1
|
Du T, Zhou L, Liu J, Wang X, Xie H, Yang X, Yang Y. Effectiveness of Microwave Therapy Combined with Berberine /GelMA via COX-2/IL-1β Pathway to Treat Skeletal Muscle Injury: An in vivo Study in Rats. Int J Nanomedicine 2025; 20:5509-5527. [PMID: 40321801 PMCID: PMC12047279 DOI: 10.2147/ijn.s500490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction Skeletal muscle injuries are short-term, that occur in people who play sports and train. Regular exercise and sports populations undergo repetitive tearing and regeneration of skeletal muscle, in which muscle damage is a necessary component to produce an oxidative inflammatory response and tissue reconstruction. The primary goals of treating this illness are to reduce the disease process cycle and get rid of symptoms like swelling and inflammation at the site of localized injury. Berberine (BBR) has several pharmacological effects, including anti-inflammatory, anti-tumor, and anti-arrhythmic properties. Methods In order to treat skeletal muscle injuries, a safe and non-toxic nanogel (BBR/GelMA) was developed for efficient berberine delivery. It also investigated whether BBR/GelMA had anti-inflammatory properties via the NF-κB pathway. Microwave irradiation was added to promote the uptake of BBR in BBR/GelMA by injured skeletal muscle and to accelerate the process of injury recovery. Results It turns out that the survival rates of NIH313 and L929 cells decreased to varying degrees in GelMA loaded with different concentrations of BBR, but the survival rates of the two cell lines were the highest at a concentration of 0.125 mg/mL. Conclusion In this experiment, the inhibitory effect of BBR/GelMA on inflammation was studied. After NIH-313 and L929 cells were treated with GelMA loaded with different doses of BBR, it was found that the concentration of BBR/0.5 mg/mL had the best inhibitory effect on these two inflammation-inducing cell lines, and this inhibitory effect was related to the drug loading concentration. On the other hand, BBR/GelMA and microwave therapy can play an anti-inflammatory and repairing role in skeletal muscle through NF-κB pathway. In addition, microwave can accelerate the diffusion of BBR in BBR/GelMA within injured skeletal muscle, speeding up the healing process after skeletal muscle injury and shortening the disease cycle.
Collapse
Affiliation(s)
- Tianhao Du
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
- Liaoning University of traditional Chinese Medicine, Shenyang, People’s Republic of China
- Hebei Province Hospital of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Liangliang Zhou
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jia Liu
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
| | - Xiao Wang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
- Liaoning University of traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Haoxu Xie
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
- Liaoning University of traditional Chinese Medicine, Shenyang, People’s Republic of China
| | - Xu Yang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
| | - Yingxin Yang
- Department of Rehabilitation Medicine, General Hospital of Northern Theater Command, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Trybulski R, Stanula A, Vovkanych A, Muracki J, Wang HK, Kużdżał A. Immediate effect of ice and dry massage during rest breaks on recovery in MMA fighters : a randomized crossover clinical trial study. Sci Rep 2025; 15:12323. [PMID: 40210733 PMCID: PMC11986066 DOI: 10.1038/s41598-025-97194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 04/02/2025] [Indexed: 04/12/2025] Open
Abstract
The MMA fight consists of 5 rounds of 5 min with minimal breaks between the rounds. The exertion load is excessive for the fighters, and the 1-minute breaks give little time for any intervention. This study aimed to examine the acute effects of two methods of regenerative strategies, ice massage and dry massage, and analyze their impact on Reactive Strength Index (RSI - m s- 1), muscles' biomechanical properties: muscle tone (T-Hz), elasticity (E - arb- relative arbitrary unit), stiffness (S - N/m), pressure pain threshold, (PPT - N/cm²), and compare their influence with passive rest. The maximum number of jumps (J - n) treated as an indirect effective measure of the interventions that were conducted was also recorded for each participant in each regenerative strategy. Thirty male MMA fighters took part in the study. Three subgroups of 10 participants (Ice massage, n = 10; dry massage, n = 10; and control, n = 10) were enrolled in the cross-over randomized clinical trial study design. The groups were randomized, and each group underwent each procedure (30 tested in each procedure). Five sets of jumps on a 50 cm box to exhaustion were used as a fatigue protocol with 1-minute breaks. The recovery interventions were performed during the breaks. The statistically significant results revealed in the post-exercise tests: RSI and number of jumps - the lowest decrease was observed in the massage group (p < 0.001 and p < 0.0001 respectively), the minor increases in T, E and S were also observed in the massage group ((p < 0.0001 for all measurements); the post-exercise PPT was the highest (higher means better) in the Ice group (p < 0.001). In every other parameter, the ice massage group showed slightly worse results than the dry massage group. Responder analysis confirms that the number of jumps profoundly impacted biomechanical variables, leading to increased muscle stiffness and tension, decreased elasticity and force endurance, and heightened pain sensitivity. Obtained results confirm that both dry and ice massage can significantly affect acute recovery following rounds of combat sport-related exertions. The Ice and Massage interventions differed in effectiveness - Massage was the most effective in preventing increases in stiffness and tension and preserving muscle elasticity. At the same time, ice cooling had a lesser impact, particularly on muscle elasticity changes but higher for PPT.
Collapse
Affiliation(s)
- Robert Trybulski
- Medical Department, Wojciech Korfanty Upper Silesian Academy, Katowice, 40-659, Poland.
- Department of Physical Therapy and Ergotherapy, Ivan Boberkyj Lviv State University of Physical Culture, Lviv, 79007, Ukraine.
| | - Arkadiusz Stanula
- Laboratory of Sport Performance Analysis, Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, 40-065, Poland
| | - Andriy Vovkanych
- Department of Physical Therapy and Ergotherapy, Ivan Boberkyj Lviv State University of Physical Culture, Lviv, 79007, Ukraine
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, 70-453, Poland.
- Provita Medical Center, Żory, 44-240, Poland.
