1
|
Cebrián R, Martínez-García M, Fernández M, García F, Martínez-Bueno M, Valdivia E, Kuipers OP, Montalbán-López M, Maqueda M. Advances in the preclinical characterization of the antimicrobial peptide AS-48. Front Microbiol 2023; 14:1110360. [PMID: 36819031 PMCID: PMC9936517 DOI: 10.3389/fmicb.2023.1110360] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023] Open
Abstract
Antimicrobial resistance is a natural and inevitable phenomenon that constitutes a severe threat to global public health and economy. Innovative products, active against new targets and with no cross- or co-resistance with existing antibiotic classes, novel mechanisms of action, or multiple therapeutic targets are urgently required. For these reasons, antimicrobial peptides such as bacteriocins constitute a promising class of new antimicrobial drugs under investigation for clinical development. Here, we review the potential therapeutic use of AS-48, a head-to-tail cyclized cationic bacteriocin produced by Enterococcus faecalis. In the last few years, its potential against a wide range of human pathogens, including relevant bacterial pathogens and trypanosomatids, has been reported using in vitro tests and the mechanism of action has been investigated. AS-48 can create pores in the membrane of bacterial cells without the mediation of any specific receptor. However, this mechanism of action is different when susceptible parasites are studied and involves intracellular targets. Due to these novel mechanisms of action, AS-48 remains active against the antibiotic resistant strains tested. Remarkably, the effect of AS-48 against eukaryotic cell lines and in several animal models show little effect at the doses needed to inhibit susceptible species. The characteristics of this molecule such as low toxicity, microbicide activity, blood stability and activity, high stability at a wide range of temperatures or pH, resistance to proteases, and the receptor-independent effect make AS-48 unique to fight a broad range of microbial infections, including bacteria and some important parasites.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,*Correspondence: Rubén Cebrián, ✉
| | | | | | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital San Cecilio, Granada, Spain,Biomedicinal Research Network Center, Infectious Diseases (CIBERINFEC), Madrid, Spain
| | | | - Eva Valdivia
- Department of Microbiology, University of Granada, Granada, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Manuel Montalbán-López
- Department of Microbiology, University of Granada, Granada, Spain,Manuel Montalbán-López, ✉
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Kamal I, Ashfaq UA, Hayat S, Aslam B, Sarfraz MH, Yaseen H, Rajoka MSR, Shah AA, Khurshid M. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett 2023; 45:137-162. [PMID: 36504266 DOI: 10.1007/s10529-022-03328-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to antimicrobial agents that have got considerable research interest owing to their significant role in the inhibition of bacterial pathogens. These AMPs can essentially inhibit the growth and multiplication of microbes through multiple mechanisms including disruption of cellular membranes, inhibition of cell wall biosynthesis, or affecting intracellular components and cell division. Moreover, AMPs are biocompatible and biodegradable therefore, they can be a good alternative to antimicrobial agents and chemical preservatives. A few of their features for example thermostability and high selectivity are quite appealing for their potential use in the food industry for food preservation to prevent the spoilage caused by microorganisms and foodborne pathogens. Despite these advantages, very few AMPs are being used at an industrial scale for food preservation as these peptides are quite vulnerable to external environmental factors which deter their practical applications and commercialization. The review aims to provide an outline of the mechanism of action of AMPs and their prospects as an alternative to chemical preservatives in the food industry. Further studies related to the structure-activity relationship of AMPs will help to expand the understanding of their mechanism of action and to determine specific conditions to increase their stability and applicability in food preservation.
Collapse
Affiliation(s)
- Iqra Kamal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sumreen Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Hamna Yaseen
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
3
|
Johny LC, Suresh PV. Complete genome sequencing and strain characterization of a novel marine Bacillus velezensis FTL7 with a potential broad inhibitory spectrum against foodborne pathogens. World J Microbiol Biotechnol 2022; 38:164. [DOI: 10.1007/s11274-022-03351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
|
4
|
Mokhtar NFK, Hashim AM, Abbasiliasi S, Zulkarnain A, Raja Nhari RMH, Ariff A, Mustafa S, Abdul Rahim R. Physicochemical stability of antilisterial proteins from
P. polymyxa
Kp10 as potential food biopreservative. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nur Fadhilah Khairil Mokhtar
- Department of Cell and Molecular Biology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia Selangor Malaysia
- Halal Products Research Institute Putra Infoport Universiti Putra Malaysia Selangor Malaysia
| | - Amalia Mohd Hashim
- Halal Products Research Institute Putra Infoport Universiti Putra Malaysia Selangor Malaysia
- Department of Microbiology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia Selangor Malaysia
| | - Sahar Abbasiliasi
- Halal Products Research Institute Putra Infoport Universiti Putra Malaysia Selangor Malaysia
| | - Aisyah Zulkarnain
- Halal Products Research Institute Putra Infoport Universiti Putra Malaysia Selangor Malaysia
| | | | - Arbakariya Ariff
- Bioprocessing and Biomanufacturing Research Centre Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia Selangor Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute Putra Infoport Universiti Putra Malaysia Selangor Malaysia
- Department of Microbiology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia Selangor Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia Selangor Malaysia
- Universiti Teknikal Malaysia Melaka Malacca Malaysia
| |
Collapse
|
5
|
Duraisamy S, Balakrishnan S, Ranjith S, Husain F, Sathyan A, Peter AS, Prahalathan C, Kumarasamy A. Bacteriocin-a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44922-44936. [PMID: 33006097 DOI: 10.1007/s11356-020-10989-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Biofilm, a consortium of microbial cells, protected by extracellular polymeric matrix, is considered a global challenge due to the inherent antibiotic resistance conferred by its lifestyle. Besides, it poses environmental threats causing huge damage in food industries, fisheries, refineries, water systems, pharmaceutical industries, medical industries, etc. Living in a community of microbial populations is most critical in the clinical field, making it responsible for about 80% of severe and chronic microbial diseases. The necessity to find an alternative approach is the need of the hour to solve these crises. So far, many approaches have been attempted to disrupt the initial stage of biofilm formation, including adherence and maturation. Bacteriocins are a group of antimicrobial peptides, produced by bacteria having the potential to disrupt biofilm either by itself or in combination with other drugs than antibiotic counterparts. A clear understanding on mechanisms of bacterial biofilm formation, progression, and resistance will surely lead to the development of innovative, effective biofilm control strategies in pharmaceutical, health care industries and environmental locales.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthilkumar Balakrishnan
