1
|
Javed M, Amir M, Amjad A, Shah M, Anwar M, Ahmed F. VIABILITY OF MICROENCAPSULATED PROBIOTICS (LACTOBACILLUS REUTERI) IN GUAVA JUICE. THE JOURNAL OF ANIMAL AND PLANT SCIENCES 2023; 33:644-654. [DOI: 10.36899/japs.2023.3.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Probiotics play a pivotal role to reduce gastrointestinal problems by exerting a drastic effect on various pathogenic microflora of the colon. Lactobacillus reuteri CECT-925 loaded beads were prepared by emulsion containing sodium alginate and sesame seed oil. Encapsulation was done by spraying emulsion into a 0.5% solution of calcium chloride. Microencapsulated probiotics incorporated guava juice was assessed for physicochemical analysis at the 15-day interval for 60 days. The juice was tested for probiotics viability, titratable acidity, pH, total soluble solids and organoleptic properties. In the control sample, viable counts of encapsulated probiotics were reduced from 7.68 to 1.96 log10 CFU/ml while in T1, T2 and T3 the initial numbers 7.39, 7.7 and 7.87 were reduced to 5.97, 6.87 and 6.02 log10 CFU/ml respectively at the termination of the storage period. However, pH and sensory scores decreased while total soluble solids and titratable acidity increased. Results indicated that microencapsulation by sodium alginate in combination with sesame oil retained the viability of Lactobacillus reuteri > 90% in guava juice. The acceptability of the product was 82.04% till the end of the storage period
Collapse
Affiliation(s)
- M.S. Javed
- Department of Food Safety and Quality Management, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Amir
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - A Amjad
- Department of Human Nutrition, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - M Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Punjab-Pakistan
| | - M.J. Anwar
- Department of Food Science and Technology, Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Punjab-Pakistan
| | - F Ahmed
- Institute of Technology, Estonian University of Life Sciences, Tartu-Estonia
| |
Collapse
|
2
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
3
|
Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022; 8:e11063. [PMID: 36276732 PMCID: PMC9578979 DOI: 10.1016/j.heliyon.2022.e11063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Lacticaseibacillus paracasei is one of the probiotic bacteria widely identified from fermented foods. The application of L. paracasei is commonly used in dairy and non-dairy products. To investigate the probiotic properties of L. paracasei cells including their acid, pepsin, pancreatin, and bile salt tolerances; adhesion ability; antipathogen activity; and antibiotic susceptibility, L. paracasei cells were incorporated into skim milk and lyophilized by freeze drying. Freeze-dried probiotic cells were add to green banana powder and low moisture additive food matrices and a storage analysis of the product was performed. The result showed that L. paracasei cells possessed potentially beneficial probiotic properties to survive stress in the gastrointestinal tract (GIT) and functional abilities as an anti-enteropathogenic agent; they were also safe to use and displayed antibiotic properties. Furthermore, the probiotic freeze-drying technique preserved high probiotic cell survivability (1011 CFU/g). In term of prolonged storage (60 days), the powder product was stable and maintained probiotic survival (107 CFU/g) while excluding non-probiotic growth. In conclusion, L. paracasei displayed probiotic properties in the GIT and was judged to be a highly acceptable product as a probiotics–banana rehydrated beverage.
Collapse
|
4
|
Sbehat M, Mauriello G, Altamimi M. Microencapsulation of Probiotics for Food Functionalization: An Update on Literature Reviews. Microorganisms 2022; 10:microorganisms10101948. [PMID: 36296223 PMCID: PMC9610121 DOI: 10.3390/microorganisms10101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Functional foods comprise the largest growing food category due to both consumer demands and health claims by manufacturers. Probiotics are considered one of the best choices for meeting these demands. Traditionally, the food vehicle for introducing probiotics to consumers was dairy products, and to expand the benefits of probiotics for a wider range of consumers, the need to use other food items was essential. To achieve this goal while maximising the benefits of probiotics, protection methods used during food processing were tackled. The microencapsulation of probiotics is a promising methodology for achieving this function. This review highlights the use of the microencapsulation of probiotics in order to functionalise food items that initially were not considered suitable for probiotication, such as baked products, or to increase their functionality such as dairy products. The co-microencapsulation of probiotics with other functional ingredients such polyphenol, prebiotics, or omega-3 is also highlighted.