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei, Taiwan
- Center of Physical Therapy, National Taiwan University, Taipei, Taiwan
| | - Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, 35-310, Poland
| |
Collapse
|
3
|
Ahokas EK, Hanstock HG, Kyröläinen H, Ihalainen JK. Effects of repeated use of post-exercise infrared sauna on neuromuscular performance and muscle hypertrophy. Front Sports Act Living 2025; 7:1462901. [PMID: 40104529 PMCID: PMC11913669 DOI: 10.3389/fspor.2025.1462901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Purpose The aim of this study was to investigate whether regular use of infrared sauna (IRS) after training can promote neuromuscular performance and positive changes in body composition during a 6-week training period. Methods Forty female team sport athletes were pair-matched into two groups: IRS (n = 20) and control (CON; n = 20). Physical performance tests, body composition and hypertrophy measurements (dual-energy x-ray absorptiometry and ultrasound of m. vastus lateralis) were performed PRE and POST a 6-week strength and power training period, involving 2-3 sessions per week. Performance tests included a 20 m sprint, squat jump (SJ), countermovement jumps with body weight (CMJ) as well as with 15, 25, and 50% additional load (CMJ15%, CMJ25%, and CMJ50%), and a maximal isometric leg press (MVC). Participants in the IRS-group used IRS (10 min, 50℃) after training three times per week. Results Training improved neuromuscular performance and muscle hypertrophy in both groups (p < 0.05). Following the discovery of an interaction effect for CMJ15% height (p = 0.002) and peak power (p = 0.010), post hoc tests revealed higher jump height POST-IRS (p = 0.006) and PRE-CON (p = 0.023) compared to PRE-IRS, and higher peak power POST-IRS (p = 0.002) compared to PRE-IRS. Furthermore, an interaction effect was observed for 5 m split time of the 20 m sprint (p = 0.020), but no differences were found between groups and timepoints. There were no interactions for the hypertrophy measures. Conclusion Incorporating post-exercise IRS bathing does not significantly impact hypertrophy gains, but might boost long-term power production capabilities.
Collapse
Affiliation(s)
- Essi K Ahokas
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Heikki Kyröläinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Finnish Institute of High Performance Sport KIHU, Jyväskylä, Finland
| |
Collapse
|
4
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2025; 125:277-301. [PMID: 39607529 PMCID: PMC11829912 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
5
|
Santocildes G, Viscor G, Pagès T, Torrella JR. Simulated altitude is medicine: intermittent exposure to hypobaric hypoxia and cold accelerates injured skeletal muscle recovery. J Physiol 2024; 602:5855-5878. [PMID: 38153352 DOI: 10.1113/jp285398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Muscle injuries are the leading cause of sports casualties. Because of its high plasticity, skeletal muscle can respond to different stimuli to maintain and improve functionality. Intermittent hypobaric hypoxia (IHH) improves muscle oxygen delivery and utilization. Hypobaria coexists with cold in the biosphere, opening the possibility to consider the combined use of both environmental factors to achieve beneficial physiological adjustments. We studied the effects of IHH and cold exposure, separately and simultaneously, on muscle regeneration. Adult male rats were surgically injured in one gastrocnemius and randomly assigned to the following groups: (1) CTRL: passive recovery; (2) COLD: intermittently exposed to cold (4°C); (3) HYPO: submitted to IHH (4500 m); (4) COHY: exposed to intermittent simultaneous cold and hypoxia. Animals were subjected to these interventions for 4 h/day for 9 or 21 days. COLD and COHY rats showed faster muscle regeneration than CTRL, evidenced after 9 days at histological (dMHC-positive and centrally nucleated fibre reduction) and functional levels after 21 days. HYPO rats showed a full recovery from injury (at histological and functional levels) after 9 days, while COLD and COHY needed more time to induce a total functional recovery. IHH can be postulated as an anti-fibrotic treatment since it reduces collagen I deposition. The increase in the pSer473Akt/total Akt ratio observed after 9 days in COLD, HYPO and COHY, together with the increase in the pThr172AMPKα/total AMPKα ratio observed in the gastrocnemius of HYPO, provides clues to the molecular mechanisms involved in the improved muscle regeneration. KEY POINTS: Only intermittent hypobaric exposure accelerated muscle recovery as early as 9 days following injury at histological and functional levels. Injured muscles from animals treated with intermittent (4 h/day) cold, hypobaric hypoxia or a simultaneous combination of both stimuli regenerated histological structure and recovered muscle function 21 days after injury. The combination of cold and hypoxia showed a blunting effect as compared to hypoxia alone in the time course of the muscle recovery. The increased expression of the phosphorylated forms of Akt observed in all experimental groups could participate in the molecular cascade of events leading to a faster regeneration. The elevated levels of phosphorylated AMPKα in the HYPO group could play a key role in the modulation of the inflammatory response during the first steps of the muscle regeneration process.
Collapse
Affiliation(s)
- Garoa Santocildes
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Ramon Torrella
- Secció de Fisiologia, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Racinais S, Dablainville V, Rousse Y, Ihsan M, Grant ME, Schobersberger W, Budgett R, Engebretsen L. Cryotherapy for treating soft tissue injuries in sport medicine: a critical review. Br J Sports Med 2024; 58:1215-1223. [PMID: 39237265 DOI: 10.1136/bjsports-2024-108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Sports medicine physicians and physiotherapists commonly use cryotherapy (eg, ice application) postinjury to decrease tissue temperature with the objective of reducing pain, limiting secondary injury and inflammation, and supporting healing. However, besides the analgesic effect of cryotherapy, a literature search revealed no evidence from human studies that cryotherapy limits secondary injury or has positive effects on tissue regeneration. Thus, our current understanding of the potential mechanisms and applications of cryotherapy largely relies on the results from animal studies. Importantly, treatment should not aim at obliterating the inflammatory and regeneration processes but instead aim to restore an adapted/normal regulation of these processes to improve function and recovery. However, some animal studies suggest that cryotherapy may delay or impair tissue regeneration. With the translation of laboratory animal studies to human sport medicine being limited by different injury and muscle characteristics, the effect of cryotherapy in patients with musculoskeletal injuries is uncertain. Thus, pending the results of human studies, cryotherapy may be recommended in the first 6 hours following an injury to reduce pain (and possibly haematoma), but it should be used with caution beyond 12 hours postinjury as animal studies suggest it may interfere with tissue healing and regeneration.