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, P.O. Box 235, Harar, Ethiopia
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Fazal Husain
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Chidambaram Prahalathan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
6
|
Bagheri Darvish H, Bahrami A, Jafari SM, Williams L. Micro/nanoencapsulation strategy to improve the efficiency of natural antimicrobials against Listeria monocytogenes in food products. Crit Rev Food Sci Nutr 2020; 61:1241-1259. [PMID: 32323558 DOI: 10.1080/10408398.2020.1755950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Listeria monocytogenes (Lm), the etiological agent of listeriosis diseases in humans, is a serious pathogenic microorganism threatening the food safety especially in ready-to-eat food products. Adhesion on both biotic and abiotic surfaces is making it a potential source of contamination by Lm. Also, this bacterium has become more tolerant in food processing conditions, including in the presence of adverse conditions such as cold and dehydration. One of the attractive and effective methods to inhibit the growth of Lm in the food products is using natural antimicrobial agents, which can be a suitable alternative to synthetic preservatives for producing organic food products. The use of pure natural antimicrobials has some limitations including low stability against harsh conditions, low solubility and absorption, and un-controlled release, which can decrease their functions. These limitations have been overcome by using new advanced encapsulation techniques, which have boosted the anti-listerial activity of natural agents. Therefore, the current paper is aiming to review the results of recent studies conducted on using natural antimicrobials added directly or as encapsulated forms into the food formulation to control the growth of Lm. The information of current study can be used by the researchers as well as the food companies for the optimization of food formulations through encapsulation strategies to control Lm and potentially produce safe foods for the consumers.
Collapse
Affiliation(s)
| | - Akbar Bahrami
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Leonard Williams
- North Carolina Research Campus, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, North Carolina, USA
| |
Collapse
|
7
|
Post-process treatments are effective strategies to reduce Listeria monocytogenes on the surface of leafy greens: A pilot study. Int J Food Microbiol 2019; 313:108390. [PMID: 31678818 DOI: 10.1016/j.ijfoodmicro.2019.108390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/16/2019] [Indexed: 01/25/2023]
Abstract
Growth of L. monocytogenes is among the most important factors affecting the risk of human listeriosis. In ready to eat leafy greens, the use of anti-Listeria treatments represents a good alternative to inhibit growth during storage. Several commercially available antimicrobial agents have been suggested as effective intervention strategies. Among them, phage preparations and bacteriocin-producing strains have shown promising results against L. monocytogenes. In this study, we investigate the efficacy of two commercially available surface treatments, the bacteriophage formulation PhageGuard Listex (Micreos Food Safety B.V., NL) and the bacteriocin-producing culture SafePro® (CHR Hansen, DK) to inactivate L. monocytogenes in fresh-cut curly endive after processing and during storage. Fresh-cut endive was inoculated with a cold-adapted L. monocytogenes cocktail of 6 strains (4.4 ± 0.0 log cfu/g) and treated with the anti-Listeria treatments. The treatments were applied using a spray system at two different places within the processing line, on the conveyor belt and in the centrifuge. A total of 5 different treatments were applied: i) Untreated (CT); ii) PhageGuard Listex on the conveyor belt (Listex_Conveyor); iii) PhageGuard Listex during centrifugation (Listex_Centrifuge); iv) SafePro on the conveyor belt (SafePro_Conveyor); and v) SafePro during centrifugation (SafePro_Centrifuge). Samples were stored 3 days at 5 °C plus 5 days at 8 °C. PhageGuard Listex treatment reduced L. monocytogenes in fresh-cut endive by 2.5 logs, regardless of the place of treatment application (conveyor belt or centrifuge). On the other hand, SafePro only reduced L. monocytogenes by 0.2 and 0.4 logs, at the conveyor belt and centrifuge, respectively. Maximum L. monocytogenes reductions of about 3.5 log units were observed in fresh-cut endive treated with PhageGuard Listex after 3 days of storage. At the end of the shelf life (8 days), the initial trends were maintained and the fresh-cut curly endive treated with PhageGuard Listex showed the lowest L. monocytogenes concentration. However, by the end of the shelf-life, L. monocytogenes showed higher levels (1.3-fold) than immediately after the application of the treatment. One hypothesis could be that L. monocytogenes cells, which were able to survive the anti-Listeria treatments, were also able to proliferate under the specific storage conditions. Based on the obtained results, PhageGuard Listex seems to be a promising decontamination agent for leafy greens aiming to reduce growth of the bacteria but further work is needed.
Collapse
|
8
|
James A, Wang Y. Characterization, health benefits and applications of fruits and vegetable probiotics. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1652693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Armachius James
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| | - Yousheng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
9
|
Baños A, García JD, Núñez C, Mut-Salud N, Ananou S, Martínez-Bueno M, Maqueda M, Valdivia E. Subchronic toxicity study in BALBc mice of enterocin AS-48, an anti-microbial peptide produced by Enterococcus faecalis UGRA10. Food Chem Toxicol 2019; 132:110667. [PMID: 31288051 DOI: 10.1016/j.fct.2019.110667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 01/20/2023]
Abstract
Few studies have examined the use of animal models to evaluate the in-vivo toxicity of antimicrobial peptides, but such research is essential to their safe use in foods. This study was performed to evaluate any adverse effects of enterocin AS-48, a circular bacteriocin produced by Enterococcus strains, when administered to BALB/c mice at concentrations of 50, 100, and 200 mg/kg in the diet for 90 days. Animals dosed with nisin at a dietary concentration of 200 mg/kg served as a reference treated group. There were no deaths in any of the animal groups, and the AS-48 treatment produced no abnormalities or clinical signs on body weights, food consumption, urinalysis, haematology, or blood biochemistry. Furthermore, there were no significant differences in the weights of liver, spleen, heart, kidneys, and intestines between control mice and those treated with AS-48 or nisin. The histopathological study showed moderate vacuolar degeneration in hepatocytes of some animals fed 100 or 200 mg/kg AS-48 (3/10 and 2/10 respectively). However, this anomaly was lower than in the group treated with nisin (5/10). Conclusively, no toxicologically significant changes were associated in BALB/c mice fed with 50, 100, and 200 mg/kg enterocin AS-48 for 90 days.