Collapse
Affiliation(s)
- Maram Sbehat
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Correspondence:
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
5
|
Singh S, Gupta R, Chawla S, Gauba P, Singh M, Tiwari RK, Upadhyay S, Sharma S, Chanda S, Gaur S. Natural sources and encapsulating materials for probiotics delivery systems: Recent applications and challenges in functional food development. Front Nutr 2022; 9:971784. [PMID: 36211518 PMCID: PMC9534265 DOI: 10.3389/fnut.2022.971784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Probiotics are known as the live microorganisms which upon adequate administration elicit a health beneficial response inside the host by decreasing the luminal pH, eliminating the pathogenic bacteria in the gut as well as producing short chain fatty acids (SCFA). With advancements in research; probiotics have been explored as potential ingredients in foods. However, their use and applications in food industry have been limited due to restrictions of maintaining the viability of probiotic cells and targeting the successful delivery to gut. Encapsulation techniques have significant influence on increasing the viability rates of probiotic cells with the successful delivery of cells to the target site. Moreover, encapsulating techniques also prevent the live cells from harsh physiological conditions of gut. This review discusses several encapsulating techniques as well as materials derived from natural sources and nutraceutical compounds. In addition to this, this paper also comprehensively discusses the factors affecting the probiotics viability and evaluation of successful release and survival of probiotics under simulated gastric, intestinal conditions as well as bile, acid tolerant conditions. Lastly applications and challenges of using encapsulated bacteria in food industry for the development of novel functional foods have also been discussed in detail too. Future studies must include investigating the use of encapsulated bacterial formulations in in-vivo models for effective health beneficial properties as well as exploring the mechanisms behind the successful release of these formulations in gut, hence helping us to understand the encapsulation of probiotic cells in a meticulous manner.
Collapse
Affiliation(s)
- Shubhi Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Rishibha Gupta
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Raj Kumar Tiwari
- School of Health Sciences, Pharmaceutical Sciences, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | - Shuchi Upadhyay
- Department of Allied Health Sciences, School of Health Sciences and Technology, The University of Petroleum & Energy Studies (UPES), Dehradun, India
| | | | - Silpi Chanda
- Department of Pharmacognosy, Parmarth College of Pharmacy, Hapur, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
6
|
Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. FERMENTATION 2022. [DOI: 10.3390/fermentation8090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The application of processing waste by-products along with probiotics is an interesting choice to confer potential functional aspects to food products. This study was designed to investigate the nutritional capacity of freeze-dried mango peel powder (MPP) and banana peel powder (BPP) in the presence of a mixture of three probiotic species (1% of each of three probiotics (Lacticaseibacillus casei (431®), Lacticaseibacillus rhamnosus (LGG®) and Bifidobacterium subsp. Lactis (Bb-12®)) as sources of additional nutrients and prebiotics in fresh and rehydrated freeze-dried (RFD) yogurts for 28 days of refrigerated storage. The net count of probiotics in yogurt fortified with MPP and BPP increased by at least 1 log CFU/g after 4 weeks of refrigerated storage. Adding fruit peel powder (FPP) significantly (p < 0.05) increased fat, ash, and protein contents in both fresh and RFD yogurts in comparison with the control yogurt. Similarly, the total phenolic contents (TPC) and antioxidant activity (AOA) was enhanced significantly (p < 0.05). The TPC reached 2.27 ± 0.18 and 2.73 ± 0.11 mg GAE/g in RFD enriched with BPP and MPP compared to a TPC of 0.31 ± 0.07 mg GAE/g in the control. Additionally, yogurt samples enriched with BPP (Y-5) and MPP (Y-6) demonstrated 12% more sugar contents than non-fortified yogurts (Y-1). Higher titratable acidity and lower pH values were also recorded in the RFD yogurt. Significant differences (p < 0.05) in the color parameters were detected in both fresh and RFD yogurts with reduced brightness (L*) and increased redness (a*) of the product. These findings demonstrated the suitability of MPP and BPP in yogurt formulations to optimize the advantages of such synbiotic products with higher availability of phenolic compounds.
