1
|
Hypoxic pulmonary vascular response can screen subclinical lifestyle disease in healthy population. Microvasc Res 2023; 145:104454. [PMID: 36347299 DOI: 10.1016/j.mvr.2022.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Subclinical life style disease can cause endothelial dysfunction associated with perfusion abnormalities and reduced vascular compliance. Subclinical elevated beta type natriuretic peptide (BNP) has been associated with altered fluid shift from extra to intracellular space during acute hypoxia. Therefore we measured vascular response and BNP levels during acute hypoxia to study endothelial functions among healthy individuals. METHODS Individuals were exposed to acute normobaric hypoxia of FiO2 = 0.15 for one hour in supine position and their pulmonary and systemic vascular response to hypoxia was compared. Individuals were divided into two groups based on either no response (Group 1) or rise in systolic pulmonary artery pressure to hypoxia (Group 2) and their BNP levels were compared. RESULTS BNP was raised after hypoxia exposure in group 2 only from 18.52 ± 7 to 21.56 ± 10.82 picogram/ml, p < 0.05. Group 2 also showed an increase in mean arterial pressure and no fall in total body water in response to acute hypoxia indicating decreased endothelial function compared to Group 1. CONCLUSION Rise in pulmonary artery pressure and BNP level in response to acute normobaric hypoxia indicates reduced endothelial function and can be used to screen subclinical lifestyle disease among healthy population.
Collapse
|
2
|
Khatri R, Gupta RK, Vats P, Bansal V, Yadav AK, Reddy PK, Bharadwaj A, Chaudhary P, Sharma S, Bajaj AC, Deskit P, Dass D, Baburaj TP, Singh SB, Kumar B. Subclinical elevated B-type Natriuretic Peptide (BNP) indicates endothelial dysfunction contributing to hypoxia susceptibility in healthy individuals. Life Sci 2020; 260:118408. [PMID: 32926931 PMCID: PMC7486215 DOI: 10.1016/j.lfs.2020.118408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Aims Baseline elevated B-type Natriuretic Peptide (BNP) has been found in high altitude pulmonary edema susceptible population. Exaggerated pulmonary vascular response to hypoxia may be related to endothelial dysfunction in hypoxia susceptible. We hypothesize that baseline BNP levels can predict hypoxia susceptibility in healthy individuals. Main methods The pulmonary vascular response to hypoxia was compared in 35 male healthy individuals divided into two groups based on BNP levels (Group 1 ≤ 15 and Group 2 > 15 pg/ml). Acute normobaric hypoxia was administered to both the groups, to confirm hypoxia susceptibility in Group 2. Key findings Unlike Group 1, Group 2 had elevated post hypoxia BNP levels (26 vs 33.5 pg/ml, p = 0.002) while pulmonary artery pressure was comparable. A negative correlation with tissue oxygen consumption (delta pO2) and compartmental fluid shift was seen in Group 1 only. Endothelial dysfunction in Group 2 resulted in reduced vascular compliance leading to elevation of mean blood pressure on acute hypoxia exposure. BNP showed a positive correlation with endothelial dysfunction in Group 2 and has been linked to pre-diabetic disorder (HbA1c 6 ± 0.44%) and may additionally represent a lower cross-sectional area of vascular bed related to vascular remodeling mediated by chronic hypoxia. Significance Hypoxia susceptibility in healthy individuals may be related to endothelial dysfunction that limits vascular compliance during hypoxic stress. BNP level showed positive correlation with HbA1c (r = 0.49, p = 0.04) and negative correlation with delta pO2 (r = −0.52, p = 0.04) can predict reduced microvascular compliance due to endothelial dysfunction contributing to hypoxia susceptibility in healthy individuals. BNP levels≤15 pg/ml at sea level is indicative of hypoxia resistance.
