1
|
Dorn T, Kornherr J, Parrotta EI, Zawada D, Ayetey H, Santamaria G, Iop L, Mastantuono E, Sinnecker D, Goedel A, Dirschinger RJ, My I, Laue S, Bozoglu T, Baarlink C, Ziegler T, Graf E, Hinkel R, Cuda G, Kääb S, Grace AA, Grosse R, Kupatt C, Meitinger T, Smith AG, Laugwitz KL, Moretti A. Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity. EMBO J 2018; 37:e98133. [PMID: 29764980 PMCID: PMC6003642 DOI: 10.15252/embj.201798133] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages.
Collapse
Affiliation(s)
- Tatjana Dorn
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elvira I Parrotta
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Dorota Zawada
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Harold Ayetey
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Laura Iop
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisa Mastantuono
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Daniel Sinnecker
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Goedel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Ralf J Dirschinger
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Ilaria My
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Svenja Laue
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Tarik Bozoglu
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | | | - Tilman Ziegler
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Rabea Hinkel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
- IPEK Institute for Cardiovascular Prevention, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Andrew A Grace
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert Grosse
- Pharmacology Institute, Philipps University Marburg, Marburg, Germany
| | - Christian Kupatt
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Austin G Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
2
|
Epigenetic basis of opiate suppression of Bdnf gene expression in the ventral tegmental area. Nat Neurosci 2015; 18:415-22. [PMID: 25643298 PMCID: PMC4340719 DOI: 10.1038/nn.3932] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/22/2014] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a crucial role in modulating neural and behavioral plasticity to drugs of abuse. Here, we demonstrate a persistent down-regulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which is mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increases stalling of RNA polymerase II at these Bdnf promoters in VTA and alters permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we show that morphine suppresses binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which results from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributes to Bdnf repression and associated behavioral plasticity to morphine. These studies reveal novel epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.
Collapse
|
3
|
Abstract
The histone methyltransferase Mixed Lineage Leukemia (MLL) is essential to maintain hematopoietic stem cells and is a leukemia protooncogene. Although clustered homeobox genes are well-characterized targets of MLL and MLL fusion oncoproteins, the range of Mll-regulated genes in normal hematopoietic cells remains unknown. Here, we identify and characterize part of the Mll-dependent transcriptional network in hematopoietic stem cells with an integrated approach by using conditional loss-of-function models, genomewide expression analyses, chromatin immunoprecipitation, and functional rescue assays. The Mll-dependent transcriptional network extends well beyond the previously appreciated Hox targets, is comprised of many characterized regulators of self-renewal, and contains target genes that are both dependent and independent of the MLL cofactor, Menin. Interestingly, PR-domain containing 16 emerged as a target gene that is uniquely effective at partially rescuing Mll-deficient hematopoietic stem and progenitor cells. This work highlights the tissue-specific nature of regulatory networks under the control of MLL/Trithorax family members and provides insight into the distinctions between the participation of MLL in normal hematopoiesis and in leukemia.
Collapse
|
4
|
Malmgren S, Spégel P, Danielsson APH, Nagorny CL, Andersson LE, Nitert MD, Ridderstråle M, Mulder H, Ling C. Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem 2013; 288:11973-87. [PMID: 23476019 DOI: 10.1074/jbc.m112.422527] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipotoxicity is a presumed pathogenetic process whereby elevated circulating and stored lipids in type 2 diabetes cause pancreatic β-cell failure. To resolve the underlying molecular mechanisms, we exposed clonal INS-1 832/13 β-cells to palmitate for 48 h. We observed elevated basal insulin secretion but impaired glucose-stimulated insulin secretion in palmitate-exposed cells. Glucose utilization was unchanged, palmitate oxidation was increased, and oxygen consumption was impaired. Halting exposure of the clonal INS-1 832/13 β-cells to palmitate largely recovered all of the lipid-induced functional changes. Metabolite profiling revealed profound but reversible increases in cellular lipids. Glucose-induced increases in tricarboxylic acid cycle intermediates were attenuated by exposure to palmitate. Analysis of gene expression by microarray showed increased expression of 982 genes and decreased expression of 1032 genes after exposure to palmitate. Increases were seen in pathways for steroid biosynthesis, cell cycle, fatty acid metabolism, DNA replication, and biosynthesis of unsaturated fatty acids; decreases occurred in the aminoacyl-tRNA synthesis pathway. The activity of histone-modifying enzymes and histone modifications of differentially expressed genes were reversibly altered upon exposure to palmitate. Thus, Insig1, Lss, Peci, Idi1, Hmgcs1, and Casr were subject to epigenetic regulation. Our analyses demonstrate that coordinate changes in histone modifications, mRNA levels, and metabolite profiles accompanied functional adaptations of clonal β-cells to lipotoxicity. It is highly likely that these changes are pathogenetic, accounting for loss of glucose responsiveness and perturbed insulin secretion.
Collapse
Affiliation(s)
- Siri Malmgren
- Department of Clinical Sciences, Units of Molecular Metabolism, Scania University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|