Collapse
Affiliation(s)
- Alberto Baños
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - J David García
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Cristina Núñez
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Nuria Mut-Salud
- Department of Microbiology, DMC Research Center, Camino de Jayena s/n, 18620, Granada, Spain
| | - Samir Ananou
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Manuel Martínez-Bueno
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain
| | - Mercedes Maqueda
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain
| | - Eva Valdivia
- Department of Microbiology, University of Granada, Campus de Fuentenueva s/n, 18071, Granada, Spain; Institute of Biotechnology, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
10
|
Bacterial Inactivation by Using Plastic Materials Activated with Combinations of Natural Antimicrobials. COATINGS 2018. [DOI: 10.3390/coatings8120460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural antimicrobials have gained interest as possible inhibitors of biofilm formation. The aim of the present study was to determine the efficacy of antimicrobials derived from essential oils (carvacrol, thymol) plus bacteriocin AS-48 immobilized on two plastic supports (low density polyethylene and polyethylene–polyamide films) on bacterial inactivation. The polyethylene–polyamide vacuum-packaging plastic film activated with a combination of thymol plus enterocin AS-48 was the most effective in reducing the concentrations of viable planktonic and sessile cells for Listeria innocua, Lactobacillus fructivorans, Bacillus coagulans, and Bacillus licheniformis. Results from the study highlight the potential of polyethylene–polyamide film activated with thymol plus enterocin AS-48 for reducing the viable cell concentrations of spoilage Gram-positive bacteria and Listeria in both planktonic and sessile states.
Collapse
|
11
|
Lactic Acid Bacteria (LAB) and Their Bacteriocins as Alternative Biotechnological Tools to Control Listeria monocytogenes Biofilms in Food Processing Facilities. Mol Biotechnol 2018; 60:712-726. [PMID: 30073512 DOI: 10.1007/s12033-018-0108-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria Gram-negative and Gram-positive, including lactic acid bacteria (LAB), organisms that are traditionally used in food preservation practices. Bacteriocins have been shown to have an aptitude as biofilm controlling agents in Listeria monocytogenes biofilms, a major risk for consumers and the food industry. Biofilms protect pathogens from sanitization procedures, allowing them to survive and persist in processing facilities, resulting in the cross-contamination of the end products. Studies have been undertaken on bacteriocinogenic LAB, their bacteriocins, and bioengineered bacteriocin derivatives for controlling L. monocytogenes biofilms on different surfaces through inhibition, competition, exclusion, and displacement. These alternative strategies can be considered promising in preventing the development of resistance to conventional sanitizers and disinfectants. Bacteriocins are "friendly" antimicrobial agents, and with high prevalence in nature, they do not have any known associated public health risk. Most trials have been carried out in vitro, on food contact materials such as polystyrene and stainless steel, while there have been few studies performed in situ to consolidate the results observed in vitro. There are strategies that can be employed for prevention and eradication of L. monocytogenes biofilms (such as the establishment of standard cleaning procedures using the available agents at proper concentrations). However, commercial cocktails using alternatives compounds recognized as safe and environmental friendly can be an alternative approach to be applied by the industries in the future.
Collapse
|
12
|
Synergy between Circular Bacteriocin AS-48 and Ethambutol against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00359-18. [PMID: 29987141 DOI: 10.1128/aac.00359-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
The increasing incidence of multidrug-resistant Mycobacterium tuberculosis strains and the very few drugs available for treatment are promoting the discovery and development of new molecules that could help in the control of this disease. Bacteriocin AS-48 is an antibacterial peptide produced by Enterococcus faecalis and is active against several Gram-positive bacteria. We have found that AS-48 was active against Mycobacterium tuberculosis, including H37Rv and other reference and clinical strains, and also against some nontuberculous clinical mycobacterial species. The combination of AS-48 with either lysozyme or ethambutol (commonly used in the treatment of drug-susceptible tuberculosis) increased the antituberculosis action of AS-48, showing a synergic interaction. Under these conditions, AS-48 exhibits a MIC close to some MICs of the first-line antituberculosis agents. The inhibitory activity of AS-48 and its synergistic combination with ethambutol were also observed on M. tuberculosis-infected macrophages. Finally, AS-48 did not show any cytotoxicity against THP-1, MHS, and J774.2 macrophage cell lines at concentrations close to its MIC. In summary, bacteriocin AS-48 has interesting antimycobacterial activity in vitro and low cytotoxicity, so further studies in vivo will contribute to its development as a potential additional drug for antituberculosis therapy.
