1
|
Swathi M, Raju BK, Sakthivel V, Gujar V, Suganthi P. Molecular typing of bacterial vaginosis isolates by using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR. Microb Pathog 2025; 205:107564. [PMID: 40216098 DOI: 10.1016/j.micpath.2025.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
OBJECTIVES Bacterial vaginitis is one of the common conditions in the reproductive age of women characterized by inflammation in the vaginal mucosa. Among the various etiological agents that influence vaginitis, one of the most common etiological agents is bacteria that belongs to Enterobacteriaceae family members, including Escherichia coli and Klebsiella pneumoniae, which have been found as the primary common pathogen of aerobic vaginitis. This study aims to determine the genetic relatedness of the Enterobacterial Repetitive Intergenic Consensus (ERIC-PCR) technique isolated from pregnant and nonpregnant patients diagnosed with bacterial vaginosis. MATERIALS AND METHODS The patient's vaginal swabs were collected using a sterile vaginal swab and screened for Gram-negative bacteria, and then the genus of those bacteria was identified using gold-standard microbiology techniques such as culturomics. The disc diffusion method was used to determine the antibiotic susceptibility of the bacteria to extended-spectrum beta-lactamase (ESBL). The organism's susceptibility was tested against eleven antimicrobial agents. A single-plex PCR was carried out for the following genes: Temoneira (TEM), Sulfhydryl reagent variable (SHV), and Cefotaxime-hydrolyzing β-lactamase (CTXM). After identifying ESBL resistance using the endpoint PCR, the genetic relatedness between each strain was determined using ERIC-PCR. Then, the gel was analyzed using the Gel-J software to create the phylogenetic tree dendrogram to find the genetic variations. RESULTS Antibiotic susceptibility testing and molecular detection of antibiotic resistance genes demonstrated that antibiotic resistance is more prevalent in E. coli and K. pneumonia, which was shown to be the primary causative agent involved in bacterial vaginosis towards fluoroquinolone resistance. Over fifty percent of the isolates exhibited a multidrug resistance trait. CONCLUSION This study's findings demonstrate an increase in multi-resistant strains of K. pneumoniae and E. coli prevalent in pregnant and nonpregnant women after examination. The results of the ERIC PCR analysis showed a significant genetic diversity between the strains of K. pneumoniae and E. coli, indicating the polyclonal distribution of these isolates in both pregnant and nonpregnant women presented with vaginal infections.
Collapse
Affiliation(s)
- Munuswamy Swathi
- Department of Microbiology, SRM Arts and Science College Kattankulathur, Chengalpattu, Tamil Nadu, India.
| | - Bhuvanesh Kumar Raju
- Department of Anatomy and Cell Biology, Oklahoma State University- Center for Health Sciences, Tulsa, OK, 74107, USA
| | - Vasanth Sakthivel
- Department of Medical Laboratory Technology, Sengunthar College of Allied Health Sciences Affiliated by Tamil Nadu DR MGR MEDICAL UNIVERSITY, Tiruchengode, Tamil Nadu, 637205, India
| | - Vikramsingh Gujar
- Department of Anatomy and Cell Biology, Oklahoma State University- Center for Health Sciences, Tulsa, OK, 74107, USA
| | - P Suganthi
- Department of Microbiology, Dr. A.L.M. PG Institute of Basic Medical Sciences University of Madras, Taramani, Chennai, Tamil Nadu, 600 113, India
| |
Collapse
|
2
|
Zare H, Izadi Amoli R, Rezapour M, Zaboli F, Kaboosi H. Characterization of Vaginal Lactobacilli with Potential Probiotic Properties Isolated from Healthy Women in Northern Iran. Indian J Microbiol 2024; 64:529-539. [PMID: 39011013 PMCID: PMC11246308 DOI: 10.1007/s12088-023-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/28/2023] [Indexed: 07/17/2024] Open
Abstract
Vaginal lactobacilli protect against bacterial vaginosis and vaginal candidiasis. They may have probiotic properties and help maintain the balance and health of the vaginal ecosystem while the loss of these bacteria predisposes females to urinary and genital infections. The aim of this study was to investigate the probiotic potential of vaginal Lactobacillus among healthy females in northern Iran. The Lactobacillus strains were isolated from vaginal samples and were identified by sequencing of the 16S rRNA fragment. Functional properties such as tolerance to low pH, H2O2 production, adherence ability to Hela cells and antagonistic activity against Candida albicans was examined. A total of 38 vaginal lactobacilli strains from five species, including Lactobacillus crispatus (n = 13), Lactobacillus gasseri (n = 10), Lactobacillus acidophilus (n = 6), Lactobacillus jensenii (n = 5) and Lactobacillus johnsonii (n = 4), were identified. All of the species showed significant tolerance to low pH over 24 h (p < 0.001). The best adherence ability to Hela cells was seen in Lactobacillus gasseri strains. Nearly 17 of the strains had higher anti-candida activity compared to the other strains. According to the findings, four lactobacilli strains isolated in the vaginal samples of healthy Iranian women had the best probiotic potential.
