an edible reducing sugar, PO could be an effective bioindustrial material for developing anti-inflammatory Mf.
Collapse
Affiliation(s)
- Wenzhao Li
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Boxue Yang
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan; Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning 116023, PR China
| | - Yutaka Shimizu
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Ga-Hyun Joe
- Laboratory of Marine Food Science and Technology, Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
2
|
Yang B, Li W, Saeki H, Shimizu Y, Joe GH. Maillard-type glycated collagen with alginate oligosaccharide suppresses inflammation and oxidative stress by attenuating the expression of LPS receptors Tlr4 and Cd14 in macrophages. Food Funct 2024; 15:3629-3639. [PMID: 38482590 DOI: 10.1039/d3fo02731g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inflammation and oxidative stress contribute to noncommunicable diseases (NCDs), with macrophages playing pivotal roles. Glycated collagen through Maillard-type glycation holds promise for enhancing anti-inflammatory properties, but its mechanism remains unclear. This study investigates the cellular mechanism and aims to contribute to expanding collagen utilization. Collagen was glycated with alginate oligosaccharide (AO) and glucose (Glc: as a comparative case) at 60 °C and 35% relative humidity for up to 24 h (C-AO and C-Glc, respectively). The anti-inflammatory activities of both C-AO and C-Glc were evaluated using an LPS-stimulated macrophage model. 18 h AO-glycated collagen (C-AO18 h) was found to significantly reduce the production of nitric oxide and proinflammatory cytokines (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). In contrast, C-Glc did not exhibit enhanced anti-inflammatory activity during any of the glycation periods. The enhanced anti-inflammatory activity of C-AO18 h was attributed to its downregulating effect on LPS receptors (toll-like receptor 4, Tlr4; cluster of differentiation 14, Cd14) and myeloid differentiation primary response 88 (Myd88) mRNA expression, with suppression in receptor expression resulting in decreased phagocytic ability of macrophages against E. coli. In addition, compared with intact collagen, C-AO18 h exhibited improved antioxidant activity in the LPS-stimulated macrophage model, as it significantly upregulated superoxide dismutase (SOD) and catalase (CAT) activities while reducing malondialdehyde (MDA) levels. Overall, this study contributes to the development of collagen-based functional foods for mitigating inflammation and oxidative stress in NCDs.
Collapse
Affiliation(s)
- Boxue Yang
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, PR China
| | - Wenzhao Li
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| | - Ga-Hyun Joe
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
3
|
Glycation with uronic acid-type reducing sugar enhances the anti-inflammatory activity of fish myofibrillar protein via the Maillard reaction. Food Chem 2023; 407:135162. [PMID: 36525806 DOI: 10.1016/j.foodchem.2022.135162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
The role of carboxyl group in uronic acid in enhancing the anti-inflammatory activity of fish myofibrillar protein (Mf) was investigated, when lyophilized Mf was reacted with various reducing sugars at 60 °C and 35% relative humidity through the Maillard reaction. After pepsin and trypsin digestion, the anti-inflammatory activity was evaluated by measuring the secretions of tumor necrosis factor-α, interleukin-6, interleukin-1β, and nitric oxide in lipopolysaccharide-stimulated RAW 264.7 macrophage. The anti-inflammatory activity of Mf was not affected by glycation with glucose or galactose, whereas strongly enhanced by glycation with uronic acid-type reducing sugars: glucuronic acid, galacturonic acid, and alginate oligosaccharide. These results indicate that the presence of carboxyl group in reducing sugar is important for enhancing the anti-inflammatory activity of Mf. This study also shows that the enhanced effect could depend upon the number of carboxyl group in bound reducing sugar.