Collapse
|
13
|
Wayah SB, Philip K. Characterization, yield optimization, scale up and biopreservative potential of fermencin SA715, a novel bacteriocin from Lactobacillus fermentum GA715 of goat milk origin. Microb Cell Fact 2018; 17:125. [PMID: 30103750 PMCID: PMC6090665 DOI: 10.1186/s12934-018-0972-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Emergence of antibiotic resistance and growing consumer trend towards foods containing biopreservatives stimulated the search for alternative antimicrobials. This research is aimed at characterizing, investigating the mechanism of action, scale up optimization and evaluating the biopreservative potential of a bacteriocin from Lactobacillus fermentum. RESULTS Fermencin SA715 is a novel, broad-spectrum, non-pore-forming and cell wall-associated bacteriocin isolated from L. fermentum GA715 of goat milk origin. A combination of hydrophobic interaction chromatography, solid-phase extraction and reversed-phase HPLC was necessary for purification of the bacteriocin to homogeneity. It has a molecular weight of 1792.537 Da as revealed by MALDI-TOF mass spectrometry. Fermencin SA715 is potent at micromolar concentration, possesses high thermal and pH stability and inactivated by proteolytic enzymes thereby revealing its proteinaceous nature. Biomass accumulation and production of fermencin SA715 was optimum in a newly synthesized growth medium. Fermencin SA715 did not occur in the absence of manganese(II) sulphate. Tween 80, ascorbic acid, sodium citrate and magnesium sulphate enhanced the production of fermencin SA715. Sucrose is the preferred carbon source for growth and bacteriocin production. Sodium chloride concentration higher than 1% suppressed growth and production of fermencin SA715. Optimum bacteriocin production occurred at 37 °C and pH 6-7. Scale up of fermencin SA715 production involved batch fermentation in a bioreactor at a constant pH of 6.5 which resulted in enhanced production. Fermencin SA715 doubled the shelf life and improved the microbiological safety of fresh banana. Bacteriocin application followed by refrigeration tripled the shell life of banana. CONCLUSIONS This study reveals the huge potential of fermencin SA715 as a future biopreservative for bananas and reveals other interesting characteristics which can be exploited in the preservation of other foods. Furthermore insights on the factors influencing the production of fermencin SA715 have been revealed and optimized condition for its production has been established facilitating future commercial production.
Collapse
Affiliation(s)
- Samson Baranzan Wayah
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, Nigeria
| | - Koshy Philip
- Microbiology Division, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Control of Propionibacterium acnes by natural antimicrobial substances: Role of the bacteriocin AS-48 and lysozyme. Sci Rep 2018; 8:11766. [PMID: 30082920 PMCID: PMC6079106 DOI: 10.1038/s41598-018-29580-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
We report the high susceptibility of several clinical isolates of Propionibacterium acnes from different sources (skin, bone, wound exudates, abscess or blood contamination) to the head-to-tail cyclized bacteriocin AS-48. This peptide is a feasible candidate for further pharmacological development against this bacterium, due to its physicochemical and biological characteristics, even when it is growing in a biofilm. Thus, the treatment of pre-formed biofilms with AS-48 resulted in a dose- and time-dependent disruption of the biofilm architecture beside the decrease of bacterial viability. Furthermore, we demonstrated the potential of lysozyme to bolster the inhibitory activity of AS-48 against P. acnes, rendering high reductions in the MIC values, even in matrix-growing cultures, according to the results obtained using a range of microscopy and bioassay techniques. The improvement of the activity of AS-48 through its co-formulation with lysozyme may be considered an alternative in the control of P. acnes, especially after proving the absence of cytotoxicity demonstrated by these natural compounds on relevant human skin cell lines. In summary, this study supports that compositions comprising the bacteriocin AS-48 plus lysozyme must be considered as promising candidates for topical applications with medical and pharmaceutical purposes against dermatological diseases such as acne vulgaris.
Collapse
|
15
|
Bédard F, Hammami R, Zirah S, Rebuffat S, Fliss I, Biron E. Synthesis, antimicrobial activity and conformational analysis of the class IIa bacteriocin pediocin PA-1 and analogs thereof. Sci Rep 2018; 8:9029. [PMID: 29899567 PMCID: PMC5998028 DOI: 10.1038/s41598-018-27225-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
The antimicrobial peptide pediocin PA-1 is a class IIa bacteriocin that inhibits several clinically relevant pathogens including Listeria spp. Here we report the synthesis and characterization of whole pediocin PA-1 and novel analogs thereof using a combination of solid- and solution-phase strategies to overcome difficulties due to instability and undesired reactions. Pediocin PA-1 thus synthesized was a potent inhibitor of Listeria monocytogenes (MIC = 6.8 nM), similar to the bacteriocin produced naturally by Pediococcus acidilactici. Of particular interest is that linear analogs lacking both of the disulfide bridges characterizing pediocin PA-1 were as potent. One linear analog was also a strong inhibitor of Clostridium perfringens, another important food-borne pathogen. These results are discussed in light of conformational information derived from circular dichroism, solution NMR spectroscopy and structure-activity relationship studies.
Collapse
Affiliation(s)
- François Bédard
- Faculté de pharmacie, Université Laval and Laboratoire de chimie médicinale, Centre de recherche du CHU de Québec, 2705 Boulevard Laurier, Québec, Québec, G1V 0A6, Canada
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Riadh Hammami
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Séverine Zirah
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Sorbonne Universités, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Sylvie Rebuffat
- Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d'Histoire Naturelle, Sorbonne Universités, CNRS, CP 54, 57 rue Cuvier, 75005, Paris, France
| | - Ismail Fliss
- STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Eric Biron
- Faculté de pharmacie, Université Laval and Laboratoire de chimie médicinale, Centre de recherche du CHU de Québec, 2705 Boulevard Laurier, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
16
|
Bédard F, Biron E. Recent Progress in the Chemical Synthesis of Class II and S-Glycosylated Bacteriocins. Front Microbiol 2018; 9:1048. [PMID: 29875754 PMCID: PMC5974097 DOI: 10.3389/fmicb.2018.01048] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
A wide variety of antimicrobial peptides produced by lactic acid bacteria (LAB) have been identified and studied in the last decades. Known as bacteriocins, these ribosomally synthesized peptides inhibit the growth of a wide range of bacterial species through numerous mechanisms and show a great variety of spectrum of activity. With their great potential as antimicrobial additives and alternatives to traditional antibiotics in food preservation and handling, animal production and in veterinary and medical medicine, the demand for bacteriocins is rapidly increasing. Bacteriocins are most often produced by fermentation but, in several cases, the low isolated yields and difficulties associated with their purification seriously limit their use on a large scale. Chemical synthesis has been proposed for their production and recent advances in peptide synthesis methodologies have allowed the preparation of several bacteriocins. Moreover, the significant cost reduction for peptide synthesis reagents and building blocks has made chemical synthesis of bacteriocins more attractive and competitive. From a protein engineering point of view, the chemical approach offers many advantages such as the possibility to rapidly perform amino acid substitution, use unnatural or modified residues, and make backbone and side chain modifications to improve potency, modify the activity spectrum or increase the stability of the targeted bacteriocin. This review summarized synthetic approaches that have been developed and used in recent years to allow the preparation of class IIa bacteriocins and S-linked glycopeptides from LAB. Synthetic strategies such as the use of pseudoprolines, backbone protecting groups, microwave irradiations, selective disulfide bridge formation and chemical ligations to prepare class II and S-glycosylsated bacteriocins are discussed.