Collapse
Affiliation(s)
- Sebastien Racinais
- DMEM, Univ Montpellier, INRAE, Montpellier, France
- Environmental Stress Unit, CREPS Montpellier Font-Romeu, Montpellier, France
| | - Valentin Dablainville
- DMEM, Univ Montpellier, INRAE, Montpellier, France
- Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Ad Dawhah, Qatar
| | - Yohan Rousse
- Environmental Stress Unit, CREPS Montpellier Font-Romeu, Montpellier, France
| | - Mohammed Ihsan
- Scientific Conditioning Centre, Elite Training Science and Technology Division, Hong Kong Sports Institute, Hong Kong, Hong Kong
| | | | - Wolfgang Schobersberger
- UMIT Tirol, Private University for Health Sciences and Health Technology, Hall and University Hospital, Innsbruck, Austria
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| |
Collapse
|
7
|
Kawashima M, Nagata I, Terada E, Tamari A, Kurauchi M, Sakuraya T, Sonomura T, Oyanagi E, Yano H, Peake JM, Arakawa T. Frequent Icing Stimulates Skeletal Muscle Regeneration Following Injury With Necrosis in a Small Fraction of Myofibers in Rats. J Histochem Cytochem 2024; 72:569-584. [PMID: 39240248 PMCID: PMC11456165 DOI: 10.1369/00221554241274882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/19/2024] [Indexed: 09/07/2024] Open
Abstract
Icing interventions on the injured skeletal muscle affect the macrophage-related regenerative events and muscle repair. However, despite its importance for the practice in sport medicine, the influence of different icing protocols on muscle regeneration remains unclear. Here, using a rodent model of mild muscle injury with necrosis in a small fraction of myofibers, the injured animals were allocated to four groups: non-icing control (Con) and a single treatment (Ice-1), three treatments (Ice-3), or nine treatments (Ice-9) with a 30-min icing each time within two days following injury. Muscle regeneration was compared between the groups on post-injury days 1, 3, 5, and 7. The results showed that compared with the Con group, muscle regeneration was faster in the Ice-9 group (but not in the Ice-1 and Ice-3 groups), as indicated by more rapid accumulation of satellite cells within the regenerating area and enlarged size of regenerating myofibers (p<0.05, respectively). There was also less macrophage accumulation (p<0.05) and a trend toward early removal of necrotic myofibers in the damaged/regenerating area in the Ice-9 group (p=0.0535). These results demonstrate that in the case of mild muscle damage, more frequent icing treatment is more effective to stimulate muscle regeneration.
Collapse
Affiliation(s)
- Masato Kawashima
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Itsuki Nagata
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Erika Terada
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Asano Tamari
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mami Kurauchi
- Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan
- Dynamic Sports Medicine Institute, Osaka, Japan
| | - Tohma Sakuraya
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Oral Anatomy, School of Dentistry, Asahi University, Gifu, Japan
| | - Takahiro Sonomura
- Department of Oral Anatomy, School of Dentistry, Asahi University, Gifu, Japan
| | - Eri Oyanagi
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Hiromi Yano
- Department of Health and Sports Science, Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
- Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Jonathan M. Peake
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia
| | - Takamitsu Arakawa
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
8
|
Zhang Z, Wang R, Xue H, Knoedler S, Geng Y, Liao Y, Alfertshofer M, Panayi AC, Ming J, Mi B, Liu G. Phototherapy techniques for the management of musculoskeletal disorders: strategies and recent advances. Biomater Res 2023; 27:123. [PMID: 38017585 PMCID: PMC10685661 DOI: 10.1186/s40824-023-00458-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/28/2023] [Indexed: 11/30/2023] Open
Abstract
Musculoskeletal disorders (MSDs), which include a range of pathologies affecting bones, cartilage, muscles, tendons, and ligaments, account for a significant portion of the global burden of disease. While pharmaceutical and surgical interventions represent conventional approaches for treating MSDs, their efficacy is constrained and frequently accompanied by adverse reactions. Considering the rising incidence of MSDs, there is an urgent demand for effective treatment modalities to alter the current landscape. Phototherapy, as a controllable and non-invasive technique, has been shown to directly regulate bone, cartilage, and muscle regeneration by modulating cellular behavior. Moreover, phototherapy presents controlled ablation of tumor cells, bacteria, and aberrantly activated inflammatory cells, demonstrating therapeutic potential in conditions such as bone tumors, bone infection, and arthritis. By constructing light-responsive nanosystems, controlled drug delivery can be achieved to enable precise treatment of MSDs. Notably, various phototherapy nanoplatforms with integrated imaging capabilities have been utilized for early diagnosis, guided therapy, and prognostic assessment of MSDs, further improving the management of these disorders. This review provides a comprehensive overview of the strategies and recent advances in the application of phototherapy for the treatment of MSDs, discusses the challenges and prospects of phototherapy, and aims to promote further research and application of phototherapy techniques.