Collapse
Affiliation(s)
- Hakimeh Zare
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Rabeeh Izadi Amoli
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Maysam Rezapour
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Zaboli
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hami Kaboosi
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
3
|
Bhola J, Bhadekar R. Prebiotic effect of daily dietary polyphenols and oligosaccharides on lactobacillus species. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 31:100407. [DOI: 10.1016/j.bcdf.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wang Y, Liu Z, Chen T. Vaginal microbiota: Potential targets for vulvovaginal candidiasis infection. Heliyon 2024; 10:e27239. [PMID: 38463778 PMCID: PMC10923723 DOI: 10.1016/j.heliyon.2024.e27239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Vulvovaginal candidiasis (VVC) is the second most common cause of vaginal infection globally after bacterial vaginosis (BV) and associated with adverse reproductive and obstetric outcomes, including preterm delivery, sexually transmitted infections and pelvic inflammatory disease. Although effective control of VVC is achievable with the use of traditional treatment strategies (i.e., antifungals), the possibility of drug intolerance, treatment failure and recurrence, as well as the appearance of antifungal-resistant Candida species remain critical challenges. Therefore, alternative therapeutic strategies against VVC are urgently required. In recent years, an improved understanding of the dysbiotic vaginal microbiota (VMB) during VVC has prompted the consideration of administering -biotics to restore the balance of the VMB within the context of VVC prevention and treatment. Here, we aim to summarize the current evidence of the anti-Candida effects of probiotics, postbiotics and synbiotics and their potential use as an alternative/complementary therapy against VVC. Additionally, this review discusses advantages and challenges associated with the application of -biotics in VVC to provide guidance for their later use. We also review new developments in VVC therapy, i.e., vaginal microbiota transplantation (VMT) as an emerging live biotherapeutic therapy against VVC and discuss existing shortcomings associated with this nascent field, expecting to stimulate further investigations for introduction of new therapies against VVC.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- Queen Mary School, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University Jiangxi Medical College, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
- School of Pharmacy, National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, No.1299, Xuefu Avenue, Honggutan District, Nanchang City, Jiangxi Province, China
| |
Collapse
|
5
|
Sahal G, Donmez HG, Beksac MS. Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus. Curr Microbiol 2023; 80:332. [PMID: 37642756 DOI: 10.1007/s00284-023-03447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
The cervicovaginal microbiota is an essential aspect of women's reproductive and overall health. In this study, we aimed to evaluate the probiotic properties of a cervicovaginal isolate, obtained from a gynecologically healthy woman and assess its antagonistic effect against various microorganisms isolated from the vagina. Cytological examination was performed using Papanicolaou staining, and the isolated microorganism was identified via 16S Ribosomal RNA Gene Sequence Analysis. Probiotic characteristics were evaluated by determining the tolerance of the isolate to low pH, different NaCl concentrations, and bile salts. Bacterial adherence to stainless steel sheets, antibiotic susceptibility, and antimicrobial activity tests were also conducted and analyzed. Antimicrobial tests and antagonistic activities were assessed through disc diffusion assays. The cervicovaginal isolate was identified as B. velezensis ON116948 and was found to be tolerant to low pH, high NaCl and 0.3% bile salts. Additionally, it exhibited adherence. With the exception of amoxicillin/clavulanic acid (AMC) (30 μg) and oxacillin (OX) (1 μg), this isolate was susceptible to all the antibiotics tested. Candida species did not grow on B. velezensis spread media, while B. velezensis was able to grow on C. albicans, C. glabrata, C. tropicalis, S. condimenti and S. epidermidis spread media with growth zones of 13.7 ± 0.6, 13.3 ± 0.6, 14.2 ± 4.4, 10.5 ± 0.5 and 16.0 ± 1.0 (around discs), respectively. Our findings suggest that the cervicovaginal B. velezensis ON116948 isolate exhibits probiotic properties and antagonistic activity. These results provide important insights into the potential use of this isolate as a probiotic for the prevention of vaginal infections.