Collapse
|
7
|
Blazheva D, Mihaylova D, Averina OV, Slavchev A, Brazkova M, Poluektova EU, Danilenko VN, Krastanov A. Antioxidant Potential of Probiotics and Postbiotics: A Biotechnological Approach to Improving Their Stability. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Kiepś J, Dembczyński R. Current Trends in the Production of Probiotic Formulations. Foods 2022; 11:foods11152330. [PMID: 35954096 PMCID: PMC9368262 DOI: 10.3390/foods11152330] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Preparations containing probiotic strains of bacteria have a beneficial effect on human and animal health. The benefits of probiotics translate into an increased interest in techniques for the preservation of microorganisms. This review compares different drying methods and their improvements, with specific reference to processing conditions, microorganisms, and protective substances. It also highlights some factors that may influence the quality and stability of the final probiotic preparations, including thermal, osmotic, oxidative, and acidic stresses, as well as dehydration and shear forces. Processing and storage result in the loss of viability and stability in probiotic formulations. Herein, the addition of protective substances, the optimization of process parameters, and the adaptation of cells to stress factors before drying are described as countermeasures to these challenges. The latest trends and developments in the fields of drying technologies and probiotic production are also discussed. These developments include novel application methods, controlled release, the use of food matrices, and the use of analytical methods to determine the viability of probiotic bacteria.
Collapse
|
9
|
Sodium alginate-based wall materials microencapsulated Lactobacillus plantarum CICC 20022: characteristics and survivability study. Food Sci Biotechnol 2022; 31:1463-1472. [DOI: 10.1007/s10068-022-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
|
10
|
Meireles Mafaldo Í, Priscila Barros de Medeiros V, Karoline Almeida da Costa W, Francisca da Costa Sassi C, da Costa Lima M, Leite de Souza E, Eduardo Barão C, Colombo Pimentel T, Magnani M. Survival during long-term storage, membrane integrity, and ultrastructural aspects of Lactobacillus acidophilus 05 and Lacticaseibacillus casei 01 freeze-dried with freshwater microalgae biomasses. Food Res Int 2022; 159:111620. [DOI: 10.1016/j.foodres.2022.111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/07/2022] [Accepted: 07/01/2022] [Indexed: 12/30/2022]
|
11
|
Bhatkar NS, Shirkole SS, Brennan C, Thorat BN. Pre‐processed
fruits as raw materials: part I – different forms, process conditions and applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikita S. Bhatkar
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Shivanand S. Shirkole
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| | - Charles Brennan
- School of Science, STEM College RMIT University Melbourne Vic. Australia
| | - Bhaskar N. Thorat
- Department of Chemical Engineering Institute of Chemical Technology Mumbai ICT‐IOC Campus Bhubaneswar 751013 India
| |
Collapse
|
12
|
Talebian S, Schofield T, Valtchev P, Schindeler A, Kavanagh JM, Adil Q, Dehghani F. Biopolymer-Based Multilayer Microparticles for Probiotic Delivery to Colon. Adv Healthc Mater 2022; 11:e2102487. [PMID: 35189037 PMCID: PMC11468821 DOI: 10.1002/adhm.202102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics. However, majority of microencapsulated products only contain a single layer of protection around probiotics, which is likely to be inferior to more sophisticated approaches. This review discusses emerging methods for the multilayer encapsulation of probiotic using biopolymers. Correlations are drawn between fabrication techniques and the resultant microparticle properties. Subsequently, multilayer microparticles are categorized based on their layer designs. Recent reports of specific biopolymeric formulations are examined regarding their physical and biological properties. In particular, animal models of gastrointestinal transit and disease are highlighted, with respect to trials of multilayer microencapsulated probiotics. To conclude, novel materials and approaches for fabrication of multilayer structures are highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Nano Institute (Sydney Nano)The University of SydneySydneyNSW2006Australia
| | - Timothy Schofield
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| | - Aaron Schindeler
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
- Bioengineering & Molecular Medicine LaboratoryThe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadNSW2145Australia
| | - John M. Kavanagh
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
| | - Qayyum Adil
- PharmaCare Laboratories18 Jubilee AveWarriewoodNSW2102Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyNSW2006Australia
- Centre for Advanced Food EngineeringThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
13
|