Collapse
Affiliation(s)
- Zhenhe Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Rong Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hang Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Yongtao Geng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071, Ludwigshafen, Rhine, Germany
| | - Jie Ming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
9
|
Miyazaki A, Kawashima M, Nagata I, Miyoshi M, Miyakawa M, Sugiyama M, Sakuraya T, Sonomura T, Arakawa T. Icing after skeletal muscle injury decreases M1 macrophage accumulation and TNF-α expression during the early phase of muscle regeneration in rats. Histochem Cell Biol 2023; 159:77-89. [PMID: 36114866 DOI: 10.1007/s00418-022-02143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Following skeletal muscle injury, both myogenic and immune cells interact closely during the regenerative process. Although icing is still a common acute treatment for sports-related skeletal muscle injuries, icing after muscle injury has been shown to disrupt macrophage accumulation and impair muscle regeneration in animal models. However, it remains unknown whether icing shortly after injury affects macrophage-related phenomena during the early stages of muscle regeneration. Therefore, we focused on the distribution of M1/M2 macrophages and cytokines expressed predominantly by macrophages during the early stages of muscle regeneration after muscle crush injury. Icing resulted in a decrease, not retardation, in the accumulation of M1 macrophages, but not M2 macrophages, in injured muscles. Consistent with the decrease in M1 macrophage accumulation, icing led to a reduction, instead of delay, in the level of tumor necrosis factor-α (TNF-α) expression. Additionally, at subsequent timepoints, icing decreased the number of myogenic precursor cells in the regenerating area and the size of centrally nucleated regenerating myofibers. Together, our findings suggest that icing after acute muscle damage by crushing disturbs muscle regeneration through hindering tM1 macrophage-related phenomena.
Collapse
Affiliation(s)
- Anna Miyazaki
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Masato Kawashima
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Health and Sports Science, Kawasaki University of Medical Welfare, 288 Matsushima, Kurashiki, Okayama, 701-0193, Japan
| | - Itsuki Nagata
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Makoto Miyoshi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan
| | - Motoi Miyakawa
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Health and Sport Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Megumi Sugiyama
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,General Tokyo Hospital, 3-15-2 Egota, Nakano-ku, Tokyo, 165-8906, Japan
| | - Tohma Sakuraya
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.,Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takahiro Sonomura
- Department of Oral Anatomy, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takamitsu Arakawa
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
10
|
The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare (Basel) 2022; 10:healthcare10122556. [PMID: 36554079 PMCID: PMC9778753 DOI: 10.3390/healthcare10122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
We studied the preventive effects of heat or cold therapy after repeated eccentric contraction against torque reduction, muscle soreness, and range of motion (ROM) due to delayed-onset muscle soreness (DOMS). A total of 42 healthy male subjects were randomly allocated into three groups: the HEAT group received heat therapy using an ultra-short-wave device; the ICE group received ice therapy using an ice pack; the Control group received no intervention. The measurements included maximal voluntary isometric, concentric, and eccentric elbow flexion torque, elbow extension ROM, pressure pain threshold, and muscle soreness with stretching muscle thickness and echo intensity. The measurements were taken before (pre), after (post), after (t-post), one-four days after, and seven days after the muscle damage protocol. The results showed the main effect of time on all measurements, but no significant interactions were observed. The results of this study suggest that heat or cold therapy in the first 30 min after intense eccentric exercise is insufficient to exert a preventive effect against DOMS.
Collapse
|
11
|
Bernard C, Zavoriti A, Pucelle Q, Chazaud B, Gondin J. Role of macrophages during skeletal muscle regeneration and hypertrophy-Implications for immunomodulatory strategies. Physiol Rep 2022; 10:e15480. [PMID: 36200266 PMCID: PMC9535344 DOI: 10.14814/phy2.15480] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Skeletal muscle is a plastic tissue that regenerates ad integrum after injury and adapts to raise mechanical loading/contractile activity by increasing its mass and/or myofiber size, a phenomenon commonly refers to as skeletal muscle hypertrophy. Both muscle regeneration and hypertrophy rely on the interactions between muscle stem cells and their neighborhood, which include inflammatory cells, and particularly macrophages. This review first summarizes the role of macrophages in muscle regeneration in various animal models of injury and in response to exercise-induced muscle damage in humans. Then, the potential contribution of macrophages to skeletal muscle hypertrophy is discussed on the basis of both animal and human experiments. We also present a brief comparative analysis of the role of macrophages during muscle regeneration versus hypertrophy. Finally, we summarize the current knowledge on the impact of different immunomodulatory strategies, such as heat therapy, cooling, massage, nonsteroidal anti-inflammatory drugs and resolvins, on skeletal muscle regeneration and their potential impact on muscle hypertrophy.
Collapse
Affiliation(s)
- Clara Bernard
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Aliki Zavoriti
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Quentin Pucelle
- Université de Versailles Saint‐Quentin‐En‐YvelinesVersaillesFrance
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du MuscleUniversité Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université LyonLyonFrance
| |
Collapse
|
12
|
Is Tecar Therapy Effective on Biceps Femoris and Quadriceps Rehabilitation? A Cadaveric Study. J Sport Rehabil 2022; 31:756-763. [PMID: 35365590 DOI: 10.1123/jsr.2021-0458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Capacitive-resistive electric transfer therapy is an interesting rehabilitation treatment to use in musculoskeletal injuries. The purpose is to analyze the temperature change and current flow in superficial and deep biceps femoris and quadriceps tissues when applying different protocols of capacitive-resistive electric transfer therapy. METHODS Five cryopreserved cadavers (10 legs) were included in this study. Four interventions (high/low power) were performed for 5 minutes. Dynamic movements were performed to the biceps femoris and quadriceps. Superficial, middle, and deep temperature were recorded at 1-minute intervals and 5 minutes after the treatment using invasive temperature meters placed with ultrasound guidance. RESULTS Low-power applications have generated a very low thermal effect and an important current flow. The high-power capacitive application achieves a greater increase in superficial temperature compared with low power (P < .001). The high-power resistive application recorded a greater increase in superficial, middle, and deep temperatures with a greater current flow compared with the other applications (P < .001). CONCLUSION This study could serve as basic science data to justify the acceleration of the processes of muscle recovery, improving cell proliferation without increasing the temperature in acute muscle injuries and increasing the temperature and viscoelasticity of the tissues in chronic processes with this therapy.
