1
|
Tan CC, Cao SJ, Chao WH, Zhang B, Deng XY, Wang LN, Kang N, Qiu F. Podophyllum hexandrum Royle mitigates perimenopausal symptoms in an OVX rat model by activating the PI3K/AKT/mTOR pathway and enhancing estrogen receptor expression. JOURNAL OF ETHNOPHARMACOLOGY 2025:119968. [PMID: 40354838 DOI: 10.1016/j.jep.2025.119968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/30/2025] [Accepted: 05/10/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Podophyllum hexandrum Royle, recored in the Pharmacopoeia of the People's Republic of China as Sinopodophyllum hexandrum (Royle) Ying (SH), is a nationally protected Tibetan medicinal plant in China, which has been traditionally used to regulate menstruation, enhance blood circulation, and treat blood stasis and dystocia. However, its potential role and mechanisms in managing perimenopausal syndrome (PMS) remain unclear. AIM OF THE STUDY This study evaluates the therapeutic potential of Sinopodophyllum hexandrum (Royle) Ying rhizomes (SHR) and fruits (SHF) in PMS and investigates their underlying molecular mechanisms. MATERIALS AND METHODS The anti-PMS effects of SHR and SHF were examined in an ovariectomized (OVX) rat model by assessing uterine histopathology and hormone levels. Serum lipid profiles, including triglycerides (TG ), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), as well as malondialdehyde (MDA) levels and superoxide dismutase (SOD) levels, were analyzed using biochemical assays. Astral-DIA proteomics identified differentially expressed proteins (DEPs) and key signaling pathways affected by SHF. Protein expression was evaluated via western blotting, immunohistochemistry, and RT-qPCR. Estrogenic activity was further assessed in vitro through MCF-7 cell viability and estrogen receptor (ER) expression analysis. RESULTS SHR and SHF treatment significantly improved uterine morphology in OVX rats, restoring endometrial and epithelial thickness. High-dose of SHF (SHF-H) increased serum estradiol (E2) by 100.02%, anti-Müllerian hormone (AMH) by 34.68%, and progesterone (PROG) by 39.96% while decreasing luteinizing hormone (LH) by 31.53%. High-dose SHR (SHR-H) treatment resulted in a 112.89% increase in E2 levels and a 23.88% decrease in LH levels. Additionally, SHR-H and SHF-H regulated the level of oxidative stress and serum lipid levels, showing a significant decline in MDA (48.32%, 65.52%), TG (34.71%, 33.30%), TC (22.34%, 27.77%), and LDL-C (57.09%, 42.96%). Proteomic analysis identified the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and apoptotic regulation as key mechanisms underlying SHF's effects. SHF reversed OVX-induced the suppression of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR in the uterus. SHR and SHF also modulated apoptosis-related proteins, downregulating Bax and Cleaved caspase-3/9 while upregulating Bcl-2. Moreover, SHF significantly increased uterine ERα and ERβ expression at both mRNA and protein levels. In vitro, SHR and SHF extracts promoted MCF-7 cell viability and upregulated ERα, ERβ, and proliferating cell nuclear antigen (PCNA), indicating estrogenic activity. CONCLUSIONS SH alleviates PMS by inhibiting uterine apoptosis via PI3K/AKT/mTOR pathway activation and enhancing estrogen receptor expression. It also regulates hormone levels, lipid metabolism, and oxidative stress, potentially slowing PMS progression. These findings highlight SH as a promising therapeutic agent for PMS and provide novel insights into the molecular mechanisms of Tibetan medicine.
Collapse
Affiliation(s)
- Cui-Cui Tan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wen-Hua Chao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo Zhang
- School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin-Yue Deng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Li-Ning Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Pharmacy, Xinjiang Hetian College, Xinjiang, 848000, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Oh SR, Park SB, Cho YJ. p,p'-DDT induces apoptosis in human endometrial stromal cells via the PI3K/AKT pathway and oxidative stress. Clin Exp Reprod Med 2024; 51:247-259. [PMID: 38711333 PMCID: PMC11372311 DOI: 10.5653/cerm.2022.05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/06/2023] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Bis-[4-chlorophenyl]-1,1,1-trichloroethane (DDT), one of the most widely used synthetic pesticides, is an endocrine-disrupting chemical with the potential to interfere with the human reproductive system. The effects of DDT and one of its metabolites, p,p'-DDT, on human endometrial stromal cells (ESCs) and health outcomes remain unknown. In this study, we investigated whether p,p'-DDT induces an imbalance in cell proliferation and apoptosis in human ESCs via oxidative stress. METHODS We assessed apoptosis in ESCs by quantifying the expression of markers associated with both intrinsic and extrinsic pathways. Additionally, we measured levels of reactive oxygen species (ROS), antioxidant enzyme activity, and estrogen receptors (ERs). We also examined changes in signaling involving nuclear factor kappa-light-chain-enhancer of activated B cells. RESULTS Following treatment with 1,000 pg/mL of p,p'-DDT, we observed an increase in Bax expression, a decrease in Bcl-2 expression, and increases in the expression of caspases 3, 6, and 8. We also noted a rise in the generation of ROS and a reduction in glutathione peroxidase expression after treatment with p,p'-DDT. Additionally, p,p'-DDT treatment led to changes in ER expression and increases in the protein levels of phosphatidylinositol 3-kinase (PI3K), phospho-protein kinase B (phospho-AKT), and phospho-extracellular signal-regulated kinase (phospho-ERK). CONCLUSION p,p'-DDT was found to induce apoptosis in human ESCs through oxidative stress and an ER-mediated pathway. The activation of the PI3K/AKT and ERK pathways could represent potential mechanisms by which p,p'-DDT prompts apoptosis in human ESCs and may be linked to endometrial pathologies.