El-Sayed HS, Youssef K, Hashim AF. Stirred Yogurt as a Delivery Matrix for Freeze-Dried Microcapsules of Synbiotic EVOO Nanoemulsion and Nanocomposite. Front Microbiol 2022; 13:893053. [PMID: 35663887 PMCID: PMC9161547 DOI: 10.3389/fmicb.2022.893053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Nowadays, dairy products are considered a good matrix to deliver many functional substances either vital oils or probiotic cells. Two models of microcapsules were produced from co-encapsulation of extra virgin olive oil (EVOO) nanoemulsion or nanocomposite and synbiotic bacteria (maltodextrin with Lactobacillus acidophilus and Bifidobacterium bifidum) using the freeze-drying technique. These models of microcapsules were added to stirred yogurt, and then its storage effect on microbiology, chemically, and sensory properties were evaluated for 21 days. The average droplet size and zeta potential distribution of EVOO nanoemulsion and nanocomposite were investigated. Also, oxidative stability, microencapsulation efficiency, release profile, and antioxidant activity were studied. The results showed that the average particle size of EVOO nanoemulsion and nanocomposite ranged between 416 and 475 nm, while zeta potential was -39.6 and -33.6 mV, respectively. The induction period of EVOO extracted from nanoemulsion and nanocomposite microcapsules models was 11.30 and 8 h. The microencapsulation efficiency of probiotic and EVOO was determined at 88.84 and 65.61% for the nanoemulsion microcapsules model, while the nanocomposite microcapsules model showed 98.49 and 72%. The two models of microcapsules have boosted the viability of probiotic bacteria inside stirred yogurt than free cells. Also, the presence of microcapsules did not affect the viability of stirred yogurt starter cultures, and high values for the total solid and protein were detected. Therefore, the results recommended that stirred yogurt is a good delivery carrier for highly antioxidant and healthy microcapsules of synbiotic EVOO nanoemulsion and nanocomposite.
Collapse
Affiliation(s)
- Hoda S. El-Sayed
- Dairy Science Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| | - Khamis Youssef
- Agricultural Research Center, Plant Pathology Research Institute, Giza, Egypt
- Agricultural and Food Research Council, Academy of Scientific Research and Technology, Cairo, Egypt
| | - Ayat F. Hashim
- Fats and Oils Department, Food Industries and Nutrition Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
14
|
Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00228-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market.
Main body
Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques.
Short conclusions
The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization.
Graphical abstract
Collapse
|
15
|
Probiotics in Functional Foods: Survival Assessment and Approaches for Improved Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010455] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, food is no longer just for nutrition. Consumers are more demanding and expect to get health benefits from their daily meals. Various areas of the food industry are in great demand of functional chemicals to enhance the taste and nutritional value of their products. Probiotic bacteria have already been part of the human’s routine for good gut microbiota maintenance in terms of pharmaceutical products. Their incorporation in food however is a challenging task that offers great opportunities but has limitations as well. Specifically, the purpose of this review is to emphasize the importance of probiotics in food, to assess their survival through gastrointestinal tract, and to highlight the recent advances in approaches for their improved viability.
Collapse
|
16
|
Physicochemical and Functional Characterization of Newly Designed Biopolymeric-Based Encapsulates with Probiotic Culture and Charantin. Foods 2021; 10:foods10112677. [PMID: 34828958 PMCID: PMC8620448 DOI: 10.3390/foods10112677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The identification of novel sources of synbiotic agents with desirable functionality is an emerging concept. In the present study, novel encapsulates containing probiotic L. acidophilus LA-05® (LA) and Charantin (CT) were produced by freeze-drying technique using pure Whey Protein Isolate (WPI), pure Maltodextrin (MD), and their combination (WPI + MD) in 1:1 core ratio, respectively. The obtained microparticles, namely WPI + LA + CT, MD + LA + CT, and WPI + MD + LA + CT were tested for their physicochemical properties. Among all formulations, combined carriers (WPI + MD) exhibited the highest encapsulation yields for LA (98%) and CT (75%). Microparticles showed a mean d (4, 3) ranging from 50.393 ± 1.26 to 68.412 ± 3.22 μm. The Scanning Electron Microscopy revealed uniformly amorphous and glass-like structures, with a noticeably reduced porosity when materials were combined. In addition, Fourier Transform Infrared spectroscopy highlighted the formation of strong hydrogen bonds supporting the interactions between the carrier materials (WPI and MD) and CT. In addition, the thermal stability of the combined WPI + MD was superior to that of pure WPI and pure MD, as depicted by the Thermogravimetric and Differential Scanning Calorimetry analysis. More interestingly, co-encapsulation with CT enhanced LA viability (8.91 ± 0.3 log CFU/g) and Cells Surface Hydrophobicity (82%) in vitro, in a prebiotic-like manner. Correspondingly, CT content was heightened when co-encapsulated with LA. Besides, WPI + MD + LA + CT microparticles exhibited higher antioxidant activity (79%), α-amylase inhibitory activity (83%), and lipase inhibitory activity (68%) than single carrier ones. Furthermore, LA viable count (7.95 ± 0.1 log CFU/g) and CT content (78%) were the highest in the blended carrier materials after 30 days of storage at 4 °C. Synbiotic microparticle WPI + MD + LA + CT represents an effective and promising approach for the co-delivery of probiotic culture and bioactive compounds in the digestive tract, with enhanced functionality and storage properties.