Collapse
|
13
|
Laitano O, Oki K, Leon LR. The Role of Skeletal Muscles in Exertional Heat Stroke Pathophysiology. Int J Sports Med 2021; 42:673-681. [PMID: 33772503 DOI: 10.1055/a-1400-9754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The active participation of skeletal muscles is a unique characteristic of exertional heat stroke. Nevertheless, the only well-documented link between skeletal muscle activities and exertional heat stroke pathophysiology is the extensive muscle damage (e. g., rhabdomyolysis) and subsequent leakage of intramuscular content into the circulation of exertional heat stroke victims. Here, we will present and discuss rarely explored roles of skeletal muscles in the context of exertional heat stroke pathophysiology and recovery. This includes an overview of heat production that contributes to severe hyperthermia and the synthesis and secretion of bioactive molecules, such as cytokines, chemokines and acute phase proteins. These molecules can alter the overall inflammatory status from pro- to anti-inflammatory, affecting other organ systems and influencing recovery. The activation of innate immunity can determine whether a victim is ready to return to physical activity or experiences a prolonged convalescence. We also provide a brief discussion on whether heat acclimation can shift skeletal muscle secretory phenotype to prevent or aid recovery from exertional heat stroke. We conclude that skeletal muscles should be considered as a key organ system in exertional heat stroke pathophysiology.
Collapse
Affiliation(s)
- Orlando Laitano
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, United States
| | - Kentaro Oki
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| | - Lisa R Leon
- Thermal & Mountain Medicine Devision, United States Army Research Institute of Environmental Medicine, Natick, United States
| |
Collapse
|
14
|
Kawashima M, Kawanishi N, Tominaga T, Suzuki K, Miyazaki A, Nagata I, Miyoshi M, Miyakawa M, Sakuraya T, Sonomura T, Arakawa T. Icing after eccentric contraction-induced muscle damage perturbs the disappearance of necrotic muscle fibers and phenotypic dynamics of macrophages in mice. J Appl Physiol (1985) 2021; 130:1410-1420. [PMID: 33764172 DOI: 10.1152/japplphysiol.01069.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Icing is still one of the most common treatments to acute skeletal muscle damage in sports medicine. However, previous studies using rodents reported the detrimental effect of icing on muscle regeneration following injury. This study aimed to elucidate the critical factors governing the impairment of muscle regeneration by icing with a murine model of eccentric contraction-induced muscle damage by electrical stimulation. Because of icing after muscle injury, the infiltration of polynuclear and mononuclear cells into necrotic muscle fibers was retarded and attenuated, leading to the persistent presence of necrotic cellular debris. These phenomena coincided with the delayed emergence and sustained accumulation of Pax7+ myogenic cells within the regenerating area. In addition, due to icing, delayed and/or sustained infiltration of M1 macrophages was noted in accordance with the perturbed expression patterns of inflammation-related factors, including tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10). The key myogenic regulatory factors (i.e., MyoD and myogenin) involved in the activation/proliferation and differentiation of myogenic precursor cells were not altered by icing during the regenerative process. A detailed analysis of regenerating myofibers by size distribution at day 14 after muscle damage showed that the ratio of small regenerating fibers to total regenerating fibers was higher in icing-treated animals than in untreated animals. These findings suggest that icing following muscle damage blunts the efficiency of muscle regeneration by perturbing the removal of necrotic myofibers and phenotypic dynamics of macrophages rather than affecting myogenic factors.NEW & NOTEWORTHY Icing blunted the muscle regeneration by perturbing the infiltration of polynuclear and mononuclear cells into necrotic myofibers and the phenotypic dynamics of macrophages rather than affecting the myogenic regulatory factors. Because of icing, the disappearance of necrotic muscle debris was retarded, coinciding with the delayed emergence and sustained accumulation of Pax7+ cells within the regenerating area. The expression patterns of TNF-α and IL-10 were altered by icing consistent with the perturbation of the macrophage phenotype.
Collapse
Affiliation(s)
- Masato Kawashima
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Kawanishi
- Faculty of Advanced Engineering, Chiba Institute of Technology, Narashino, Japan
| | - Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan.,Research Fellow of Japan Society for the Promotion of Sciences, Tokyo, Japan
| | | | - Anna Miyazaki
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Itsuki Nagata
- Faculty of Health Sciences, Kobe University School of Medicine, Kobe, Japan
| | - Makoto Miyoshi
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Motoi Miyakawa
- Department of Health and Sport Sciences, Graduate school of Medicine, Osaka University, Osaka, Japan
| | - Tohma Sakuraya
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Takahiro Sonomura
- Department of Oral Anatomy, Asahi University School of Dentistry, Gifu, Japan
| | - Takamitsu Arakawa
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
15
|
Sakamoto M. Effects of Physical Agents on Muscle Healing with a Focus on Animal Model Research. Phys Ther Res 2021; 24:1-8. [PMID: 33981522 PMCID: PMC8111410 DOI: 10.1298/ptr.r0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 11/23/2022]
Abstract
Skeletal muscle injury is caused by a variety of events, such as muscle laceration, contusions, or strain. Muscle fibers respond to minor damage with immediate repair mechanisms that reseal the cell membrane. On the other hand, repair of irreversibly damaged fibers is achieved by activation of muscle precursor cells. Muscle repair is not always perfect, especially after severe damage, and can lead to excessive fibroblast proliferation that results in the formation of scar tissue within muscle fibers. Remaining scar tissue can impair joint movement, reduce muscular strength, and inhibit exercise ability; therefore, to restore muscle function, minimizing the extent of injury and promoting muscle regeneration are necessary. Various physical agents, such as cold, thermal, electrical stimulation, and low-intensity pulsed ultrasound therapy, have been reported as treatments for muscle healing. Although approaches based on the muscle regeneration process have been under development, the most efficacious physiological treatment for muscle injury remains unclear. In this review, the influence of these physical agents on muscle injury is described with a focus on research using animal models.