Collapse
Affiliation(s)
- Rahul Khatri
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Rajinder K Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India.
| | - Praveen Vats
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Vishal Bansal
- Vallabhbhai Patel Chest Institute (VPCI), Delhi University, New Delhi, Delhi 110007, India
| | - Anand Kumar Yadav
- Vallabhbhai Patel Chest Institute (VPCI), Delhi University, New Delhi, Delhi 110007, India
| | - Prasanna K Reddy
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Abhishek Bharadwaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Pooja Chaudhary
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Shivani Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Amir Chand Bajaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Padma Deskit
- Sonam Norboo Memorial (S.N.M.) Hospital, Leh-Ladakh, Jammu and Kashmir 194101, India
| | - Deepak Dass
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Thiruthara P Baburaj
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Timarpur, Delhi 110054, India
| |
Collapse
|
3
|
Woods DR, O'Hara JP, Boos CJ, Hodkinson PD, Tsakirides C, Hill NE, Jose D, Hawkins A, Phillipson K, Hazlerigg A, Arjomandkhah N, Gallagher L, Holdsworth D, Cooke M, Green NDC, Mellor A. Markers of physiological stress during exercise under conditions of normoxia, normobaric hypoxia, hypobaric hypoxia, and genuine high altitude. Eur J Appl Physiol 2017; 117:893-900. [PMID: 28299447 PMCID: PMC5388721 DOI: 10.1007/s00421-017-3573-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/13/2017] [Indexed: 11/29/2022]
Abstract
Purpose To investigate whether there is a differential response at rest and following exercise to conditions of genuine high altitude (GHA), normobaric hypoxia (NH), hypobaric hypoxia (HH), and normobaric normoxia (NN). Method Markers of sympathoadrenal and adrenocortical function [plasma normetanephrine (PNORMET), metanephrine (PMET), cortisol], myocardial injury [highly sensitive cardiac troponin T (hscTnT)], and function [N-terminal brain natriuretic peptide (NT-proBNP)] were evaluated at rest and with exercise under NN, at 3375 m in the Alps (GHA) and at equivalent simulated altitude under NH and HH. Participants cycled for 2 h [15-min warm-up, 105 min at 55% Wmax (maximal workload)] with venous blood samples taken prior (T0), immediately following (T120) and 2-h post-exercise (T240). Results Exercise in the three hypoxic environments produced a similar pattern of response with the only difference between environments being in relation to PNORMET. Exercise in NN only induced a rise in PNORMET and PMET. Conclusion Biochemical markers that reflect sympathoadrenal, adrenocortical, and myocardial responses to physiological stress demonstrate significant differences in the response to exercise under conditions of normoxia versus hypoxia, while NH and HH appear to induce broadly similar responses to GHA and may, therefore, be reasonable surrogates.
Collapse
Affiliation(s)
- David Richard Woods
- Royal Centre for Defence Medicine, Birmingham, UK. .,Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK. .,University of Newcastle, Newcastle upon Tyne, UK. .,Northumbria and Newcastle NHS Trusts, Wansbeck General and Royal Victoria Infirmary, Newcastle, UK.