Collapse
Affiliation(s)
- Gulcan Sahal
- Department of Biology (Biotechnology), Faculty of Science, Hacettepe University, Ankara, Turkey.
| | - Hanife Guler Donmez
- Department of Biology (General Biology), Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Gaziano R, Sabbatini S, Monari C. The Interplay between Candida albicans, Vaginal Mucosa, Host Immunity and Resident Microbiota in Health and Disease: An Overview and Future Perspectives. Microorganisms 2023; 11:1211. [PMID: 37317186 DOI: 10.3390/microorganisms11051211] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Vulvovaginal candidiasis (VVC), which is primarily caused by Candida albicans, is an infection that affects up to 75% of all reproductive-age women worldwide. Recurrent VVC (RVVC) is defined as >3 episodes per year and affects nearly 8% of women globally. At mucosal sites of the vagina, a delicate and complex balance exists between Candida spp., host immunity and local microbial communities. In fact, both immune response and microbiota composition play a central role in counteracting overgrowth of the fungus and maintaining homeostasis in the host. If this balance is perturbed, the conditions may favor C. albicans overgrowth and the yeast-to-hyphal transition, predisposing the host to VVC. To date, the factors that affect the equilibrium between Candida spp. and the host and drive the transition from C. albicans commensalism to pathogenicity are not yet fully understood. Understanding the host- and fungus-related factors that drive VVC pathogenesis is of paramount importance for the development of adequate therapeutic interventions to combat this common genital infection. This review focuses on the latest advances in the pathogenic mechanisms implicated in the onset of VVC and also discusses novel potential strategies, with a special focus on the use of probiotics and vaginal microbiota transplantation in the treatment and/or prevention of recurrent VVC.
Collapse
Affiliation(s)
- Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Samuele Sabbatini
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| | - Claudia Monari
- Department of Medicine and Surgery, Medical Microbiology Section, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
7
|
Liu P, Lu Y, Li R, Chen X. Use of probiotic lactobacilli in the treatment of vaginal infections: In vitro and in vivo investigations. Front Cell Infect Microbiol 2023; 13:1153894. [PMID: 37077531 PMCID: PMC10106725 DOI: 10.3389/fcimb.2023.1153894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The vaginal microbiome is a distinct component of the human microbiome that is colonized by a wide variety of microorganisms. Lactobacilli are the most frequently identified microorganisms in the healthy human vagina. These Gram-positive bacilli can acidify the vaginal microenvironment, inhibit the proliferation of other pathogenic microorganisms, and promote the maintenance of a eubiotic vaginal microbiome. However, a vaginal flora with a reduced proportion or abundance of lactobacilli is associated with various vaginal infections that have been linked to serious health consequences such as infertility, preterm birth, pelvic inflammatory disease, premature rupture of membranes, and miscarriage. Due to their “Generally Recognized as Safe” classification and critical role in vaginal health, probiotic lactobacilli have been widely used as an alternative or adjunct to traditional antibiotic therapy for the treatment of vaginal infections and restoration of the vaginal microbiome. This review focuses on the significant role of probiotic lactobacilli in the vaginal microenvironment and discusses the use of probiotic lactobacilli in the treatment of female vaginal infections in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Rongguo Li
- *Correspondence: Rongguo Li, ; Xiaodi Chen,
| | | |
Collapse
|
8
|
