1
|
Alqallaf A, Swan P, Docherty NG. Renal insulin resistance in type 2 diabetes mellitus and progression of chronic kidney disease: potential pathogenic mechanisms. Expert Rev Endocrinol Metab 2022; 17:523-532. [PMID: 36203374 DOI: 10.1080/17446651.2022.2131534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023]
Abstract
INTRODUCTION A bidirectional association exists between insulin resistance (IR) and chronic kidney disease (CKD) in Type 2 Diabetes Mellitus (T2DM). Baseline measures of IR are predictive of CKD progression, and uremia in progressive CKD is itself, in turn, associated with a worsening of IR. Pre-clinical research reveals that intrinsic IR in glomerular podocytes and the renal tubule may serve as a pathogenic driver of CKD in T2DM. AREAS COVERED The present manuscript takes as its point of departure, the recently identified prognostic utility of severe insulin resistance as a predictor of CKD in T2DM. Findings from a series of studies describing the association of IR with pathological alterations in both established, and less commonly assessed dynamic measures of renal impairment are discussed. Drawing upon the pre-clinical mechanistic evidence base, the cellular and molecular basis of intrinsic renal IR as a promoter of CKD is considered. EXPERT OPINION Measurement of insulin sensitivity may add value to profiling of renal risk in T2DM. Rational selection of therapeutic strategies targeting the enhancement of insulin sensitivity merits special attention regarding the personalized management of CKD in insulin resistance predominant T2DM.
Collapse
Affiliation(s)
- Alrataj Alqallaf
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick Swan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Neil G Docherty
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Bruce JIE, Sánchez-Alvarez R, Sans MD, Sugden SA, Qi N, James AD, Williams JA. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun 2021; 12:4386. [PMID: 34282152 PMCID: PMC8289871 DOI: 10.1038/s41467-021-24506-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/11/2021] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is serious inflammatory disease of the pancreas. Accumulating evidence links diabetes with severity of AP, suggesting that endogenous insulin may be protective. We investigated this putative protective effect of insulin during cellular and in vivo models of AP in diabetic mice (Ins2Akita) and Pancreatic Acinar cell-specific Conditional Insulin Receptor Knock Out mice (PACIRKO). Caerulein and palmitoleic acid (POA)/ethanol-induced pancreatitis was more severe in both Ins2Akita and PACIRKO vs control mice, suggesting that endogenous insulin directly protects acinar cells in vivo. In isolated pancreatic acinar cells, insulin induced Akt-mediated phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2) which upregulated glycolysis thereby preventing POA-induced ATP depletion, inhibition of the ATP-dependent plasma membrane Ca2+ ATPase (PMCA) and cytotoxic Ca2+ overload. These data provide the first mechanistic link between diabetes and severity of AP and suggest that phosphorylation of PFKFB2 may represent a potential therapeutic strategy for treatment of AP.
Collapse
Affiliation(s)
- Jason I. E. Bruce
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Rosa Sánchez-Alvarez
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Maria Dolors Sans
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Sarah A. Sugden
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Nathan Qi
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Andrew D. James
- grid.5379.80000000121662407Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK ,grid.5685.e0000 0004 1936 9668Present Address: Division of Cancer Sciences, Department of Biology, University of York, Heslington, York, UK
| | - John A. Williams
- grid.214458.e0000000086837370Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
3
|
Chen S, Feng X, Chen X, Zhuang Z, Xiao J, Fu H, Klein JD, Wang XH, Hoover RS, Eaton DC, Cai H. 14-3-3γ, a novel regulator of the large-conductance Ca 2+-activated K + channel. Am J Physiol Renal Physiol 2020; 319:F52-F62. [PMID: 32463725 DOI: 10.1152/ajprenal.00584.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
14-3-3γ is a small protein regulating its target proteins through binding to phosphorylated serine/threonine residues. Sequence analysis of large-conductance Ca2+-activated K+ (BK) channels revealed a putative 14-3-3 binding site in the COOH-terminal region. Our previous data showed that 14-3-3γ is widely expressed in the mouse kidney. Therefore, we hypothesized that 14-3-3γ has a novel role in the regulation of BK channel activity and protein expression. We used electrophysiology, Western blot analysis, and coimmunoprecipitation to examine the effects of 14-3-3γ on BK channels both in vitro and in vivo. We demonstrated the interaction of 14-3-3γ with BK α-subunits (BKα) by coimmunoprecipitation. In human embryonic kidney-293 cells stably expressing BKα, overexpression of 14-3-3γ significantly decreased BK channel activity and channel open probability. 14-3-3γ inhibited both total and cell surface BKα protein expression while enhancing ERK1/2 phosphorylation in Cos-7 cells cotransfected with flag-14-3-3γ and myc-BK. Knockdown of 14-3-3γ by siRNA transfection markedly increased BKα expression. Blockade of the ERK1/2 pathway by incubation with the MEK-specific inhibitor U0126 partially abolished 14-3-3γ-mediated inhibition of BK protein expression. Similarly, pretreatment of the lysosomal inhibitor bafilomycin A1 reversed the inhibitory effects of 14-3-3γ on BK protein expression. Furthermore, overexpression of 14-3-3γ significantly increased BK protein ubiquitination in embryonic kidney-293 cells stably expressing BKα. Additionally, 3 days of dietary K+ challenge reduced 14-3-3γ expression and ERK1/2 phosphorylation while enhancing renal BK protein expression and K+ excretion. These data suggest that 14-3-3γ modulates BK channel activity and protein expression through an ERK1/2-mediated ubiquitin-lysosomal pathway.