Collapse
|
4
|
Yan S, Zhu Y, Li L, Qin S, Yuan J, Chang X, Hu S. Alginate oligosaccharide ameliorates azithromycin-induced gut microbiota disorder via Bacteroides acidifaciens-FAHFAs and Bacteroides-TCA cycle axes. Food Funct 2023; 14:427-444. [PMID: 36515227 DOI: 10.1039/d2fo02812c] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate oligosaccharide is a kind of prebiotic with broad application prospects. However, little attention is paid to the recovery effect of alginate oligosaccharide on disordered intestinal microecology caused by azithromycin. Therefore, we evaluated the regulatory effect of alginate oligosaccharide and its compound on azithromycin-disturbed gut microbiota in mice via microbiome-metabolomics analysis. The gut microbiota analysis revealed that alginate oligosaccharide and its compound significantly increased the richness and diversity of the gut microbiota which were reduced by azithromycin, with an obvious enrichment of beneficial bacteria such as the Akkermansia genus and Bacteroides acidifaciens, and a remarkable decrease of pathogenic bacteria such as the Staphylococcus genus, which indicated its impact on the gut microbiota dysbiosis. Additionally, the effect of the alginate oligosaccharide compound on regulating the gut microbiota disorder is more significant than that of alginate oligosaccharide. The favorable effects of alginate oligosaccharide were confirmed by beneficial alterations in metabolic effector molecules, which indicated that alginate oligosaccharide and its compound improved metabolic homeostasis via the Bacteroides acidifaciens-fatty acid esters of hydroxy fatty acids (FAHFAs) axis and increasing the levels of the intermediate products of the tricarboxylic acid cycle (TCA cycle), such as citric acid, fumaric acid and α-ketoglutaric acid. Spearman correlation analysis showed that the contents of these three metabolites were also positively related to Bacteroides acidifaciens and Bacteroides sartorii populations, suggesting the potential regulatory role of the Bacteroides genus in energy balance through the TCA cycle. This study may provide an innovative dietary strategy for the regulation of intestinal microecological disorders caused by antibiotics, and reveal the prospect of alginate oligosaccharide as an intestinal microecological regulator.
Collapse
Affiliation(s)
- Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China. .,University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Zhu
- Department of Gastroenterology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Jingyi Yuan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Xiulian Chang
- College of Life Sciences, Yantai University, Yantai, China
| | - Shanliang Hu
- Department of Radiotherapy, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
5
|
Yang B, Joe GH, Li W, Shimizu Y, Saeki H. Comparison of Maillard-Type Glycated Collagen with Alginate Oligosaccharide and Glucose: Its Characterization, Antioxidant Activity, and Cytoprotective Activity on H 2O 2-Induced Cell Oxidative Damage. Foods 2022; 11:foods11152374. [PMID: 35954140 PMCID: PMC9367735 DOI: 10.3390/foods11152374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/28/2022] Open
Abstract
To improve the antioxidant activity of collagen molecules using Maillard-type glycation, the relation between antioxidant activity and progress indexes for the Maillard reaction must be understood. In this study, lyophilized tilapia scale collagen was mixed with a half weight of alginate oligosaccharide (AO) or glucose and incubated at 60 °C and 35% relative humidity for up to 18 h to produce the Maillard-type glycated collagen (C-AO and C-Glu, respectively). As glycation progressed, the amount of conjugated sugar coupled with UV-vis absorbance at 294 nm and 420 nm increased more rapidly in C-Glu than in C-AO, and the available lysine decreased rapidly in C-Glu compared with C-AO. The early-to-middle- and late-stage products of the Maillard reaction were involved in enhanced antioxidant activity of digested C-AO and digested C-Glu, respectively. Additionally, C-AO acquired the antioxidant activity without marked available lysine loss. The cytoprotective effect of collagen in H2O2-induced damage was enhanced by glycation, achieved by reducing malondialdehyde content and increasing superoxide dismutase and catalase activities. These results indicate that AO is an excellent reducing sugar that enhances the health benefits of collagen without excessive loss of lysine, which is a nutritional problem of the Maillard-type glycation.
Collapse
|
6
|
Wang K, Li W, Wang K, Hu Z, Xiao H, Du B, Zhao L. Structural and inflammatory characteristics of Maillard reaction products from litchi thaumatin-like protein and fructose. Food Chem 2021; 374:131821. [PMID: 34920401 DOI: 10.1016/j.foodchem.2021.131821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/11/2022]
Abstract
The structural characteristics and inflammatory activity of Maillard reaction products (MRPs) from fructose (Fru) and litchi thaumatin-like protein (LcTLP) with a pro-inflammatory activity were investigated. The structural changes of LcTLP-Fru MRPs were divided into two stages during the Maillard reaction. In 0-6 h, the unfolding and degradation of the LcTLP were dominant, resulting in a looser structure; the increase of β-sheets was 13.02%; the decrease of α-helices was 9.21%; and both the molecular weight and gyration radius Rg decreased. After 6 h, the enhanced glycosylation caused the molecular weight to increase, while Rg remained low, implying that the molecular structure became more compact. In addition, LcTLP-Fru MRPs reduced the inflammation response by significantly reducing the gene and protein expressions of tumor necrosis factor-α, interleukin-1β, and interleukin-6 compared with the LcTLP group in RAW264.7 macrophages. The findings provided a theoretical foundation for addressing the inflammatory response caused by litchi products consumption.