Huang YP, Shi JY, Luo SC, Xu SY, Zhang JD, Molnár I, Yang QQ, Zhang BB. Antimicrobial Substances and Mechanisms of Lactobacillus rhamnosus against Gardnerella vaginalis. Probiotics Antimicrob Proteins 2023; 15:400-410. [PMID: 36459386 DOI: 10.1007/s12602-022-10019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 12/04/2022]
Abstract
Bacterial vaginosis (BV) is a common vaginal disease associated with abnormal changes in the vaginal microbiome. Our previous study found that Lactobacillus rhamnosus has a good therapeutic effect on bacterial vaginosis by inhibiting the most prominent bacterium associated with BV, Gardnerella vaginalis. In this study, we show that acetic acid and lactic acid are the main substances in the cell-free supernatant (CFS) of L. rhamnosus that inhibit the growth of G. vaginalis. Further study on the mechanism showed that acetic acid and lactic acid alter the morphology of the G. vaginalis cells, eventually causing the cells to shrink or burst, resulting in exudation of their intracellular contents. In addition, these two organic acids also dissipate the membrane potential of bacterial cells, affecting their synthesis of ATP. A reduced activity of the Na+/K+-ATPase leads to abnormal ATP metabolism, and ultimately inhibits the growth and reproduction of G. vaginalis. Our study provides valuable information for the widespread application of L. rhamnosus in the treatment of bacterial vaginosis.
Collapse
Affiliation(s)
- Yu-Ping Huang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, People's Republic of China
| | - Jie-Yan Shi
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, People's Republic of China
| | - Si-Chen Luo
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, People's Republic of China
| | - Shao-Yan Xu
- Qiangji Pharmaceutical Co., Ltd., 515638, Guangdong, People's Republic of China
- Longchuangji Pharmaceutical Co., Ltd., 521021, Guangdong, People's Republic of China
| | - Jia-Dong Zhang
- Qiangji Pharmaceutical Co., Ltd., 515638, Guangdong, People's Republic of China
- Longchuangji Pharmaceutical Co., Ltd., 521021, Guangdong, People's Republic of China
| | - István Molnár
- VTT Technical Research Centre of Finland, FI-02044, VTT, Espoo, Finland
| | - Qiong-Qiong Yang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, People's Republic of China
| | - Bo-Bo Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Bassi A, Sharma G, Deol PK, Madempudi RS, Kaur IP. Preclinical Potential of Probiotic-Loaded Novel Gelatin-Oil Vaginal Suppositories: Efficacy, Stability, and Safety Studies. Gels 2023; 9:gels9030244. [PMID: 36975693 PMCID: PMC10048646 DOI: 10.3390/gels9030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The current study describes a suppository base composed of aqueous gelatin solution emulsifying oil globules with probiotic cells dispersed within. The favorable mechanical properties of gelatin to provide a solid gelled structure, and the tendency of its proteins to unravel into long strings that interlace when cooled, lead to a three-dimensional structure that can trap a lot of liquid, which was exploited herein to result in a promising suppository form. The latter maintained incorporated probiotic spores of Bacillus coagulans Unique IS-2 in a viable but non-germinating form, preventing spoilage during storage and imparting protection against the growth of any other contaminating organism (self-preserved formulation). The gelatin-oil-probiotic suppository showed uniformity in weight and probiotic content (23 ± 2.481 × 108 cfu) with favorable swelling (double) followed by erosion and complete dissolution within 6 h of administration, leading to the release of probiotic (within 45 min) from the matrix into simulated vaginal fluid. Microscopic images indicated presence of probiotics and oil globules enmeshed in the gelatin network. High viability (24.3 ± 0.46 × 108), germination upon application and a self-preserving nature were attributed to the optimum water activity (0.593 aw) of the developed composition. The retention of suppositories, germination of probiotics and their in vivo efficacy and safety in vulvovaginal candidiasis murine model are also reported.