Collapse
Affiliation(s)
- Shan Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuyan Feng
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Xinxin Chen
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zhizhi Zhuang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jia Xiao
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Haian Fu
- Department of Pharmacology, Emory University, School of Medicine, Atlanta, Georgia
| | - Janet D Klein
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaonan H Wang
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Robert S Hoover
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Physiology, Emory University, School of Medicine, Atlanta, Georgia
| | - Hui Cai
- Renal Divison, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.,Section of Nephrology, Atlanta Veterans Administration Medical Center, Decatur, Georgia.,Physiology, Emory University, School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Marunaka R, Marunaka Y. Interactive Actions of Aldosterone and Insulin on Epithelial Na + Channel Trafficking. Int J Mol Sci 2020; 21:3407. [PMID: 32408487 PMCID: PMC7279156 DOI: 10.3390/ijms21103407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Epithelial Na+ channel (ENaC) participates in renal epithelial Na+ reabsorption, controlling blood pressure. Aldosterone and insulin elevate blood pressure by increasing the ENaC-mediated Na+ reabsorption. However, little information is available on the interactive action of aldosterone and insulin on the ENaC-mediated Na+ reabsorption. In the present study, we tried to clarify if insulin would modify the aldosterone action on the ENaC-mediated Na+ reabsorption from a viewpoint of intracellular ENaC trafficking. We measured the ENaC-mediated Na+ transport as short-circuit currents using a four-state mathematical ENaC trafficking model in renal A6 epithelial cells with or without aldosterone treatment under the insulin-stimulated and -unstimulated conditions. We found that: (A) under the insulin-stimulated condition, aldosterone treatment (1 µM for 20 h) significantly elevated the ENaC insertion rate to the apical membrane ( k I ) 3.3-fold and the ENaC recycling rate ( k R ) 2.0-fold, but diminished the ENaC degradation rate ( k D ) 0.7-fold without any significant effect on the ENaC endocytotic rate ( k E ); (B) under the insulin-unstimulated condition, aldosterone treatment decreased k E 0.5-fold and increased k R 1.4-fold, without any significant effect on k I or k D . Thus, the present study indicates that: (1) insulin masks the well-known inhibitory action of aldosterone on the ENaC endocytotic rate; (2) insulin induces a stimulatory action of aldosterone on ENaC apical insertion and an inhibitory action of aldosterone on ENaC degradation; (3) insulin enhances the aldosterone action on ENaC recycling; (4) insulin has a more effective action on diminution of ENaC endocytosis than aldosterone.
Collapse
Affiliation(s)
- Rie Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Okamura Dental Clinic, Chuo-ku, Osaka 541-0041, Japan
| | - Yoshinori Marunaka
- Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto 604-8472, Japan;
- Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
5
|
Klemens CA, Brands MW, Staruschenko A. Postprandial effects on electrolyte homeostasis in the kidney. Am J Physiol Renal Physiol 2019; 317:F1405-F1408. [PMID: 31566434 DOI: 10.1152/ajprenal.00350.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin is known to be an important regulator of a number of different channels and transporters in the kidney, but its role in the kidney to prevent Na+ and volume loss during the osmotic load after a meal has only recently been validated. With increasing numbers of people suffering from diabetes and hypertension, furthering our understanding of insulin signaling and renal Na+ handling in both normal and diseased states is essential for improving patient treatments and outcomes. The present review is focused on postprandial effects on Na+ reabsorption in the kidney and the role of the epithelial Na+ channels as an important channel contributing to insulin-mediated Na+ reclamation.