Collapse
Affiliation(s)
- Miki Sakamoto
- Department of Physical Therapy, School of Allied Health Sciences, Kitasato University, Japan
| |
Collapse
|
16
|
Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit 2021; 19:134-142. [PMID: 33603794 PMCID: PMC7859300 DOI: 10.1016/j.jesf.2021.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of regular hot water bathing (HWB), undertaken 10 min after the last training session of the day, on chronic adaptations to training in elite athletes. Six short-track (ST) speed skaters completed four weeks of post-training HWB and four weeks of post-training passive recovery (PR) according to a randomized cross-over study. During HWB, participants sat in a jacuzzi (40 °C; 20 min). According to linear mixed models, maximal isometric strength of knee extensor muscles was significantly increased for training with HWB (p < 0.0001; d = 0.41) and a tendency (p = 0.0529) was observed concerning V˙O2max. No significant effect of training with PR or HWB was observed for several variables (p > 0.05), including aerobic peak power output, the decline rate of jump height during 1 min-continuous maximal countermovement jumps (i.e. anaerobic capacity index), and the force-velocity relationship. Regarding specific tasks on ice, a small effect of training was found on both half-lap time and total time during a 1.5-lap all-out exercise (p = 0.0487; d = 0.23 and p = 0.0332; d = 0.21, respectively) but no additional effect of HWB was observed. In summary, the regular HWB protocol used in this study can induce additional effects on maximal isometric strength without compromising aerobic and anaerobic adaptations or field performance in these athletes.
Collapse
|
17
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
18
|
Chazaud B. Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages! Trends Immunol 2020; 41:481-492. [PMID: 32362490 DOI: 10.1016/j.it.2020.04.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Inflammation is usually considered as harmful; however, it is also necessary for tissue recovery after injury. Macrophages exert immune and nonimmune functions throughout this process. During skeletal muscle regeneration, they mount an inflammatory response while exerting trophic roles on muscle and mesenchymal stem cells. Proinflammatory macrophages shift to being anti-inflammatory, triggering the resolution of inflammation. Studies have highlighted that during this shift, a crosstalk ensues, integrating cues for resolution, efferocytosis, cellular metabolism, and signaling pathways. During the restorative phase, macrophages dampen inflammation while promoting stem cell differentiation, angiogenesis, and matrix remodeling. Since blunting the inflammatory phase can be detrimental for muscle regeneration, we suggest that rather than fighting inflammation, it should be allowed to operate and resolve, thus allowing for tissue recovery.
Collapse
Affiliation(s)
- Bénédicte Chazaud
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université Lyon, Lyon, France.
| |
Collapse
|
19
|
Investigation of the Short-term Effects of Heat Shock on Human Hamstring Tenocytes In Vitro. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-018-0070-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Tsuboshima K, Urakawa S, Takamoto K, Taguchi T, Matsuda T, Sakai S, Mizumura K, Ono T, Nishijo H. Distinct effects of thermal treatments after lengthening contraction on mechanical hyperalgesia and exercise-induced physiological changes in rat muscle. J Appl Physiol (1985) 2020; 128:296-306. [PMID: 31999528 DOI: 10.1152/japplphysiol.00355.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Delayed-onset muscle soreness (DOMS) is a common but displeasing event induced by excessive muscle use or unaccustomed exercise and characterized by tenderness and movement-related pain in the exercised muscle. Thermal therapies, either icing or heating applied to muscles immediately after exercise, have been used as therapeutic interventions for DOMS. However, the mechanisms of their analgesic effects, and physiological and metabolic changes in the muscle during thermal therapy, remain unclear. In the present study, we investigated the effects of both thermal treatments on mechanical hyperalgesia of DOMS and physiological and muscle metabolite changes using the rat DOMS model induced by lengthening contraction (LC) to the gastrocnemius muscle. Heating treatment just after LC induced analgesic effects, while rats with icing treatment showed mechanical hyperalgesia similar to that of the LC group. Furthermore, increased physiological responses (e.g., muscle temperature and blood flow) following the LC were significantly kept high only in the rats with heating treatment. In addition, heating treatment increased metabolites involved in the improvement of blood flow and oxidative metabolisms in the exercised muscle. The results indicated that heating treatment just after LC has analgesic effects on DOMS, which might be mediated partly through the improvement of muscle oxidative metabolisms by changes in metabolites and elevated physiological responses.NEW & NOTEWORTHY Physiological effects of thermal therapy in the muscle and its mechanisms of analgesic effects remain unclear. The results indicated that heating, but not icing, treatment just after lengthening contractions induced analgesic effects in the rat muscle. Increases in hemodynamics, muscle temperature, and metabolites such as nicotinamide were more prominent in heating treatment, consistent with improvement of muscle oxidative metabolisms, which might reduce chemical factors to induce mechanical hyperalgesia.