Collapse
Affiliation(s)
- François Bédard
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| | - Eric Biron
- Faculty of Pharmacy and Institute of Nutrition and Functional Foods, Université Laval, Québec, QC, Canada
- Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, Québec, QC, Canada
| |
Collapse
|
17
|
Wayah SB, Philip K. Pentocin MQ1: A Novel, Broad-Spectrum, Pore-Forming Bacteriocin From Lactobacillus pentosus CS2 With Quorum Sensing Regulatory Mechanism and Biopreservative Potential. Front Microbiol 2018; 9:564. [PMID: 29636737 PMCID: PMC5880951 DOI: 10.3389/fmicb.2018.00564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/12/2018] [Indexed: 01/08/2023] Open
Abstract
Micrococcus luteus, Listeria monocytogenes, and Bacillus cereus are major food-borne pathogenic and spoilage bacteria. Emergence of antibiotic resistance and consumer demand for foods containing less of chemical preservatives led to a search for natural antimicrobials. A study aimed at characterizing, investigating the mechanism of action and regulation of biosynthesis and evaluating the biopreservative potential of pentocin from Lactobacillus pentosus CS2 was conducted. Pentocin MQ1 is a novel bacteriocin isolated from L. pentosus CS2 of coconut shake origin. The purification strategy involved adsorption-desorption of bacteriocin followed by RP-HPLC. It has a molecular weight of 2110.672 Da as determined by MALDI-TOF mass spectrometry and a molar extinction value of 298.82 M−1 cm−1. Pentocin MQ1 is not plasmid-borne and its biosynthesis is regulated by a quorum sensing mechanism. It has a broad spectrum of antibacterial activity, exhibited high chemical, thermal and pH stability but proved sensitive to proteolytic enzymes. It is potent against M. luteus, B. cereus, and L. monocytogenes at micromolar concentrations. It is quick-acting and exhibited a bactericidal mode of action against its targets. Target killing was mediated by pore formation. We report for the first time membrane permeabilization as a mechanism of action of the pentocin from the study against Gram-positive bacteria. Pentocin MQ1 is a cell wall-associated bacteriocin. Application of pentocin MQ1 improved the microbiological quality and extended the shelf life of fresh banana. This is the first report on the biopreservation of banana using bacteriocin. These findings place pentocin MQ1 as a potential biopreservative for further evaluation in food and medical applications.
Collapse
Affiliation(s)
- Samson B Wayah
- Microbiology Division, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Koshy Philip
- Microbiology Division, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Biofilms formed by microbiota recovered from fresh produce: Bacterial biodiversity, and inactivation by benzalkonium chloride and enterocin AS-48. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrob Agents Chemother 2017; 61:AAC.02288-16. [PMID: 28167557 DOI: 10.1128/aac.02288-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
We report the feasibility of enterocin AS-48, a circular cationic peptide produced by Enterococcus faecalis, as a new leishmanicidal agent. AS-48 is lethal to Leishmania promastigotes as well as to axenic and intracellular amastigotes at low micromolar concentrations, with scarce cytotoxicity to macrophages. AS-48 induced a fast bioenergetic collapse of L. donovani promastigotes but only a partial permeation of their plasma membrane with limited entrance of vital dyes, even at concentrations beyond its full lethality. Fluoresceinated AS-48 was visualized inside parasites by confocal microscopy and seen to cause mitochondrial depolarization and reactive oxygen species production. Altogether, AS-48 appeared to have a mixed leishmanicidal mechanism that includes both plasma membrane permeabilization and additional intracellular targets, with mitochondrial dysfunctionality being of special relevance. This complex leishmanicidal mechanism of AS-48 persisted even for the killing of intracellular amastigotes, as evidenced by transmission electron microscopy. We demonstrated the potentiality of AS-48 as a new and safe leishmanicidal agent, expanding the growing repertoire of eukaryotic targets for bacteriocins, and our results provide a proof of mechanism for the search of new leishmanicidal bacteriocins, whose diversity constitutes an almost endless source for new structures at moderate production cost and whose safe use on food preservation is well established.
Collapse
|
20
|
Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Toledo del Árbol J, Pérez Pulido R, Grande Burgos MJ, Gálvez A, Lucas López R. Inactivation of leuconostocs in cherimoya pulp by high hydrostatic pressure treatments applied singly or in combination with enterocin AS-48. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Burgos MJG, Aguayo MCL, Pulido RP, Gálvez A, López RL. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials. J Food Sci 2015; 80:M2030-4. [PMID: 26256434 DOI: 10.1111/1750-3841.12983] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/23/2015] [Indexed: 11/28/2022]
Abstract
The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci.