Collapse
|
17
|
Lillo-Pérez S, Guerra-Valle M, Orellana-Palma P, Petzold G. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112106] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Massounga Bora AF, Li X, Liu L, Zhang X. Enhanced In Vitro Functionality and Food Application of Lactobacillus acidophilus Encapsulated in a Whey Protein Isolate and (-)-Epigallocatechin-3-Gallate Conjugate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11074-11084. [PMID: 34499505 DOI: 10.1021/acs.jafc.1c02158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study investigated the potential of free radical grafting conjugation of whey protein isolate (WPI) and (-)-epigallocatechin-3-gallate (EGCG), followed by freeze-drying, for the safe delivery of probiotic Lactobacillus acidophilus (LA) upon digestion and in food systems. WPI-EGCG-LA microspheres presented higher encapsulation efficiency (97%) than native WPI-LA (70%) and maltodextrin (MD-LA 75%). The physicochemical characteristics of all microspheres, including moisture content, water activity, and hygroscopicity, were within the acceptable range for the stability of industrial powders. Scanning electron microscopy of WPI-EGCG-LA revealed a glass-like structure, with a smoother and less porous surface area than WPI-LA and MD-LA, as a result of the strong binding affinity between WPIs and EGCG. Particle sizes ranged from 438.4 to 453.3 μm. The structural stability of WPI-EGCG-LA was further confirmed by Fourier transform infrared spectra, which revealed some changes in the protein secondary structure. Thermogravimetric and differential scanning calorimetry analysis showed that WPI-EGCG conjugates had higher thermal stability than native WPIs and MD. Additionally, cells encapsulated in WPI-EGCG conjugates demonstrated higher in vitro survivability and surface hydrophobicity compared to free or WPI- and MD-encapsulated cells. Furthermore, WPI-EGCG-LA microspheres exerted enhanced in vitro antioxidant (78%) and antidiabetic (52%) activities. Finally, the WPI-EGCG conjugates remarkably improved probiotic viability (8.55 ± 0.1 log cfu/g) during 30 days of storage in an apple juice drink of pH (3.2 ± 0.01). Hence, the WPI-EGCG conjugate represents a propitious carrier to enhance probiotic functional properties upon digestion and during storage in low-pH food products.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Lu Liu
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| | - Xiuxiu Zhang
- Food College, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang Street, Xiangfang Dist, 150030 Harbin, China
| |
Collapse
|
19
|
Yoha KS, Anukiruthika T, Anila W, Moses JA, Anandharamakrishnan C. 3D printing of encapsulated probiotics: Effect of different post-processing methods on the stability of Lactiplantibacillus plantarum (NCIM 2083) under static in vitro digestion conditions and during storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Khorshidi M, Heshmati A, Taheri M, Karami M, Mahjub R. Effect of whey protein- and xanthan-based coating on the viability of microencapsulated Lactobacillus acidophilus and physiochemical, textural, and sensorial properties of yogurt. Food Sci Nutr 2021; 9:3942-3953. [PMID: 34262750 PMCID: PMC8269586 DOI: 10.1002/fsn3.2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
The goal of this study was to investigate the viability of microencapsulated and coated Lactobacillus acidophilus in yogurt during storage in a refrigerator for 28 days and in simulated gastrointestinal conditions. Furthermore, the effect of the microencapsulated and coated L. acidophilus on the physicochemical, textural, and sensory properties of yogurt was assessed. Lactobacillus acidophilus was microencapsulated in sodium alginate and coated with xanthan and/or whey protein. The coating led to the increase in the microcapsule diameter and the microencapsulation yield, while it led to the decreased moisture and water activity (aw) of the microcapsule. The survival of L. acidophilus microcapsule coated with whey protein and xanthan in yogurt during storage and exposure to simulated gastrointestinal conditions was significantly increased. Compared with free bacteria, the L. acidophilus microcapsule coated with whey protein and xanthan had the increased viability in yogurt until 2.16 log