| | - John Paul O'Hara
- Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Christopher John Boos
- Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,Department of Cardiology, Poole Hospital NHS Foundation Trust, Poole, UK.,Department of Postgraduate Medical Education, Bournemouth University, Poole, UK
| | | | - Costas Tsakirides
- Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | - Neil Edward Hill
- Royal Centre for Defence Medicine, Birmingham, UK.,Imperial College London, London, UK.,Charing Cross Hospital, London, UK
| | - Darren Jose
- Pathology, Poole Hospital NHS Foundation Trust, Poole, UK
| | - Amanda Hawkins
- Pathology, Poole Hospital NHS Foundation Trust, Poole, UK
| | - Kelly Phillipson
- Department of Biochemistry, Freeman Hospital, Freeman Road, Newcastle upon Tyne, UK
| | | | | | - Liam Gallagher
- Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | | | - Mark Cooke
- Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK
| | | | - Adrian Mellor
- Royal Centre for Defence Medicine, Birmingham, UK.,Research Institute, for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,James Cook University Hospital, Middlesbrough, TS4 3BW, UK
| |
Collapse
|
4
|
Kumar K, Sharma S, Vashishtha V, Bhardwaj P, Kumar A, Barhwal K, Hota SK, Malairaman U, Singh B. Terminalia arjuna bark extract improves diuresis and attenuates acute hypobaric hypoxia induced cerebral vascular leakage. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:43-53. [PMID: 26771070 DOI: 10.1016/j.jep.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/08/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia arjuna (Roxb. ex DC.) Wight & Arn. (T. arjuna) has been widely used in the traditional ayurvedic system of medicine as a cardioprotectant and for acute and chronic renal diseases supporting its ethnopharmacological use. AIM OF THE STUDY The present study aimed at evaluating the diuretic action of an alcoholic extract of T. arjuna and its possible use as a prophylactic to prevent vascular leakage during acute mountain sickness at high altitude. MATERIALS AND METHODS Rats were exposed to hypobaric hypoxia simulated to an altitude of 27,000 ft. in a decompression chamber for 12h. T. arjuna bark extract was administered at a single dose of 150 mg/kg (p.o.) to male Sprague Dawley rats (200 ± 20 g) 30 min prior to exposure. Total urine volume was measured during exposure to hypobaric hypoxia. The animals were then investigated for cerebral vascular leakage and serum concentration of sodium, potassium, renin, angiotensin-II, aldosterone and atrial natriuretic peptide (ANP). RESULTS T. arjuna ameliorated acute hypobaric hypoxia induced decrease in glomerular filtration rate (p<0.5), increased total urine output (p<0.5) and prevented cerebral vascular leakage in hypoxic rats. T. arjuna treated animals also showed decrease in serum levels of renin (p<0.001) and angiotensin-II (p<0.5) as compared to placebo treated animals. Administration of T. arjuna attenuated acute hypobaric hypoxia induced oxidative stress, improved aldosterone levels and altered electrolyte balance in animals through ANP dependent mechanism. CONCLUSION Results of the present study indicate towards diuretic potential of hydro-alcoholic extract of T. arjuna bark and provide evidence for its novel application as a prophylactic to attenuate acute hypobaric hypoxia induced cerebral vascular leakage through ANP mediated modulation of renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Kushal Kumar
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India
| | - Sarika Sharma
- Post Graduate Institute of Medical Research Education and Research, Chandigarh 160012, India
| | - Vivek Vashishtha
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India
| | - Pushpender Bhardwaj
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India
| | - Ashish Kumar
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India
| | - Kalpana Barhwal
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India
| | - Sunil Kumar Hota
- Defence Institute of High Altitude Research, Defence Research and Development Organisation, C/o 56 APO, Leh-Ladakh 901205, India.