Collapse
Affiliation(s)
- Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael W Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Abstract
Recent studies have suggested that postprandial increases in insulin directly contribute to reduced urinary sodium excretion. An abundance of research supports the ability of insulin to augment epithelial sodium channel (ENaC) transport. This study hypothesized that ENaC contributes to the increase in renal sodium reabsorption following a meal. To test this, we used fasted or 4 hour postprandial Sprague Dawley rats to analyze ENaC expression and activity. We also assessed total expression of additional sodium transporters (Na+-Cl− cotransporter (NCC), Na+-K+-2Cl− cotransporter (NKCC2), and Na+-K+-ATPase (NKA)) and circulating hormones involved in the renin-angiotensin-aldosterone system (RAAS). We found that after carbohydrate stimulus, ENaC open probability increased in split-open isolated collecting duct tubules, while ENaC protein levels remained unchanged. This was supported by a lack of change in phosphorylated Nedd4-2, an E3 ubiquitin ligase protein which regulates the number of ENaCs at the plasma membrane. Additionally, we found no differences in total expression of NCC, NKCC2, or NKA in the postprandial rats. Lastly, there were no significant changes in RAAS signaling between the stimulated and fasted rats, suggesting that acute hyperinsulinemia increases ENaC activity independent of the RAAS signaling cascade. These results demonstrate that insulin regulation of ENaC is a potential mechanism to preserve sodium and volume loss following a meal, and that this regulation is distinct from classical ENaC regulation by RAAS.
Collapse
|
7
|
Duan T, Cil O, Thiagarajah JR, Verkman AS. Intestinal epithelial potassium channels and CFTR chloride channels activated in ErbB tyrosine kinase inhibitor diarrhea. JCI Insight 2019; 4:126444. [PMID: 30668547 PMCID: PMC6478423 DOI: 10.1172/jci.insight.126444] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Diarrhea is a major side effect of ErbB receptor tyrosine kinase inhibitors (TKIs) in cancer chemotherapy. Here, we show that the primary mechanism of ErbB TKI diarrhea is activation of basolateral membrane potassium (K+) channels and apical membrane chloride (Cl-) channels in intestinal epithelia and demonstrate the efficacy of channel blockers in a rat model of TKI diarrhea. Short-circuit current in colonic epithelial cells showed that the TKIs gefitinib, lapatinib, and afatinib do not affect basal secretion but amplify carbachol-stimulated secretion by 2- to 3-fold. Mechanistic studies with the second-generation TKI afatinib showed that the amplifying effect on Cl- secretion was Ca2+ and cAMP independent, was blocked by CF transmembrane conductance regulator (CFTR) and K+ channel inhibitors, and involved EGFR binding and ERK signaling. Afatinib-amplified activation of basolateral K+ and apical Cl- channels was demonstrated by selective membrane permeabilization, ion substitution, and channel inhibitors. Rats that were administered afatinib orally at 60 mg/kg/day developed diarrhea with increased stool water from approximately 60% to greater than 80%, which was reduced by up to 75% by the K+ channel inhibitors clotrimazole or senicapoc or the CFTR inhibitor (R)-BPO-27. These results indicate a mechanism for TKI diarrhea involving K+ and Cl- channel activation and support the therapeutic efficacy of channel inhibitors.