Collapse
Affiliation(s)
- Anchal Bassi
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Parneet Kaur Deol
- G.H.G. Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana 141104, India
| | | | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
10
|
Ali MS, Lee EB, Lim SK, Suk K, Park SC. Isolation and Identification of Limosilactobacillus reuteri PSC102 and Evaluation of Its Potential Probiotic, Antioxidant, and Antibacterial Properties. Antioxidants (Basel) 2023; 12:238. [PMID: 36829797 PMCID: PMC9952246 DOI: 10.3390/antiox12020238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
We isolated and characterized Limosilactobacillus reuteri PSC102 and evaluated its probiotic, antioxidant, and antibacterial properties. We preliminarily isolated 154 candidates from pig feces and analyzed their Gram nature, morphology, and lactic acid production ability. Based on the results, we selected eight isolates and tested their ability to produce digestive enzymes. Finally, we identified one isolate using 16S rRNA gene sequencing, namely, L. reuteri PSC102. We tested its probiotic properties in vitro, including extracellular enzyme activities, low pH and bile salt tolerance, autoaggregation and coaggregation abilities, adhesion to Caco-2 cells, antibiotic susceptibility, and hemolytic and gelatinase activities. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl and 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical scavenging and reducing power assays. The antibacterial activity of this strain and its culture supernatant against enterotoxigenic Escherichia coli were evaluated using a time-kill assay and disk diffusion method, respectively. L. reuteri PSC102 exhibited tolerance toward low pH and bile salt and did not produce harmful enzymes or possess hemolytic and gelatinase activities. Its intact cells and cell-free extract exhibited potential antioxidant activities, and significantly inhibited the growth of enterotoxigenic E. coli. Our results demonstrate that L. reuteri PSC102 is a potential probiotic candidate for developing functional feed.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong 4318, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, 177 Hyeksin 8-ro, Gimcheon-si 39660, Republic of Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Multi-Functional Potential of Lactic Acid Bacteria Strains and Antimicrobial Effects in Minimally Processed Pomegranate (Punica granatum L. cv Jolly Red) Arils. Microorganisms 2022; 10:microorganisms10101876. [PMID: 36296153 PMCID: PMC9610940 DOI: 10.3390/microorganisms10101876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to evaluate the antimicrobial activity of both cells, and cell-free supernatants (CFS) of 7 selected lactic acid bacteria (LAB) strains belonging to Limosilactobacillus fermentum (4 strains), Lacticaseibacillus paracasei (1 strain), Lacticaseibacillus rhamnosus (1 strain), and Enterococcus faecium (1 strain) species, against Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, Pseudomonas aeruginosa and Staphylococcus aureus, by both the agar-well diffusion and co-culture methods. In addition, probiotic and safety traits were also detected. Great variability was detected on antimicrobial effects, whereas all tested strains were found sensitive to most of the tested antibiotics, and without any DNase, gelatinase, or hemolytic activity. Moreover, strains showed excellent survival in acidic conditions and exhibited tolerance to pepsin and bile salts. Based on the in vitro results, the CFSs of two selected L. fermentum strains were applied, in a mixed solution, as bio-preservative into minimally processed pomegranate arils, inoculated with a cocktail of L. monocytogenes and E. coli. Samples, packaged in an ordinary atmosphere, were analyzed during refrigerated storage, for up to 12 days, for physicochemical (as weight loss, texture, color, pH, total soluble solids and organic acid content) and for microbiological traits. Results revealed the effectiveness of CFS, up to 12 days, in reducing weight loss and microbial growth, without any significant effect on texture, total soluble solid content and color, found comparable to the acid citric treatment, highlighting the multi-functional potential of selected probiotic strains.