| | | | - Baljinder Singh
- Post Graduate Institute of Medical Research Education and Research, Chandigarh 160012, India
| |
Collapse
|
5
|
Heinonen I, Luotolahti M, Vuolteenaho O, Nikinmaa M, Saraste A, Hartiala J, Koskenvuo J, Knuuti J, Arjamaa O. Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans. J Transl Med 2014; 12:189. [PMID: 24989366 PMCID: PMC4086279 DOI: 10.1186/1479-5876-12-189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Background As it remains unclear whether hypoxia of cardiomyocytes could trigger the release of brain natriuretic peptide (BNP) in humans, we investigated whether breathing normobaric hypoxic gas mixture increases the circulating NT-proBNP in healthy male subjects. Methods Ten healthy young men (age 29 ± 5 yrs, BMI 24.7 ± 2.8 kg/m2) breathed normobaric hypoxic gas mixture (11% O2/89% N2) for one hour. Venous blood samples were obtained immediately before, during, and 2 and 24 hours after hypoxic exposure. Cardiac function and flow velocity profile in the middle left anterior descending coronary artery (LAD) were measured by Doppler echocardiography. Results Arterial oxygen saturation decreased steadily from baseline value of 99 ± 1% after the initiation hypoxia challenge and reached steady-state level of 73 ± 6% within 20–30 minutes. Cardiac output increased from 6.0 ± 1.2 to 8.1 ± 1.6 L/min and ejection fraction from 67 ± 4% to 75 ± 6% (both p < 0.001). Peak diastolic flow velocity in the LAD increased from 0.16 ± 0.04 to 0.28 ± 0.07 m/s, while its diameter remained unchanged. In the whole study group, NT-proBNP was similar to baseline (60 ± 32 pmol/ml) at all time points. However, at 24 h, concentration of NT-proBNP was higher (34 ± 18%) in five subjects and lower (17 ± 17%), p = 0.002 between the groups) in five subjects than at baseline. Conclusion In conclusion, there is no consistent increase in circulating NT-proBNP in response to breathing severely hypoxic normobaric gas mixture in healthy humans, a possible reason being that the oxygen flux to cardiac myocytes does not decrease because of increased coronary blood flow. However, the divergent individual responses as well as responses in different cardiac diseases warrant further investigations.
Collapse
Affiliation(s)
- Ilkka Heinonen
- Turku PET Centre, University of Turku and Turku University Hospital, PO Box 52, FI-20521 Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hashiguchi N, Takeda A, Yasuyama Y, Chishaki A, Tochihara Y. Effects of 6-h exposure to low relative humidity and low air pressure on body fluid loss and blood viscosity. INDOOR AIR 2013; 23:430-436. [PMID: 23464811 DOI: 10.1111/ina.12039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to investigate the effects of 6-h exposure to low relative humidity (RH) and low air pressure in a simulated air cabin environment on body fluid loss (BFL) and blood viscosity. Fourteen young healthy male subjects were exposed to four conditions, which combined RH (10% RH or 60% RH) and air pressure (NP: sea level or LP: equivalent to an altitude of 2000 m). Subjects remained seated on a chair in the chamber for 6 h. Their diet and water intake were restricted before and during the experiment. Insensible water loss (IWL) in LP10% condition was significantly greater than in NP60% condition; thus, combined 10%RH and LP conditions promoted a greater amount of IWL. The BFL under the LP condition was significantly greater than that under the NP condition. Blood viscosity significantly increased under LP conditions. Increases in red blood cell counts (RBCs) and BFL likely contributed to the increased blood viscosity. These findings suggest that hypobaric-induced hypoxia, similar to the conditions in the air cabin environment, may cause increased blood viscosity and that the combined low humidity and hypobaric hypoxia conditions increase IWL.
Collapse
Affiliation(s)
- N Hashiguchi
- Department of Health Science, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
7
|
Woods DR, Mellor A, Begley J, Stacey M, O'Hara J, Hawkins A, Yarker J, Foxen S, Smith C, Boos C. Brain natriuretic peptide and NT-proBNP levels reflect pulmonary artery systolic pressure in trekkers at high altitude. Physiol Res 2013; 62:597-603. [PMID: 23869896 DOI: 10.33549/physiolres.932544] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our objective was to evaluate the utility of the natriuretic peptides BNP (brain natriuretic peptide) and NT-proBNP as markers of pulmonary artery systolic pressure (PASP) in trekkers ascending to high altitude (HA). 20 participants had BNP and NT-proBNP assayed and simultaneous echocardiographic assessment of PASP performed during a trek to 5150 m. PASP increased significantly (p=0.006) with ascent from 24+/-4 to 39+/-11 mm Hg at 5150 m. At 5150 m those with a PASP>/=40 mm Hg (n=8) (versus those with PASP<40 mm Hg) had higher post-exercise BNP (pg/ml): 54.5+/-36 vs. 13.4+/-17 (p=0.012). Their resting BNP at 5150 m was also higher: 57.3+/-43.4 vs. 12.6+/-13 (p=0.017). In those with a pathological (>/=400 pg/ml) rise in NT-proBNP at 5150 m (n=4) PASP was significantly higher: 45.9+/-7.5 vs. 32.2+/-6.2 mm Hg (p=0.015). BNP and NT-proBNP may reflect elevated PASP, a central feature of high altitude pulmonary oedema, at HA.