Collapse
Affiliation(s)
- María José Grande Burgos
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - M Carmen López Aguayo
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rubén Pérez Pulido
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Antonio Gálvez
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| | - Rosario Lucas López
- Dept. de Ciencias de la Salud, Facultad de Ciencias Experimentales, Univ. de Jaén, Jaén, 23071, Spain
| |
Collapse
|
23
|
Cebrián R, Martínez-Bueno M, Valdivia E, Albert A, Maqueda M, Sánchez-Barrena MJ. The bacteriocin AS-48 requires dimer dissociation followed by hydrophobic interactions with the membrane for antibacterial activity. J Struct Biol 2015; 190:162-72. [PMID: 25816760 DOI: 10.1016/j.jsb.2015.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 01/15/2023]
Abstract
The molecular mechanism underlining the antibacterial activity of the bacteriocin AS-48 is not known, and two different and opposite alternatives have been proposed. Available data suggested that the interaction of positively charged amino acids of AS-48 with the membrane would produce membrane destabilization and disruption. Alternatively, it has been proposed that AS-48 activity could rely on the effective insertion of the bacteriocin into the membrane. The biological and structural properties of the AS-48G13K/L40K double mutant were investigated to shed light on this subject. Compared with the wild type, the mutant protein suffered an important reduction in the antibacterial activity. Biochemical and structural studies of AS-48G13K/L40K mutant suggest the basis of its decreased antimicrobial activity. Lipid cosedimentation assays showed that the membrane affinity of AS-48G13K/L40K is 12-fold lower than that observed for the wild type. L40K mutation is responsible for this reduced membrane affinity and thus, hydrophobic interactions are involved in membrane association. Furthermore, the high-resolution crystal structure of AS-48G13K/L40K, together with the study of its dimeric character in solution showed that G13K stabilizes the inactive water-soluble dimer, which displays a reduced dipole moment. Our data suggest that the cumulative effect of these three affected properties reduces AS-48 activity, and point out that the bactericidal effect is achieved by the electrostatically driven approach of the inactive water-soluble dimer towards the membrane, followed by the dissociation and insertion of the protein into the lipid bilayer.
Collapse
Affiliation(s)
- Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | | | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | - Armando Albert
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Spain
| | - María José Sánchez-Barrena
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
24
|
Grande Burgos MJ, Pulido RP, Del Carmen López Aguayo M, Gálvez A, Lucas R. The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible Food Applications. Int J Mol Sci 2014; 15:22706-22727. [PMID: 25493478 PMCID: PMC4284732 DOI: 10.3390/ijms151222706] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022] Open
Abstract
Enterocin AS-48 is a circular bacteriocin produced by Enterococcus. It contains a 70 amino acid-residue chain circularized by a head-to-tail peptide bond. The conformation of enterocin AS-48 is arranged into five alpha-helices with a compact globular structure. Enterocin AS-48 has a wide inhibitory spectrum on Gram-positive bacteria. Sensitivity of Gram-negative bacteria increases in combination with outer-membrane permeabilizing treatments. Eukaryotic cells are bacteriocin-resistant. This cationic peptide inserts into bacterial membranes and causes membrane permeabilization, leading ultimately to cell death. Microarray analysis revealed sets of up-regulated and down-regulated genes in Bacillus cereus cells treated with sublethal bacteriocin concentration. Enterocin AS-48 can be purified in two steps or prepared as lyophilized powder from cultures in whey-based substrates. The potential applications of enterocin AS-48 as a food biopreservative have been corroborated against foodborne pathogens and/or toxigenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enterica) and spoilage bacteria (Alicyclobacillus acidoterrestris, Bacillus spp., Paenibacillus spp., Geobacillus stearothermophilus, Brochothrix thermosphacta, Staphylococcus carnosus, Lactobacillus sakei and other spoilage lactic acid bacteria). The efficacy of enterocin AS-48 in food systems increases greatly in combination with chemical preservatives, essential oils, phenolic compounds, and physico-chemical treatments such as sublethal heat, high-intensity pulsed-electric fields or high hydrostatic pressure.
Collapse
Affiliation(s)
- María José Grande Burgos
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | - Rubén Pérez Pulido
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | | | - Antonio Gálvez
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| | - Rosario Lucas
- Department of Health Sciences, University of Jaen, Campus Las Lagunillas s/n, 23071 Jaen, Spain.
| |
Collapse
|
25
|
Pérez Pulido R, Toledo J, Grande MJ, Gálvez A, Lucas R. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. Int J Food Microbiol 2014; 196:62-9. [PMID: 25528726 DOI: 10.1016/j.ijfoodmicro.2014.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/22/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
Abstract
In the present study, pulp obtained from cherimoya pulp (Annona cherimola) was inoculated with epiphytic microbiota collected from cherimoya fruits, and supplemented or not with the circular bacteriocin enterocin AS-48 (50μg/g) and then packed under vacuum. Samples supplemented or not with enterocin were treated by high hydrostatic pressure (600MPa, 8min) and then stored at 5°C for 30days. The single AS-48 treatment only delayed microbial growth non-significantly (p>0.05). HHP treatment reduced microbial counts by five log cycles, but it did not prevent further growth of survivors by day 7. The combined treatment (AS-48+HHP) was the most effective, keeping bacterial cell densities at ≤1.5 log CFU/g for up to 15days. 16S rRNA gene pyrosequencing analysis was done on amplicon libraries from the growth on TSA plates seeded with ten-fold dilutions of pulp suspensions and incubated at 22°C for 24h. The results obtained are limited by the experimental conditions used in the study, and only concern the bacterial fraction that was selected by the TSA and growth conditions used. Pantoea (Pantoea agglomerans, Pantoea vagans) were the operational taxonomic units (OTUs) detected at highest relative abundance in bacterial biomass grown from control samples for the first 7days of storage, followed by Enterococcus gallinarum and Leuconostoc mesenteroides during late storage. The single HHP treatment significantly reduced the relative abundance of OTUs belonging to Pantoea and strongly increased that of endosporeformers (mainly Bacillus firmus and Bacillus stratosphericus) early after treatment, although Pantoea became again the predominant OTUs during storage. Samples singly treated with enterocin AS-48 revealed a strong inhibition of E. gallinarum as well as an early decrease in the relative abundance of Pantoea and an increased relative abundance of OTUs belonging to other Gram-negative species (mainly from genera Serratia and Pseudomonas). The strong microbial inactivation achieved by the combined treatment with enterocin and HHP reduced the levels of viable cells below detectable limits at days 0 and 1, and survivors recovered on TSA at day 7 were represented in >99% by B. firmus OTU. OTUs from endosporeformers were no longer detected during prolonged incubation, displaced by Pantoea spp., Erwinia billingiae and leuconostocs. Results from the present study indicate that HHP in combination with enterocin AS-48 is more effective in preserving the microbiological quality of cherimoya pulp during storage than the single HHP treatment.