Collapse
Affiliation(s)
- So Ra Oh
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seung Bin Park
- Department of Obstetrics and Gynecology, Dong-A University Medical Center, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Yeon Jean Cho
- Department of Obstetrics and Gynecology, Samsung Jeil Women's Clinic, Busan, Republic of Korea
| |
Collapse
|
3
|
Yang F, Zheng Y, Luo Q, Zhang S, Yang S, Chen X. Knockdown of NCAPD3 inhibits the tumorigenesis of non-small cell lung cancer by regulation of the PI3K/Akt pathway. BMC Cancer 2024; 24:408. [PMID: 38566039 PMCID: PMC10986035 DOI: 10.1186/s12885-024-12131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Accumulating evidence indicates that aberrant non-SMC condensin II complex subunit D3 (NCAPD3) is associated with carcinogenesis of various cancers. Nevertheless, the biological role of NCAPD3 in the pathogenesis of non-small cell lung cancer (NSCLC) remains unclear. METHODS Immunohistochemistry and Western blot were performed to assess NCAPD3 expression in NSCLC tissues and cell lines. The ability of cell proliferation, invasion, and migration was evaluated by CCK-8 assays, EdU assays, Transwell assays, and scratch wound healing assays. Flow cytometry was performed to verify the cell cycle and apoptosis. RNA-sequence and rescue experiment were performed to reveal the underlying mechanisms. RESULTS The results showed that the expression of NCAPD3 was significantly elevated in NSCLC tissues. High NCAPD3 expression in NSCLC patients was substantially associated with a worse prognosis. Functionally, knockdown of NCAPD3 resulted in cell apoptosis and cell cycle arrest in NSCLC cells as well as a significant inhibition of proliferation, invasion, and migration. Furthermore, RNA-sequencing analysis suggested that NCAPD3 contributes to NSCLC carcinogenesis by regulating PI3K/Akt/FOXO4 pathway. Insulin-like growth factors-1 (IGF-1), an activator of PI3K/Akt signaling pathway, could reverse NCAPD3 silence-mediated proliferation inhibition and apoptosis in NSCLC cells. CONCLUSION NCAPD3 suppresses apoptosis and promotes cell proliferation via the PI3K/Akt/FOXO4 signaling pathway, suggesting a potential use for NCAPD3 inhibitors as NSCLC therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Yunfeng Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Qiong Luo
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, 350001, Fuzhou, Fujian, China.
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, NO.29 of Xinquan Road, Gulou District, 350000, Fuzhou City, Fujian Province, China.
| |
Collapse
|
4
|
Ge Y, Ni X, Li J, Ye M, Jin X. Roles of estrogen receptor α in endometrial carcinoma (Review). Oncol Lett 2023; 26:530. [PMID: 38020303 PMCID: PMC10644365 DOI: 10.3892/ol.2023.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Endometrial carcinoma (EC) is a group of endometrial epithelial malignancies, most of which are adenocarcinomas and occur in perimenopausal and postmenopausal women. It is one of the most common carcinomas of the female reproductive system. It has been shown that the occurrence and development of EC is closely associated with the interaction between estrogen (estradiol, E2) and estrogen receptors (ERs), particularly ERα. As a key nuclear transcription factor, ERα is a carcinogenic factor in EC. Its interactions with upstream and downstream effectors and co-regulators have important implications for the proliferation, metastasis, invasion and inhibition of apoptosis of EC. In the present review, the structure of ERα and the regulation of ERα in multiple dimensions are described. In addition, the classical E2/ERα signaling pathway and the crosstalk between ERα and other EC regulators are elucidated, as well as the therapeutic targeting of ERα, which may provide a new direction for clinical applications of ERα in the future.