Collapse
Affiliation(s)
- Tianying Duan
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Onur Cil
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, UCSF, San Francisco, California, USA
| |
Collapse
|
8
|
Taruno A, Sun H, Nakajo K, Murakami T, Ohsaki Y, Kido MA, Ono F, Marunaka Y. Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel. J Physiol 2017; 595:6121-6145. [PMID: 28734079 DOI: 10.1113/jp274164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Calcium homeostasis modulator 1 (CALHM1), a new voltage-gated ATP- and Ca2+ -permeable channel, plays important physiological roles in taste perception and memory formation. Regulatory mechanisms of CALHM1 remain unexplored, although the biophysical disparity between CALHM1 gating in vivo and in vitro suggests that there are undiscovered regulatory mechanisms. Here we report that CALHM1 gating and association with lipid microdomains are post-translationally regulated through the process of protein S-palmitoylation, a reversible attachment of palmitate to cysteine residues. Our data also establish cysteine residues and enzymes responsible for CALHM1 palmitoylation. CALHM1 regulation by palmitoylation provides new mechanistic insights into fine-tuning of CALHM1 gating in vivo and suggests a potential layer of regulation in taste and memory. ABSTRACT Emerging roles of CALHM1, a recently discovered voltage-gated ion channel, include purinergic neurotransmission of tastes in taste buds and memory formation in the brain, highlighting its physiological importance. However, the regulatory mechanisms of the CALHM1 channel remain entirely unexplored, hindering full understanding of its contribution in vivo. The different gating properties of CALHM1 in vivo and in vitro suggest undiscovered regulatory mechanisms. Here, in searching for post-translational regulatory mechanisms, we discovered the regulation of CALHM1 gating and association with lipid microdomains via protein S-palmitoylation, the only reversible lipid modification of proteins on cysteine residues. CALHM1 is palmitoylated at two intracellular cysteines located in the juxtamembrane regions of the third and fourth transmembrane domains. Enzymes that catalyse CALHM1 palmitoylation were identified by screening 23 members of the DHHC protein acyltransferase family. Epitope tagging of endogenous CALHM1 proteins in mice revealed that CALHM1 is basally palmitoylated in taste buds in vivo. Functionally, palmitoylation downregulates CALHM1 without effects on its synthesis, degradation and cell surface expression. Mutation of the palmitoylation sites has a profound impact on CALHM1 gating, shifting the conductance-voltage relationship to more negative voltages and accelerating the activation kinetics. The same mutation also reduces CALHM1 association with detergent-resistant membranes. Our results comprehensively uncover a post-translational regulation of the voltage-dependent gating of CALHM1 by palmitoylation.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| | - Koichi Nakajo
- Department of Physiology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, 569-8686, Japan
| | - Tatsuro Murakami
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Yasuyoshi Ohsaki
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University, 3-1-1 Maidashi, Higashi-ward, Fukuoka, 812-8582, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, 569-8686, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan.,Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| |
Collapse
|
9
|
Marunaka Y. The Mechanistic Links between Insulin and Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Cl - Channel. Int J Mol Sci 2017; 18:1767. [PMID: 28805732 PMCID: PMC5578156 DOI: 10.3390/ijms18081767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 12/30/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel belongs to the ATP-binding cassette (ABC) transporter superfamily and regulates Cl- secretion in epithelial cells for water secretion. Loss-of-function mutations to the CFTR gene cause dehydrated mucus on the apical side of epithelial cells and increase the susceptibility of bacterial infection, especially in the airway and pulmonary tissues. Therefore, research on the molecular properties of CFTR, such as its gating mechanism and subcellular trafficking, have been intensively pursued. Dysregulated CFTR trafficking is one of the major pathological hallmarks in cystic fibrosis (CF) patients bearing missense mutations in the CFTR gene. Hormones that activate cAMP signaling, such as catecholamine, have been found to regulate the intracellular trafficking of CFTR. Insulin is one of the hormones that regulate cAMP production and promote trafficking of transmembrane proteins to the plasma membrane. The functional interactions between insulin and CFTR have not yet been clearly defined. In this review article, I review the roles of CFTR in epithelial cells, its regulatory role in insulin secretion, and a mechanism of CFTR regulation by insulin.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Department of Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
- Japan Institute for Food Education and Health, St. Agnes' University, Kyoto 602-8013, Japan.