CFU/g during storage and 3.52 log CFU/g in simulated gastrointestinal conditions. After the 28th day of storage, a significant difference between the acidity and pH of yogurt containing coated and microencapsulated L. acidophilus and control yogurt was not observed. However, yogurt containing free L. acidophilus had lower pH and higher acidity and showed a significant difference (p < .05) with other samples. Although the coating of L. acidophilus microcapsule did not affect the sensory properties and gumminess of yogurt, it increased the firmness, adhesiveness, and viscosity of this product and caused a significant decrease in syneresis and cohesiveness. In general, the application of whey protein and xanthan coating on L. acidophilus microcapsule surface could increase the viability of this probiotic in yogurt during storage and in simulated gastrointestinal conditions and improve the texture attributes of yogurt.
Collapse
Affiliation(s)
- Mina Khorshidi
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Ali Heshmati
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mehdi Taheri
- Department of Nutrition and Food SafetySchool of MedicineNutrition Health Research CenterHamadan University of Medical SciencesHamadanIran
| | - Mostafa Karami
- Faculty of Food Science and TechnologyBu‐Ali Sina University of HamedanHamedanIran
| | - Reza Mahjub
- Department of Pharmacology and ToxicologySchool of Pharmacy, Medicinal Plants and Natural Products Research CenterHamadan University of Medical SciencesHamadanIran
| |
Collapse
|
21
|
Screening of Lactic Acid Bacteria with Inhibitory Activity against ETEC K88 as Feed Additive and the Effects on Sows and Piglets. Animals (Basel) 2021; 11:ani11061719. [PMID: 34207593 PMCID: PMC8227144 DOI: 10.3390/ani11061719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Numerous reports have suggested that lactic acid bacteria (LAB), which are important probiotics, can protect animals against pathogen-induced injury and inflammation, regulate gut microflora, enhance digestive tract function, improve animal growth performance, and decrease the incidence of diarrhea caused by enterotoxigenic (ETEC) that expresses K88. This research selected Lactobacillus (L.) reuteri P7, L. amylovorus P8, and L. johnsonii P15 with good inhibition against ETEC K88 and excellent probiotic properties screened from 295 LAB strains isolated from fecal samples from 55 healthy weaned piglets for a study on feeding of sows in late pregnancy and weaned piglets. Feed supplementation with these three strains improved reproductive performance of sows and growth performance of piglets, decreased the incidence of diarrhea in piglets, and increased the antioxidant capacity of serum in both sows and piglets. Therefore, L. reuteri P7, L. amylovorus P8, and L. johnsonii P15 might be considered as potential antibiotic alternatives for further study. Abstract Enterotoxigenic Escherichia coli (ETEC), which expresses K88 is the principal microorganism responsible for bacterial diarrhea in pig husbandry, and the indiscriminate use of antibiotics has caused many problems; therefore, antibiotics need to be replaced in order to prevent diarrhea caused by ETEC K88. The objective of this study was to screen excellent lactic acid bacteria (LAB) strains that inhibit ETEC K88 and explore their effects as probiotic supplementation on reproduction, growth performance, diarrheal incidence, and antioxidant capacity of serum in sows and weaned piglets. Three LAB strains, P7, P8, and P15, screened from 295 LAB strains and assigned to Lactobacillus (L.) reuteri, L. amylovorus, and L. johnsonii with high inhibitory activity against ETEC K88 were selected for a study on feeding of sows and weaned piglets. These strains were chosen for their good physiological and biochemical characteristics, excellent exopolysaccharide (EPS) production capacity, hydrophobicity, auto-aggregation ability, survival in gastrointestinal (GI) fluids, lack of hemolytic activity, and broad-spectrum activity against a wide range of microorganisms. The results indicate that LAB strains P7, P8, and P15 had significant effects on improving the reproductive performance of sows and the growth performance of weaned piglets, increasing the activity of antioxidant enzymes and immune indexes in both.