Collapse
Affiliation(s)
- Rubén Pérez Pulido
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Julia Toledo
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - M José Grande
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | - Antonio Gálvez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain.
| | - Rosario Lucas
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| |
Collapse
|
26
|
Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Crit Rev Food Sci Nutr 2014; 56:817-34. [DOI: 10.1080/10408398.2012.729231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
|
28
|
Caballero Gómez N, Grande MJ, Pérez Pulido R, Abriouel H, Gálvez A. Effect of enterocin AS-48 singly or in combination with biocides on planktonic and sessile B. cereus. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Caballero Gómez N, Abriouel H, Ennahar S, Gálvez A. Comparative proteomic analysis of Listeria monocytogenes exposed to enterocin AS-48 in planktonic and sessile states. Int J Food Microbiol 2013; 167:202-7. [PMID: 24135676 DOI: 10.1016/j.ijfoodmicro.2013.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/25/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Enterocin AS-48 is a cyclic peptide of great interest for application in food preservation and sanitation. In the present study, the proteome response of Listeria monocytogenes to purified enterocin AS-48 was studied under two different conditions: planktonic cells and sessile cells grown on polystyrene plates. Ten different proteins were differentially expressed in planktonic L. monocytogenes cells treated with 0.1 μg/ml enterocin AS-48 compared to the untreated controls. Overexpressed proteins were related to stress response (DnaK) or carbohydrate transport and metabolism, while underexpressed and unexpressed proteins were related to metabolism (such as glyceraldehyde-3-phosphate dehydrogenase, pyruvate oxidase, glutamate dehydrogenase or glutamate decarboxylase) or stress (GroEL). In the sessile state, L. monocytogenes cells tolerated up to 10 μg/ml bacteriocin, and the treated biofilm cells overexpressed a set of 11 proteins, some of which could be related to stress response (DnaK, GroEL), protein synthesis and carbohydrate metabolism, while glyceraldehyde-3-phosphate dehydrogenase was the only unexpressed protein. Some of the overexpressed proteins (such as elongation factor Tu and GroEL) could also be implicated in cell adhesion. These results suggest different cell responses of L. monocytogenes to enterocin AS-48 in the planktonic and in the sessile state, including stress response and cell metabolism proteins. While in the planktonic state the bacterium may tend to compensate for the cytoplasmic cell permeability changes induced by AS-48 by reinforcing carbohydrate transport and metabolism, sessile cells seem to respond by shifting carbohydrate metabolism and reinforcing protein synthesis. Stress response proteins also seem to be important in the response to AS-48, but the stress response seems to be different in planktonic and in sessile cells.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | | | | | | |
Collapse
|
30
|
Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A. Combined treatments of enterocin AS-48 with biocides to improve the inactivation of methicillin-sensitive and methicillin-resistant Staphylococcus aureus planktonic and sessile cells. Int J Food Microbiol 2013; 163:96-100. [PMID: 23558192 DOI: 10.1016/j.ijfoodmicro.2013.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/17/2013] [Accepted: 02/18/2013] [Indexed: 01/01/2023]
Abstract
Control of staphylococci during cleaning and disinfection is important to the food industry. Broad-spectrum bacteriocins with proved anti-staphylococcal activity, such as enterocin AS-48, could open new possibilities for disinfection in combination with biocides. In the present study, enterocin AS-48 was tested singly or in combination with biocides against a cocktail of six Staphylococcus aureus strains (including three methicillin-resistant strains) in planktonic state as well as in biofilms formed on polystyrene microtiter plates. Cells were challenged with enterocin, biocides or enterocin/biocide combinations. Inactivation of planktonic cells increased significantly (p<0.05) when enterocin AS-48 (25mg/l) was tested in combination with benzalkonium chloride (BC), cetrimide (CT) and hexadecylpyridinium chloride (HDP), and non-significantly in combination with didecyldimethylammonium bromide (AB), triclosan (TC), hexachlorophene (CF), polyhexamethylen guanidinium chloride (PHMG), chlorhexidine (CH) or P3-oxonia (OX). In the sessile state (24h biofilms), staphylococci required higher biocide concentrations in most cases, except for OX. Inactivation of sessile staphylococci increased remarkably when biocides were applied in combination with enterocin AS-48, especially when the bacteriocin was added at 50mg/l. During storage, the concentrations of sessile as well as planktonic cells in the treated samples decreased remarkably for BC, TC and PHMG, but OX failed to inhibit proliferation of the treated biofilms as well as growth of planktonic cells. The observed inhibitory effects during storage were potentiated when the biocides were combined with 50 mg/l enterocin AS-48. Results from this study suggest that selected combinations of enterocin AS-48 and biocides offer potential use against planktonic and sessile, methicillin-sensitive and methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Natacha Caballero Gómez
- Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071 Jaén, Spain
| | | | | | | | | |
Collapse
|
31
|
Grande Burgos MJ, Lucas López R, López Aguayo MDC, Pérez Pulido R, Gálvez A. Inhibition of planktonic and sessile Salmonella enterica cells by combinations of enterocin AS-48, polymyxin B and biocides. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Pérez Pulido R, Toledo del Árbol J, Grande Burgos MJ, Gálvez A. Bactericidal effects of high hydrostatic pressure treatment singly or in combination with natural antimicrobials on Staphylococcus aureus in rice pudding. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.04.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Grande Burgos MJ, Abriouel H, Lucas R, Gálvez A. Increasing the microbial inactivation of Staphylococcus aureus in sauces by a combination of enterocin AS-48 and 2-nitropropanol, and mild heat treatments. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Caballero Gómez N, Abriouel H, Grande MJ, Pérez Pulido R, Gálvez A. Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 2012; 30:51-8. [DOI: 10.1016/j.fm.2011.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
|
35
|
Cebrián R, Baños A, Valdivia E, Pérez-Pulido R, Martínez-Bueno M, Maqueda M. Characterization of functional, safety, and probiotic properties of Enterococcus faecalis UGRA10, a new AS-48-producer strain. Food Microbiol 2011; 30:59-67. [PMID: 22265284 DOI: 10.1016/j.fm.2011.12.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/01/2011] [Indexed: 01/09/2023]
Abstract
Enterococcus faecalis UGRA10, a new AS-48-producer strain, has been isolated from a Spanish sheep's cheese. The inhibitory substance produced by E. faecalis UGRA10 was purified and characterized using matrix-assisted laser desorption ionization-time of flight mass spectrometry, confirming its identity with AS-48 enterocin (7.150 Da). Subsequent genetic analysis showed the existence of the as-48 gene cluster on a plasmid of approximately 70-kb. The UGRA10 strain was examined for safety properties such as enterococci virulence genes, biogenic amine production, and antibiotic resistance. As for most E. faecalis strains, PCR amplification revealed the existence of gene encoding for GelE, Asa1, Esp, EfaA, and Ace antigens and for tyrosine decarboxylase. This strain was sensitive to most of the antibiotics tested, being resistant only to aminoglycosides, lincosamide, and pristinamicins. In addition, UGRA10 developed an ability to form biofilms and to adhere to Caco 2 and HeLa 229 cells. More interestingly, this strain shows a high ability to interfere with the adhesion of Listeria monocytogenes to Caco 2 cells. Altogether, the results suggest that this broad-spectrum bacteriocin-producing strain has biotechnological potential to be developed as a protective agent in food preservation and as a probiotic.