Collapse
|
12
|
Argentini C, Fontana F, Alessandri G, Lugli GA, Mancabelli L, Ossiprandi MC, van Sinderen D, Ventura M, Milani C, Turroni F. Evaluation of Modulatory Activities of Lactobacillus crispatus Strains in the Context of the Vaginal Microbiota. Microbiol Spectr 2022; 10:e0273321. [PMID: 35266820 PMCID: PMC9045136 DOI: 10.1128/spectrum.02733-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022] Open
Abstract
It has been widely reported that members of the genus Lactobacillus dominate the vaginal microbiota, which is represented by the most prevalent species Lactobacillus crispatus, Lactobacillus jensenii, Lactobacillus gasseri, and Lactobacillus iners. L. crispatus is furthermore considered an important microbial biomarker due to its professed beneficial implications on vaginal health. In order to identify molecular mechanisms responsible for health-promoting activities that are believed to be elicited by L. crispatus, we performed in silico investigations of the intraspecies biodiversity of vaginal microbiomes followed by in vitro experiments involving various L. crispatus strains along with other vaginal Lactobacillus species mentioned above. Specifically, we assessed their antibacterial activities against a variety of pathogenic microorganisms that are associated with vaginal infections. Moreover, coculture experiments of L. crispatus strains showing the most antibacterial activity against different pathogens revealed distinct ecological fitness and competitive properties with regard to other microbial colonizers. Interestingly, we observed that even phylogenetically closely related L. crispatus strains possess unique features in terms of their antimicrobial activities and associated competitive abilities, which suggests that they exert marked competition and evolutionary pressure within their specific environmental niche. IMPORTANCE The human vaginal microbiota includes all microorganisms that colonize the vaginal tract. In this context, a vaginal microbiota dominated by Lactobacillus and specifically by Lactobacillus crispatus is considered a hallmark of health. The role of L. crispatus in maintaining host health is linked to its modulatory activity toward other members of the vaginal ecosystem and toward the host. In this study, in vitro experiments followed by genetic analyses of the mechanisms used by L. crispatus in colonizing the vaginal ecological niche, particularly in the production of different antimicrobial compounds, were evaluated, highlighting some intriguing novel aspects concerning the genetic variability of this species. Our results indicate that this species has adapted to its niche and may still undergo adaptation to enhance its competitiveness for niche colonization.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Cristina Ossiprandi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Veterinary Medical Science, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Choi SI, Won G, Kim Y, Kang CH, Kim GH. Lactobacilli Strain Mixture Alleviates Bacterial Vaginosis through Antibacterial and Antagonistic Activity in Gardnerella vaginalis-Infected C57BL/6 Mice. Microorganisms 2022; 10:471. [PMID: 35208925 PMCID: PMC8880492 DOI: 10.3390/microorganisms10020471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
The present study investigated the anti-bacterial vaginitis (BV) effects of a mixture of five lactobacilli strains (LM5), containing equal amounts of Ligilactobacillus salivarius MG242, Limosilactobacillus fermentum MG901, Lactiplantibacillus plantarum MG989, Lacticaseibacillus paracasei MG4272, and Lacticaseibacillus rhamnosus MG4288), in HeLa cells and Gardnerella vaginalis (GV)-infected BV mice. All strains produced lactic acid and hydrogen peroxide, and were resistant to nonoxynol-9. LM5 significantly inhibited GV growth by 80%, exhibited good adhesion to HeLa cells, and significantly inhibited GV adhesion to these cells. In GV-infected mice, LM5 administered orally at 5 × 109 CFU/mouse significantly inhibited GV proliferation in the vaginal tract and significantly reduced myeloperoxidase activity, pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) levels, and nitric oxide levels in vaginal tissue lysates. Histopathological analysis of vaginal tissues revealed that LM5 markedly suppressed the exfoliation of vaginal epithelial cells. Overall, these results suggest that LM5 might alleviate BV by direct antibacterial and antagonistic activity in vaginal tissues of GV-infected mice.
Collapse
Affiliation(s)
- Soo-Im Choi
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
| | - GaYeong Won
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
| | - YongGyeong Kim
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea; (Y.K.); (C.-H.K.)
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd., Biovalley 1-ro, Jecheon-si 27159, Korea; (Y.K.); (C.-H.K.)
| | - Gun-Hee Kim
- Department of Health Functional New Materials, Duksung Women’s University, Seoul 01369, Korea; (S.-I.C.); (G.W.)