Collapse
|
22
|
Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics Antimicrob Proteins 2021; 14:15-48. [PMID: 33904011 PMCID: PMC8075719 DOI: 10.1007/s12602-021-09791-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Considering the significance of the gut microbiota on human health, there has been ever-growing research and commercial interest in various aspects of probiotic functional foods and drugs. A probiotic food requires cautious consideration in terms of strain selection, appropriate process and storage conditions, cell viability and functionality, and effective delivery at the targeted site. To address these challenges, several technologies have been explored and some of them have been adopted for industrial applicability. Encapsulation of probiotics has been recognized as an effective way to stabilize them in their dried form. By conferring a physical barrier to protect them from adverse conditions, the encapsulation approach renders direct benefits on stability, delivery, and functionality. Various techniques have been explored to encapsulate probiotics, but it is noteworthy that the encapsulation method itself influences surface morphology, viability, and survivability of probiotics. This review focuses on the need to encapsulate probiotics, trends in various encapsulation techniques, current research and challenges in targeted delivery, the market status of encapsulated probiotics, and future directions. Specific focus has been given on various in vitro methods that have been explored to better understand their delivery and performance.
Collapse
Affiliation(s)
- K S Yoha
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sundus Nida
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - Sayantani Dutta
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Government of India, 613 005, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
23
|
Abstract
Microencapsulation is a well-known technology for the lipid delivery system. It prevents the oxidation of fatty acids and maintains the quality of lipid after extraction from oil seed and processing. In flaxseed oil, the amount of ω-3 and ω-6 polyunsaturated fatty acids are 39.90–60.42% and 12.25–17.44%, respectively. A comprehensive review article on the microencapsulation of flaxseed oil has not been published yet. Realizing the great advantages of flaxseed oil, information about different technologies related to the microencapsulation of flaxseed oil and their characteristics are discussed in a comprehensive way, in this review article. To prepare the microcapsule of flaxseed oil, an emulsion of oil-water is performed along with a wall material (matrix), followed by drying with a spray-dryer or freeze-dryer. Different matrices, such as plant and animal-based proteins, maltodextrin, gum Arabic, and modified starch are used for the encapsulation of flaxseed oil. In some cases, emulsifiers, such as Tween 80 and soya lecithin are used to prepare flaxseed oil microcapsules. Physico-chemical and bio-chemical characteristics of flaxseed oil microcapsules depend on process parameters, ratio of oil and matrix, and characteristics of the matrix. As an example, the size of the microcapsule, prepared with spray-drying and freeze-drying ranges between 10–400 and 20–5000 μm, respectively. It may be considered that the comprehensive information on the encapsulation of flaxseed oil will boost the development of functional foods and biopharmaceuticals.
Collapse
|
24
|
Nagvanshi S, Venkata SK, Goswami TK. Study of color kinetics of banana (Musa cavendish) under microwave drying by application of image analysis. FOOD SCI TECHNOL INT 2020; 27:660-673. [PMID: 33375845 DOI: 10.1177/1082013220981334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microwave drying works on the volumetric heating concept promoted by electromagnetic radiation at 0.915 or 2.450 GHz. In this study, banana (Musa Cavendish) was taken as the sample and treated under microwave drying. The effect of two process variables, namely slice thickness (2, 3.5, and 5 mm) and microwave power (180 W, 360 W, and 540 W), were studied on drying kinetics and color kinetics. It was observed that the inverse variation relationship exists between drying time and microwave power level while drying time and slice thickness exhibited a direct variation relationship. A Computer Vision System (CVS) was developed to measure the color values of banana in CIELab space using an algorithm written in MATLAB software. Once the color parameters were obtained, they were fitted in First and Zero-order kinetic models. Both models were found to describe the color values adequately. This study concludes that microwave drying is a promising dehydration technique for banana drying that reduces the significant time of drying. Application of CVS is an excellent approach to measure the surface color of banana.