Collapse
Affiliation(s)
- D R Woods
- Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Boos CJ, Hodkinson PD, Mellor A, Green NP, Bradley D, Greaves K, Woods DR. The Effects of Prolonged Acute Hypobaric Hypoxia on Novel Measures of Biventricular Performance. Echocardiography 2013; 30:534-41. [DOI: 10.1111/echo.12088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | | | - Adrian Mellor
- Consultant Anaesthetist; James Cook University Hospital; Middlesborough; United Kingdom
| | - Nick P. Green
- RAF Centre of Aviation Medicine; RAF Henlow; Beds; United Kingdom
| | - Daniel Bradley
- Cardiovascular Division; GE Healthcare; Herts; United Kingdom
| | | | | |
Collapse
|
9
|
Woods DR, Begley J, Stacey M, Smith C, Boos CJ, Hooper T, Hawkins A, Hodkinson P, Green N, Mellor A. Severe acute mountain sickness, brain natriuretic peptide and NT-proBNP in humans. Acta Physiol (Oxf) 2012; 205:349-55. [PMID: 22222437 DOI: 10.1111/j.1748-1716.2012.02407.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/10/2011] [Accepted: 12/26/2011] [Indexed: 12/01/2022]
Abstract
AIM To examine the response of brain natriuretic peptide (BNP) and NT-proBNP to high altitude (HA) both at rest and following exercise. METHODS We measured NT-proBNP and BNP and Lake Louise (LL) acute mountain sickness (AMS) scores in 20 subjects at rest in Kathmandu (Kat; 1300 m), following exercise and at rest at 4270 and 5150 m. RESULTS BNP and NT-proBNP (pg ml(-1) , mean ± SEM) rose significantly from Kat (9.2 ± 2 and 36.9 ± 6.6, respectively) to arrival at 4270 m after exercise (16.6 ± 4 and 152 ± 56.1, P=0.008 and P<0.001, respectively) and remained elevated the next morning at rest (28.9 ± 9 and 207.4 ± 65.1, P = 0.004 and P<0.001 respectively). At 5150, immediately following ascent/descent to 5643 m, BNP and NT-proBNP were 32.3 ± 8.8 and 301.1 ± 96.3 (P=0.003 and P<0.001 vs. Kat, respectively) and at rest the following morning were 33.3 ± 9.7 and 258.9 ± 89.5 (P=0.008 and P=0.001 vs. Kat respectively). NT-proBNP and BNP correlated strongly at 5150 m (ρ 0.905, P<0.001 and ρ 0.914, P<0.001 for resting and post-exercise samples respectively). At 5150 m, BNP levels were significantly higher among the four subjects with severe (LL score>6) AMS (58.4 ± 18.7) compared with those without (BNP 22.7 ± 8.6, P=0.048). There were significant correlations between change in body water from baseline to 5150 m with both BNP and NT-proBNP (ρ 0.77, P=0.001, ρ 0.745, P=0.002 respectively). CONCLUSION In conclusion, these data suggest that BNP and NT-proBNP increase with ascent to HA both after exercise and at rest. We also report the novel finding that BNP is significantly greater in those with severe AMS at 5150 m.
Collapse
Affiliation(s)
| | - J. Begley
- Department of Biochemistry; Poole Hospital NHS Foundation Trust; Poole; UK
| | | | | | | | | | - A. Hawkins
- Department of Biochemistry; Poole Hospital NHS Foundation Trust; Poole; UK
| | | | | | | |
Collapse
|