Collapse
Affiliation(s)
- Katsuyuki Tsuboshima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Susumu Urakawa
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Musculoskeletal Functional Research and Regeneration, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouichi Takamoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Toru Taguchi
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| | - Teru Matsuda
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Shigekazu Sakai
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Taketoshi Ono
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
21
|
Ihsan M, Périard JD, Racinais S. Integrating Heat Training in the Rehabilitation Toolbox for the Injured Athlete. Front Physiol 2019; 10:1488. [PMID: 31920696 PMCID: PMC6917657 DOI: 10.3389/fphys.2019.01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Ihsan
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | | |
Collapse
|
22
|
Kim K, Reid BA, Ro B, Casey CA, Song Q, Kuang S, Roseguini BT. Heat therapy improves soleus muscle force in a model of ischemia-induced muscle damage. J Appl Physiol (1985) 2019; 127:215-228. [PMID: 31161885 DOI: 10.1152/japplphysiol.00115.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leg muscle ischemia in patients with peripheral artery disease (PAD) leads to alterations in skeletal muscle morphology and reduced leg strength. We tested the hypothesis that exposure to heat therapy (HT) would improve skeletal muscle function in a mouse model of ischemia-induced muscle damage. Male 42-wk-old C57Bl/6 mice underwent ligation of the femoral artery and were randomly assigned to receive HT (immersion in a water bath at 37°C, 39°C, or 41°C for 30 min) or a control intervention for 3 wk. At the end of the treatment, the animals were anesthetized and the soleus and extensor digitorum longus (EDL) muscles were harvested for the assessment of contractile function and examination of muscle morphology. A subset of animals was used to examine the impact of a single HT session on the expression of genes involved in myogenesis and the regulation of muscle mass. Relative soleus muscle mass was significantly higher in animals exposed to HT at 39°C compared with the control group (control: 0.36 ± 0.01 mg/g versus 39°C: 0.40 ± 0.01 mg/g, P = 0.024). Maximal absolute force of the soleus was also significantly higher in animals treated with HT at 37°C and 39°C (control: 274.7 ± 6.6 mN; 37°C: 300.1 ± 7.7 mN; 39°C: 299.5 ± 10 mN, P < 0.05). In the soleus, but not the EDL muscle, a single session of HT enhanced the mRNA expression of myogenic factors as well as of both positive and negative regulators of muscle mass. These findings suggest that the beneficial effects of HT are muscle specific and dependent on the treatment temperature in a model of PAD. NEW & NOTEWORTHY This is the first study to comprehensively examine the impact of temperature and muscle fiber type composition on the adaptations to repeated heat stress in a model of ischemia-induced muscle damage. Exposure to heat therapy (HT) at 37°C and 39°C, but not at 41°C, improved force development of the isolated soleus muscle. These results suggest that HT may be a practical therapeutic tool to restore muscle mass and strength in patients with peripheral artery disease.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Blake A Reid
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Bohyun Ro
- Department of Physical Education, Dong-A University , Busan , Korea
| | - Caitlin A Casey
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Qifan Song
- Department of Statistics, Purdue University , West Lafayette, Indiana
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University , West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| |
Collapse
|
23
|
Shibaguchi T, Hoshi M, Yoshihara T, Naito H, Goto K, Yoshioka T, Sugiura T. Impact of different temperature stimuli on the expression of myosin heavy chain isoforms during recovery from bupivacaine-induced muscle injury in rats. J Appl Physiol (1985) 2019; 127:178-189. [PMID: 31120809 DOI: 10.1152/japplphysiol.00930.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Limited information exists regarding the impact of different temperature stimuli on myosin heavy chain (MyHC) expression in skeletal muscle during recovery from injury. Therefore, this experiment investigated the impact of both cold and heat exposure on the MyHC isoform profile in the rat soleus during recovery from injury. Male Wistar rats were randomly divided into control, bupivacaine-injected (BPVC), BPVC with icing, and BPVC with heat stress groups. Muscle injury was induced by intramuscular injection of bupivacaine into soleus muscles of male Wistar rats. Icing treatment (0°C for 20 min) was performed immediately after the injury. Intermittent heat stress (42°C for 30 min on alternating days) was carried out during 2-14 days after bupivacaine injection. In response to injury, a transient increase in developmental, IId/x, and IIb MyHC isoforms, as well as various types of hybrid fibers, followed by the recovery of the MyHC profile toward the control level, was noted in the regeneration of the soleus. The restoration of the MyHC profile in the regenerating muscle at whole-muscle and individual myofiber levels was partially delayed by icing but facilitated by heat stress. In addition, the application of repeated heat stress promoted the recovery of soleus muscle mass toward the control level following injury. We conclude that compared with acute and immediate cold (icing) treatment, chronic and repeated heat stress may be a more appropriate treatment for the enhancement of both normalization of the MyHC profile and restoration of muscle mass following injury. NEW & NOTEWORTHY Cold exposure (icing), but not heat exposure, has been well accepted as a first-aid treatment for accidental and/or sports-related injuries. However, recent evidence suggests the negative impact of icing treatment on skeletal muscle regeneration following injury. Here, we demonstrated that acute/immediate icing treatment delayed the restoration of the myosin heavy chain (MyHC) profile, but intermittent hyperthermia, repeated for several days, facilitated the recovery of both muscle mass and the MyHC profile in the regeneration of skeletal muscle following injury.
Collapse
Affiliation(s)
- Tsubasa Shibaguchi
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa City, Ishikawa , Japan
| | - Mizuki Hoshi
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi , Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba , Japan
| | - Hisashi Naito
- Graduate School of Health and Sports Science, Juntendo University, Inzai City, Chiba , Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi City, Aichi , Japan
| | | | - Takao Sugiura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi City, Yamaguchi , Japan
| |
Collapse
|
24
|
Ohno Y, Egawa T, Yokoyama S, Fujiya H, Sugiura T, Ohira Y, Yoshioka T, Goto K. MENS-associated increase of muscular protein content via modulation of caveolin-3 and TRIM72. Physiol Res 2019; 68:265-273. [PMID: 30628834 DOI: 10.33549/physiolres.933992] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Microcurrent electrical neuromuscular stimulation (MENS) is known as an extracellular stimulus for the regeneration of injured skeletal muscle in sports medicine. However, the effects of MENS-associated increase in muscle protein content are not fully clarified. The purpose of this study was to investigate the effects of MENS on the muscular protein content, intracellular signals, and the expression level of caveolin-3 (Cav-3), tripartite motif-containing 72 (TRIM72) and MM isoenzyme of creatine kinase (CK-MM) in skeletal muscle using cell culture system. C2C12 myotubes on the 7th day of differentiation phase were treated with MENS (intensity: 10-20 microA, frequency: 0.3 Hz, pulse width: 250 ms, stimulation time: 15-120 min). MENS-associated increase in the protein content of myotubes was observed, compared to the untreated control level. MENS upregulated the expression of Cav-3, TRIM72, and CK-MM in myotubes. A transient increase in phosphorylation level of Akt was also observed. However, MENS had no effect on the phosphorylation level of p42/44 extracellular signal-regulated kinase-1/2 and 5'AMP-activated protein kinase. MENS may increase muscle protein content accompanied with a transient activation of Akt and the upregulation of Cav-3 and TRIM72.