Collapse
Affiliation(s)
- Yidong Ge
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaoqi Ni
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jingyun Li
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Meng Ye
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Medical Oncology, The First Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
5
|
Sun H, Hirata T, Koga K, Arakawa T, Nagashima N, Neriishi K, Elsherbini M, Maki E, Izumi G, Harada M, Hirota Y, Wada-Hiraike O, Osuga Y. Elevated phosphorylation of estrogen receptor α at serine-118 in ovarian endometrioma. F&S SCIENCE 2022; 3:401-409. [PMID: 35654737 DOI: 10.1016/j.xfss.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the phosphorylation of estrogen receptor α at serine-118 (phospho-ERα S118) in the endometrium, ovarian endometrioma, and deep infiltrating endometriosis (DIE). DESIGN Experimental study. SETTING University-affiliated hospital and academic research laboratory. PATIENT(S) Twenty-five patients underwent a hysterectomy, 18 patients underwent surgical removal of ovarian endometrioma, and 6 patients underwent DIE. INTERVENTION(S) Tissue samples were obtained from patients who underwent surgical procedures. MAIN OUTCOME MEASURE(S) Immunostaining for phospho-ERα S118, ERα, or phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK) was performed to evaluate the endometrium with or without endometriosis, ovarian endometrioma, and DIE. For in vitro analysis, endometrial epithelial cells (Ishikawa cells) were stimulated with estradiol (E2) or tumor necrosis factor alpha (TNFα), and the expression levels of phospho-ERα S118 and phospho-p44/42 MAPK were evaluated via Western blotting. RESULT(S) First, phospho-ERα S118 level was significantly higher in the glands and stroma of ovarian endometriosis samples than in those of endometrial and DIE samples. Second, colocalization of phospho-p44/42 MAPK and phospho-ERα S118 was observed in the glands of ovarian endometrioma. The proportions of cells strongly expressing phospho-p44/42 and phospho-ERα were 87% in phosphor-p44/42 MAPK-positive cells and 79% in phosphor-ERα-positive cells. Third, E2 stimulation significantly enhanced phospho-ERα S118 after 15 and 30 minutes in in vitro analysis using endometrial epithelial cells. Fourth, TNFα stimulation modestly but significantly enhanced phospho-ERα S118 after 15 and 30 minutes. Fifth, in Ishikawa cells, treatment with a p44/42 inhibitor (PD98059) significantly reduced phospho-ERα S118 by TNFα but not by E2. CONCLUSION(S) ERα-S118 phosphorylation was increased in ovarian endometriosis. Our findings may provide a new perspective for understanding the mechanism of increased ERα action in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Hui Sun
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan; Department of Obstetrics and Gynecology, Doai Kinen Hospital, Tokyo, Japan.
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomoko Arakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Natsuki Nagashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuaki Neriishi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Mohammed Elsherbini
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Eiko Maki
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Gentaro Izumi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Lin LL, Yang F, Zhang DH, Hu C, Yang S, Chen XQ. ARHGAP10 inhibits the epithelial-mesenchymal transition of non-small cell lung cancer by inactivating PI3K/Akt/GSK3β signaling pathway. Cancer Cell Int 2021; 21:320. [PMID: 34174897 PMCID: PMC8236192 DOI: 10.1186/s12935-021-02022-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/14/2021] [Indexed: 01/13/2023] Open
Abstract
Background Rho GTPase activating protein 10 (ARHGAP10) has been implicated as an essential element in multiple cellular process, including cell migration, adhesion and actin cytoskeleton dynamic reorganization. However, the correlation of ARHGAP10 expression with epithelial–mesenchymal transition (EMT) in lung cancer cells is unclear and remains to be elucidated. Herein, we investigated the relationship between the trait of ARHGAP10 and non-small cell lung cancer (NSCLC) pathological process. Methods Immunohistochemistry was conducted to evaluate the expression of ARHGAP10 in NSCLC tissues. CCK-8 assays, Transwell assays, scratch assays were applied to assess cell proliferation, invasion and migration. The expression levels of EMT biomarkers and active molecules involved in PI3K/Akt/GSK3β signaling pathway were examined through immunofluorescence and Western blot. Results ARHGAP10 was detected to be lower expression in NSCLC tissues compared with normal tissues from individuals. Moreover, overexpression of ARHGAP10 inhibited migratory and invasive potentials of A549 and NCI-H1299 cells. In addition, ARHGAP10 directly mediated the process of EMT via PI3K/Akt/GSK3β pathway. Meanwhile, activation of the signaling pathway of insulin-like growth factors-1 (IGF-1) reversed ARHGAP10 overexpression regulated EMT in NSCLC cells. Conclusion ARHGAP10 inhibits the epithelial–mesenchymal transition in NSCLC via PI3K/Akt/GSK3β signaling pathway, suggesting agonist of ARHGAP10 may be an optional remedy for NSCLC patients than traditional opioids.
Collapse
Affiliation(s)
- Lan-Lan Lin
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Fan Yang
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Dong-Huan Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Cong Hu
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China
| | - Sheng Yang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| | - Xiang-Qi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|