Collapse
Affiliation(s)
- Sagar Nagvanshi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Subbarao Kotra Venkata
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - T K Goswami
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
25
|
Afzaal M, Saeed F, Hussain S, Mohamed AA, Alamri MS, Ahmad A, Ateeq H, Tufail T, Hussain M. Survival and storage stability of encapsulated probiotic under simulated digestion conditions and on dried apple snacks. Food Sci Nutr 2020; 8:5392-5401. [PMID: 33133541 PMCID: PMC7590301 DOI: 10.1002/fsn3.1815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023] Open
Abstract
The objective of the current study was to explore the probiotics carrier potential of apple dried snacks and improve the survival of probiotics under simulated gastrointestinal conditions. Purposely, the probiotics were encapsulated using two hydrogel materials (sodium alginate and carrageenan) by using encapsulator. Briefly, slices of apple were immersed in solution containing free and encapsulated probiotics and then dried by conventional drying method. The dried apple snack was analyzed for different characteristics (physiochemical and microbiological) during storage. The viability of the free and encapsulated probiotics was accessed in apple snack and under simulated gastrointestinal conditions. Apple snack rich with encapsulated probiotics showed a significant result (p < .05) regarding the survival and stability. The encapsulated probiotics decreased from 9.5 log CFU/g to 8.83 log CFU/g as compared to free probiotics that decreased to 5.28 log CFU/g. Furthermore, encapsulated probiotics exhibited a better stability under simulated gastrointestinal conditions as compared to free. During storage, an increase in phenolic content and hardness was observed while decrease in pH was noted. Results of sensory parameters indicated apple snack as potential and acceptable probiotics carrier.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Farhan Saeed
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Shahzad Hussain
- Department of Food Science & NutritionKing Saud UniversityRiyadhSaudi Arabia
| | | | - Mohamed S. Alamri
- Department of Food Science & NutritionKing Saud UniversityRiyadhSaudi Arabia
| | - Aftab Ahmad
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Huda Ateeq
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Tabussam Tufail
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzammil Hussain
- Institute of Home & Food SciencesGovernment College University FaisalabadFaisalabadPakistan
- The University of GambiaSerrekundaGambia
| |
Collapse
|
26
|
Wang W, Ma H, Yu H, Qin G, Tan Z, Wang Y, Pang H. Screening of Lactobacillus plantarum Subsp. plantarum with Potential Probiotic Activities for Inhibiting ETEC K88 in Weaned Piglets. Molecules 2020; 25:molecules25194481. [PMID: 33003556 PMCID: PMC7582832 DOI: 10.3390/molecules25194481] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
For screening excellent lactic acid bacteria (LAB) strains to inhibit enterotoxigenic Escherichia coli (ETEC) K88, inhibitory activities of more than 1100 LAB strains isolated from different materials, and kept in the lab, were evaluated in this study. Nine strains with inhibition zones, at least 22.00 mm (including that of a hole puncher, 10.00 mm), and good physiological and biochemical characteristics identified by 16S DNA gene sequencing and recA gene multiple detection, were assigned to Lactobacillus (L.) plantarum subsp. plantarum (5), L. fermentum (1), L. reuteri (1), Weissella cibaria (1) and Enterococcus faecalis (1), respectively. As investigated for their tolerance abilities and safety, only strain ZA3 possessed high hydrophobicity and auto-aggregation abilities, had high survival rate in low pH, bile salt environment, and gastrointestinal (GI) fluids, was sensitive to ampicillin, and resistant to norfloxacin and amikacin, without hemolytic activity, and did not carry antibiotic resistance genes, but exhibited broad spectrum activity against a wide range of microorganisms. Antibacterial substance may attribute to organic acids, especially lactic acid and acetic acid. The results indicated that the selected strain L. plantarum subsp. plantarum ZA3 could be considered a potential probiotic to inhibit ETEC K88 in weaned piglets for further research.
Collapse
Affiliation(s)
- Weiwei Wang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hao Ma
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Haojie Yu
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Guangyong Qin
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Zhongfang Tan
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Yanping Wang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
| | - Huili Pang
- Henan Key Lab Ion Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China; (W.W.); (H.M.); (H.Y.); (G.Q.); (Z.T.); (Y.W.)
- Correspondence: ; Tel.: +86-150-3715-1053
| |
Collapse
|