Collapse
Affiliation(s)
- R Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada Fuente Nueva s/n, 19071-Granada, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Sánchez-Hidalgo M, Montalbán-López M, Cebrián R, Valdivia E, Martínez-Bueno M, Maqueda M. AS-48 bacteriocin: close to perfection. Cell Mol Life Sci 2011; 68:2845-57. [PMID: 21590312 PMCID: PMC11115006 DOI: 10.1007/s00018-011-0724-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/06/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
Abstract
Bacteriocin AS-48 is an intriguing molecule because of its unique structural characteristics, genetic regulation, broad activity spectrum, and potential biotechnological applications. It was the first reported circular bacteriocin and has been undoubtedly the best characterized for the last 25 years. Thus, AS-48 is the prototype of circular bacteriocins (class IV), for which the structure and genetic regulation have been elucidated. This review discusses the state-of-the-art in genetic engineering with regard to this circular protein, with the use of site-directed mutagenesis and circular permutation. Mutagenesis studies have been used to unravel the role of (a) different residues in the biological activity, underlining the relevance of several residues involved in membrane interaction and the low correlation between stability and activity and (b) three amino acids involved in maturation, providing information on the specificity of the leader peptidase and the circularization process itself. To investigate the role of circularity in the stability and biological properties of the enterocin AS-48, two different ways of linearization have been attempted: in vitro by limited proteolysis experiments and in vivo by circular permutation in the structural gene as-48A. The results summarized here show the significance of circularization on the secondary structure, potency and, especially, the stability of AS-48 and point as well to a putative role of the leader peptide as a protecting moiety in the pre-proprotein. Taken all together, the data available on circular bacteriocins support the idea that AS-48 has been engineered by nature to make a remarkably active and stable protein with a broad spectrum of activity.
Collapse
Affiliation(s)
| | - Manuel Montalbán-López
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Rubén Cebrián
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Eva Valdivia
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Manuel Martínez-Bueno
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| | - Mercedes Maqueda
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
37
|
van Belkum MJ, Martin-Visscher LA, Vederas JC. Structure and genetics of circular bacteriocins. Trends Microbiol 2011; 19:411-8. [PMID: 21664137 DOI: 10.1016/j.tim.2011.04.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/14/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Circular bacteriocins are antimicrobial peptides produced by a variety of Gram-positive bacteria. They are part of a growing family of ribosomally synthesized peptides with a head-to-tail cyclization of their backbone that are found in mammals, plants, fungi and bacteria and are exceptionally stable. These bacteriocins permeabilize the membrane of sensitive bacteria, causing loss of ions and dissipation of the membrane potential. Most circular bacteriocins probably adopt a common 3D structure consisting of four or five α-helices encompassing a hydrophobic core. This review compares the various structures, as well as the gene clusters that encode circular bacteriocins, and discusses the biogenesis of this unique class of bacteriocins.
Collapse
|
38
|
Biopreservation of Sardinella longiceps and Penaeus monodon Using Protective Culture Streptococcus phocae PI 80 Isolated from Marine Shrimp Penaeus indicus. Probiotics Antimicrob Proteins 2011; 3:103-11. [PMID: 26781574 DOI: 10.1007/s12602-011-9070-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The influence of Streptococcus phocae PI80 on the shelf life of Sardinella longiceps and Penaeus monodon was investigated by measurement of microbial and chemical analysis after appraising the safety of the protective probiotic culture in wistar rat's model. The results of this safety assessment indicate that oral administration of protective culture does not demonstrate any toxicological effects. Consumption of this LAB strain had no adverse effects on animal's general health status, hematology, blood biochemistry, histology parameters, or on the incidence of bacterial translocation. The effect of Streptococcus phocae is very evident with the reduction of Listeria monocytogenes, Vibrio parahemolyticus, and coliforms. During storage, a marked decline in total volatile base and peroxide value was observed in protective culture-treated samples than the control. This strain looks promising as a protective culture for the preservation of fish products.
Collapse
|
39
|
Cobo Molinos A, Abriouel H, Ben Omar N, Martinez-Canamero M, Gálvez A. A Quantitative Real-time PCR Assay for Quantification of Viable Listeria Monocytogenes Cells After Bacteriocin Injury in Food-First Insights. Curr Microbiol 2010; 61:515-9. [DOI: 10.1007/s00284-010-9646-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|