| |
Collapse
|
10
|
Marunaka Y. Actions of quercetin, a flavonoid, on ion transporters: its physiological roles. Ann N Y Acad Sci 2017; 1398:142-151. [DOI: 10.1111/nyas.13361] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshinori Marunaka
- Departments of Molecular Cell Physiology and Bio-Ionomics; Kyoto Prefectural University of Medicine; Kyoto Japan
- Japan Institute for Food Education and Health; St. Agnes’ University; Kyoto Japan
| |
Collapse
|
11
|
Actions of Quercetin, a Polyphenol, on Blood Pressure. Molecules 2017; 22:molecules22020209. [PMID: 28146071 PMCID: PMC6155806 DOI: 10.3390/molecules22020209] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/20/2022] Open
Abstract
Disorder of blood pressure control causes serious diseases in the cardiovascular system. This review focuses on the anti-hypertensive action of quercetin, a flavonoid, which is one of the polyphenols characterized as the compounds containing large multiples of phenol structural units, by varying the values of various blood pressure regulatory factors, such as vascular compliance, peripheral vascular resistance, and total blood volume via anti-inflammatory and anti-oxidant actions. In addition to the anti-inflammatory and anti-oxidant actions of quercetin, we especially describe a novel mechanism of quercetin’s action on the cytosolic Cl− concentration ([Cl−]c) and novel roles of the cytosolic Cl− i.e., (1) quercetin elevates [Cl−]c by activating Na+-K+-2Cl− cotransporter 1 (NKCC1) in renal epithelial cells contributing to Na+ reabsorption via the epithelial Na+ channel (ENaC); (2) the quercetin-induced elevation of [Cl−]c in renal epithelial cells diminishes expression of ENaC leading to a decrease in renal Na+ reabsorption; and (3) this reduction of ENaC-mediated Na+ reabsorption in renal epithelial cells drops volume-dependent elevated blood pressure. In this review, we introduce novel, unique mechanisms of quercetin’s anti-hypertensive action via activation of NKCC1 in detail.
Collapse
|
12
|
Marunaka Y, Marunaka R, Sun H, Yamamoto T, Kanamura N, Taruno A. Na + homeostasis by epithelial Na + channel (ENaC) and Na x channel (Na x): cooperation of ENaC and Na x. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:S11. [PMID: 27867979 PMCID: PMC5104600 DOI: 10.21037/atm.2016.10.42] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Bio-Ionomics, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto 602-8013, Japan
| | - Rie Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan
| |
Collapse
|
13
|
Nakajima KI, Marunaka Y. Intracellular chloride ion concentration in differentiating neuronal cell and its role in growing neurite. Biochem Biophys Res Commun 2016; 479:338-342. [DOI: 10.1016/j.bbrc.2016.09.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
|
14
|
Zhao YR, Wang D, Liu Y, Shan L, Zhou JL. The PI3K/Akt, p38MAPK, and JAK2/STAT3 signaling pathways mediate the protection of SO2 against acute lung injury induced by limb ischemia/reperfusion in rats. J Physiol Sci 2016; 66:229-39. [PMID: 26541157 PMCID: PMC10716937 DOI: 10.1007/s12576-015-0418-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Sulfur dioxide (SO2) is naturally synthesized by glutamate-oxaloacetate transaminase (GOT) from L-cysteine in mammalian cells. We found that SO2 may have a protective effect on acute lung injury (ALI) induced by limb ischemia/reperfusion (I/R) in rats. The PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways are crucial in cell signaling transduction. The present study aims to verify the role of SO2 on limb I/R-induced ALI, and investigate whether PI3K/Akt, p38MAPK, and JAK2/STAT3 pathways were involved, as well as the relationship among the three pathways; we used specific inhibitors (LY294002, SB03580, and Stattic) to block them, respectively. The experimental methods of Western, ELISA, TUNEL, etc., were used to test the results. In the I/R group, the parameters of lung injury (MDA, MPO, TUNEL, cytokines) increased significantly, but the administration of Na2SO3/NaHSO3 attenuated the damage in the lung. The Western results showed that the rat's lung exist expression of P-STAT3, P-AKT, and P-p38 proteins. After I/R, P-STAT3, P-Akt, and P-p38 proteins expression all increased. After using Na2SO3/NaHSO3, P-Akt, and P-p38 proteins expression increased, but P-STAT3 protein expression decreased. We also found a strange phenomenon; compared to the I/R + SO2 group, the administration of stattic, P-p38 protein expression showed no change, but P-Akt protein expression increased (p < 0.05). In conclusion, SO2 has a protective effect on rats with limb I/R-induced ALI. The JAK2/STAT3, PI3K/Akt, and p38MAPK pathways are likely all involved in the process, and the JAK2/STAT3 pathway may have an impact on the P13K/Akt pathway.