Collapse
Affiliation(s)
- Y Ohno
- Department of Physiology, Graduate School of Health Sciences, Toyohashi SOZO University, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim K, Kuang S, Song Q, Gavin TP, Roseguini BT. Impact of heat therapy on recovery after eccentric exercise in humans. J Appl Physiol (1985) 2019; 126:965-976. [PMID: 30605396 DOI: 10.1152/japplphysiol.00910.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the effects of heat therapy (HT) on functional recovery, the skeletal muscle expression of angiogenic factors, macrophage content, and capillarization after eccentric exercise in humans. Eleven untrained individuals (23.8 ± 0.6 yr) performed 300 bilateral maximal eccentric contractions of the knee extensors. One randomly selected thigh was treated with five daily 90-min sessions of HT, whereas the opposite thigh received a thermoneutral intervention. Peak isokinetic torque of the knee extensors was assessed at baseline and daily for 4 days and fatigue resistance was assessed at baseline and 1 and 4 days after the eccentric exercise session. Muscle biopsies were obtained 2 wk before and 1 and 5 days after the eccentric exercise bout. There were no differences between thighs in the overall recovery profile of peak torque. However, the thigh exposed to HT had greater fatigue resistance than the thigh exposed to the thermoneutral intervention. The change from baseline in mRNA expression of vascular endothelial growth factor (VEGF) was higher at day 1 in the thigh exposed to HT. Protein levels of VEGF and angiopoietin 1 were also significantly higher in the thigh treated with HT. The number of capillaries around type II fibers decreased similarly in both thighs at day 5. Exposure to HT had no impact on macrophage content. These results suggest that HT accelerates the recovery of fatigue resistance after eccentric exercise and promotes the expression of angiogenic factors in human skeletal muscle. NEW & NOTEWORTHY We investigated whether exposure to local heat therapy (HT) accelerates recovery after a bout of eccentric exercise in humans. Compared with a thermoneutral control intervention, HT improved fatigue resistance of the knee extensors and enhanced the expression of the angiogenic mediators vascular endothelial growth factor and angiopoietin 1. These results suggest that HT hastens functional recovery and enhances the expression of regulatory factors involved in muscle repair after eccentric exercise in humans.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University , West Lafayette, Indiana
| | - Qifan Song
- Department of Statistics, Purdue University , West Lafayette, Indiana
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University , West Lafayette, Indiana
| |
Collapse
|
26
|
McGorm H, Roberts LA, Coombes JS, Peake JM. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med 2018; 48:1311-1328. [PMID: 29470824 DOI: 10.1007/s40279-018-0876-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, heat has been used in various clinical and sports rehabilitation settings to treat soft tissue injuries. More recently, interest has emerged in using heat to pre-condition muscle against injury. The aim of this narrative review was to collate information on different types of heat therapy, explain the physiological rationale for heat therapy, and to summarise and evaluate the effects of heat therapy before, during and after muscle injury, immobilisation and strength training. Studies on skeletal muscle cells demonstrate that heat attenuates cellular damage and protein degradation (following in vitro challenges/insults to the cells). Heat also increases the expression of heat shock proteins (HSPs) and upregulates the expression of genes involved in muscle growth and differentiation. In rats, applying heat before and after muscle injury or immobilisation typically reduces cellular damage and muscle atrophy, and promotes more rapid muscle growth/regeneration. In humans, some research has demonstrated benefits of microwave diathermy (and, to a lesser extent, hot water immersion) before exercise for restricting muscle soreness and restoring muscle function after exercise. By contrast, the benefits of applying heat to muscle after exercise are more variable. Animal studies reveal that applying heat during limb immobilisation attenuates muscle atrophy and oxidative stress. Heating muscle may also enhance the benefits of strength training for improving muscle mass in humans. Further research is needed to identify the most effective forms of heat therapy and to investigate the benefits of heat therapy for restricting muscle wasting in the elderly and those individuals recovering from serious injury or illness.
Collapse
Affiliation(s)
- Hamish McGorm
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia.
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia.
| | - Llion A Roberts
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Allied Health Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia
| | - Jonathan M Peake
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
27
|
Mild Hyperthermia-Induced Myogenic Differentiation in Skeletal Muscle Cells: Implications for Local Hyperthermic Therapy for Skeletal Muscle Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2393570. [PMID: 30050646 PMCID: PMC6040271 DOI: 10.1155/2018/2393570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
Abstract
The percutaneous application of controlled temperature on damaged muscle is regarded as a prevalent remedy. However, specific mechanisms are not completely understood. Therefore, cellular behaviors of myoblasts were investigated under a physiological hyperthermic temperature. The myoblasts were cultured under no treatment (NT, 37°C, 24 h/day), intermittent heat treatment (IHT, 39°C, 2 h/day), and continuous heat treatment (CHT, 39°C, 24 h/day) during proliferation, migration, or myogenic differentiation. Although the effects of mild heat on migration were not observed, the proliferation was promoted by both IHT and CHT. The myogenic differentiation was also enhanced in a treatment time-dependent manner, as evidenced by an increase in myotube size and fusion index. The gene expressions of mitochondrial biogenesis (Pgc-1α, Nrf1, and Tfam), a subset of mitochondrial dynamics (Mfn1 and Drp1), and a myogenic regulatory factor (myogenin) were increased in a heat treatment time-dependent manner. Interestingly, the mild heat-induced myogenic differentiation and myogenin expression were retarded significantly in PGC-1α-targeted siRNA-transfected cells, suggesting that mild hyperthermia promotes myogenic differentiation via the modulation of PGC-1α. This study provides cellular evidence supporting that local hyperthermic treatment at 39°C is regarded as an effective therapeutic strategy to promote satellite cell activities in regenerating myofibers.
Collapse
|