Collapse
Affiliation(s)
- Kun Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weichao Li
- Intensive Care Unit, Sun Yat-sen Memorical Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agricultural, 510642, China.
| |
Collapse
|
7
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Mikov M, Al-Salami H. Advancements in Assessments of Bio-Tissue Engineering and Viable Cell Delivery Matrices Using Bile Acid-Based Pharmacological Biotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1861. [PMID: 34361247 PMCID: PMC8308343 DOI: 10.3390/nano11071861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022]
Abstract
The utilisation of bioartificial organs is of significant interest to many due to their versatility in treating a wide range of disorders. Microencapsulation has a potentially significant role in such organs. In order to utilise microcapsules, accurate characterisation and analysis is required to assess their properties and suitability. Bioartificial organs or transplantable microdevices must also account for immunogenic considerations, which will be discussed in detail. One of the most characterized cases is the investigation into a bioartificial pancreas, including using microencapsulation of islets or other cells, and will be the focus subject of this review. Overall, this review will discuss the traditional and modern technologies which are necessary for the characterisation of properties for transplantable microdevices or organs, summarizing analysis of the microcapsule itself, cells and finally a working organ. Furthermore, immunogenic considerations of such organs are another important aspect which is addressed within this review. The various techniques, methodologies, advantages, and disadvantages will all be discussed. Hence, the purpose of this review is providing an updated examination of all processes for the analysis of a working, biocompatible artificial organ.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
8
|
Mrudulakumari Vasudevan U, Lee OK, Lee EY. Alginate derived functional oligosaccharides: Recent developments, barriers, and future outlooks. Carbohydr Polym 2021; 267:118158. [PMID: 34119132 DOI: 10.1016/j.carbpol.2021.118158] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Alginate is a biopolymer used extensively in the food, pharmaceutical, and chemical industries. Alginate oligosaccharides (AOS) derived from alginate exhibit superior biological activities and therapeutic potential. Alginate lyases with characteristic substrate specificity can facilitate the production of a broad array of AOS with precise structure and functionality. By adopting innovative analytical tools in conjunction with focused clinical studies, the structure-bioactivity relationship of a number of AOS has been brought to light. This review covers fundamental aspects and recent developments in AOS research. Enzymatic and microbial processes involved in AOS production from brown algae and sequential steps involved in AOS structure elucidation are outlined. Biological mechanisms underlying the health benefits of AOS and their potential industrial and therapeutic applications are elaborated. Withal, various challenges in AOS research are traced out, and future directions, specifically on recombinant systems for AOS preparation, are delineated to further widen the horizon of these exceptional oligosaccharides.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ok Kyung Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
9
|
Belik AA, Silchenko AS, Kusaykin MI, Zvyagintseva TN, Ermakova SP. Alginate Lyases: Substrates, Structure, Properties, and Prospects of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Lee D, Nishizawa M, Shimizu Y, Saeki H. Anti-inflammatory effects of dulse (Palmaria palmata) resulting from the simultaneous water-extraction of phycobiliproteins and chlorophyll a. Food Res Int 2017; 100:514-521. [PMID: 28873715 DOI: 10.1016/j.foodres.2017.06.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 11/18/2022]
Abstract
The use of dulse (Palmaria palmata) as a source of edible anti-inflammatory products was evaluated in this study. Phycobiliproteins and chlorophyll a were simultaneously extracted from lyophilized dulse leaves via water-extraction, and subjected to thermolysin digestion to produce thermolysin-digested water-extract (d-DWE). d-DWE significantly reduced tumor necrosis factor-α, interleukin-6, and nitric oxide in LPS-stimulated murine macrophages (RAW 264.7 cells), and orally administered d-DWE mitigated acute inflammation in carrageenan-induced paw edema of mice. Mass spectrometry revealed d-DWE contained peptide LRDGEIILRY (derived from phycoerythrin β-chain) and chlorophyll a decomposition products, and they individually reduced the secretion of the proinflammatory mediators in LPS-stimulated RAW 264.7 cells. These results indicate the anti-inflammatory activity could be from a combined effect of phycobiliprotein and chlorophyll a decomposition products prepared from the water-extract of dulse. Thus, inexpensive and safe water-extraction method is effective for the extraction of anti-inflammatory components from dulse.
Collapse
Affiliation(s)
- Daeyoung Lee
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Mizuho Nishizawa
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Yutaka Shimizu
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan
| | - Hiroki Saeki
- Faculty of Fisheries Sciences, Hokkaido University, Minato 3, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|