Collapse
Affiliation(s)
- Yan-Rui Zhao
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Dong Wang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Yang Liu
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Lei Shan
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China
| | - Jun-Lin Zhou
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Gong Ren Ti Yu Chang Nan Rd, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|
15
|
Sasamoto K, Niisato N, Taruno A, Marunaka Y. Simulation of Cl(-) Secretion in Epithelial Tissues: New Methodology Estimating Activity of Electro-Neutral Cl(-) Transporter. Front Physiol 2015; 6:370. [PMID: 26779025 PMCID: PMC4688368 DOI: 10.3389/fphys.2015.00370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/20/2015] [Indexed: 12/21/2022] Open
Abstract
Transcellular Cl− secretion is, in general, mediated by two steps; (1) the entry step of Cl− into the cytosolic space from the basolateral space across the basolateral membrane by Cl− transporters, such as Na+-K+-2Cl− cotransporter (NKCC1, an isoform of NKCC), and (2) the releasing step of Cl− from the cytosolic space into the luminal (air) space across the apical membrane via Cl− channels, such as cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel. Transcellular Cl− secretion has been characterized by using various experimental techniques. For example, measurements of short-circuit currents in the Ussing chamber and patch clamp techniques provide us information on transepithelial ion movements via transcellular pathway, transepithelial conductance, activity (open probability) of single channel, and whole cell currents. Although many investigators have tried to clarify roles of Cl− channels and transporters located at the apical and basolateral membranes in transcellular Cl− secretion, it is still unclear how Cl− channels/transporters contribute to transcellular Cl− secretion and are regulated by various stimuli such as Ca2+ and cAMP. In the present study, we simulate transcellular Cl− secretion using mathematical models combined with electrophysiological measurements, providing information on contribution of Cl− channels/transporters to transcellular Cl− secretion, activity of electro-neutral ion transporters and how Cl− channels/transporters are regulated.
Collapse
Affiliation(s)
- Kouhei Sasamoto
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Naomi Niisato
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Department of Health and Sports Sciences, Faculty of Health and Medical Sciences, Kyoto Gakuen UniversityKameoka, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan; Japan Institute for Food Education and Health, St. Agnes' UniversityKyoto, Japan; Department of Bio-Ionomics, Graduate School of Medical Science, Kyoto Prefectural University of MedicineKyoto, Japan
| |
Collapse
|
16
|
Vinik AI, Nevoret ML, Casellini C. The New Age of Sudomotor Function Testing: A Sensitive and Specific Biomarker for Diagnosis, Estimation of Severity, Monitoring Progression, and Regression in Response to Intervention. Front Endocrinol (Lausanne) 2015; 6:94. [PMID: 26124748 PMCID: PMC4463960 DOI: 10.3389/fendo.2015.00094] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/23/2015] [Indexed: 12/27/2022] Open
Abstract
Sudorimetry technology has evolved dramatically, as a rapid, non-invasive, robust, and accurate biomarker for small fibers that can easily be integrated into clinical practice. Though skin biopsy with quantitation of intraepidermal nerve fiber density is still currently recognized as the gold standard, sudorimetry may yield diagnostic information not only on autonomic dysfunction but also enhance the assessment of the small somatosensory nerves, disease detection, progression, and response to therapy. Sudorimetry can be assessed using Sudoscan™, which measures electrochemical skin conductance (ESC) of hands and feet. It is based on different electrochemical principles (reverse iontophoresis and chronoamperometry) to measure sudomotor function than prior technologies, affording it a much more practical and precise performance profile for routine clinical use with potential as a research tool. Small nerve fiber dysfunction has been found to occur early in metabolic syndrome and diabetes and may also be the only neurological manifestation in small fiber neuropathies, beneath the detection limits of traditional nerve function tests. Test results are robust, accomplished within minutes, require little technical training and no calculations, since established norms have been provided for the effects of age, gender, and ethnicity. Sudomotor testing has been greatly under-utilized in the past, restricted to specialized centers capable of handling the technically demanding and expensive technology. Yet, evaluation of autonomic and somatic nerve function has been shown to be one of the best estimates of cardiovascular risk. Evaluation of sweating has the appeal of quantifiable non-invasive determination of the integrity of the peripheral autonomic nervous system, and can now be accomplished rapidly at point of care clinics with the determination of ESC, allowing intervention for morbid complications prior to permanent structural nerve damage. We review here sudomotor function testing technology, the research evidence accumulated supporting the clinical utility of measuring ESC, the medical applications of sudorimetry now available to physicians with this device, and clinical vignettes illustrating its use in the clinical decision-making process.
Collapse
Affiliation(s)
- Aaron I. Vinik
- Division of Endocrinology and Metabolism, Department of Medicine, Strelitz Diabetes and Neuroendocrine Center, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | - Carolina Casellini
- Division of Endocrinology and Metabolism, Department of Medicine, Strelitz Diabetes and Neuroendocrine Center, Eastern Virginia Medical School, Norfolk, VA, USA
| |
Collapse
|