- Department of Food and Nutrition, Duksung Women’s University, Seoul 01369, Korea
| |
Collapse
|
14
|
Tian L, Liu R, Zhou Z, Xu X, Feng S, Kushmaro A, Marks RS, Wang D, Sun Q. Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats. Probiotics Antimicrob Proteins 2022; 14:337-348. [PMID: 35064922 DOI: 10.1007/s12602-021-09886-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
In this study, the probiotic potential and treatment effects of Lactiplantibacillus plantarum N-1 in hypercholesterolemic rats were investigated, and the possible regulatory mechanisms of lipid metabolism via short-chain fatty acids (SCFAs) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were elucidated. The strain N-1 displayed probiotic properties of antioxidant capacity, adhesion to Caco-2 cells, susceptibility to antibiotics in vitro. The results in animal study showed that the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in serum and TC in liver declined significantly in both N-1 and simvastatin (Sta) treatment groups compared to the control (P < 0.05), and the extent of these decreases were similar between them. The expression of the HMG-CoA gene in the N-1 group was downregulated significantly by 31.18% compared to the control (P < 0.01), and the contents of butyrate and valerate in N-1 groups were significantly higher than those in both model and Sta group (P < 0.05). Thus, promoting the production of the intestinal SCFAs and inhibiting the expression of HMG-CoA reductase by L. plantarum N-1 may contribute to the improved lipid metabolism and thus lowering cholesterol level in rats. Our investigation indicated that L. plantarum N-1 has the potential to be developed into a functional food supplement for hypercholesterolemia treatment.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.,Department of Biotechnology Engineering, Faculty of Engineering Sciences, Avram and Stella Goldstein-Goren, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rongmei Liu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.,Key Laboratory of Sichuan Province for Dairy Nutrition and Function, New Hope Dairy Co., Ltd., Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Xiaofang Xu
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Su Feng
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Ariel Kushmaro
- Department of Biotechnology Engineering, Faculty of Engineering Sciences, Avram and Stella Goldstein-Goren, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel.,The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Robert S Marks
- Department of Biotechnology Engineering, Faculty of Engineering Sciences, Avram and Stella Goldstein-Goren, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel.,The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Dan Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China.
| | - Qun Sun
- Key Laboratory of Bio-Resource and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Pekmezovic M, Kaune AK, Austermeier S, Hitzler SUJ, Mogavero S, Hovhannisyan H, Gabaldón T, Gresnigt MS, Hube B. Human albumin enhances the pathogenic potential of Candida glabrata on vaginal epithelial cells. PLoS Pathog 2021; 17:e1010037. [PMID: 34710198 PMCID: PMC8577789 DOI: 10.1371/journal.ppat.1010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/09/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
The opportunistic pathogen Candida glabrata is the second most frequent causative agent of vulvovaginal candidiasis (VVC), a disease that affects 70–75% of women at least once during their life. However, C. glabrata is almost avirulent in mice and normally incapable of inflicting damage to vaginal epithelial cells in vitro. We thus proposed that host factors present in vivo may influence C. glabrata pathogenicity. We, therefore, analyzed the impact of albumin, one of the most abundant proteins of the vaginal fluid. The presence of human, but not murine, albumin dramatically increased the potential of C. glabrata to damage vaginal epithelial cells. This effect depended on macropinocytosis-mediated epithelial uptake of albumin and subsequent proteolytic processing. The enhanced pathogenicity of C. glabrata can be explained by a combination of beneficial effects for the fungus, which includes an increased access to iron, accelerated growth, and increased adhesion. Screening of C. glabrata deletion mutants revealed that Hap5, a key regulator of iron homeostasis, is essential for the albumin-augmented damage potential. The albumin-augmented pathogenicity was reversed by the addition of iron chelators and a similar increase in pathogenicity was shown by increasing the iron availability, confirming a key role of iron. Accelerated growth not only led to higher cell numbers, but also to increased fungal metabolic activity and oxidative stress resistance. Finally, the albumin-driven enhanced damage potential was associated with the expression of distinct C. glabrata virulence genes. Transcriptional responses of the epithelial cells suggested an unfolded protein response (UPR) and ER-stress responses combined with glucose starvation induced by fast growing C. glabrata cells as potential mechanisms by which cytotoxicity is mediated.Collectively, we demonstrate that albumin augments the pathogenic potential of C. glabrata during interaction with vaginal epithelial cells. This suggests a role for albumin as a key player in the pathogenesis of VVC. Candida glabrata is the overall second causative species of candidiasis in humans, but little is known about the pathogenicity mechanisms of this yeast. C. glabrata is capable of causing lethal systemic candidiasis mostly in elderly immunocompromised patients, but is also a frequent cause of vulvovaginal candidiasis. These clinical insights suggest that C. glabrata has a high virulence potential, yet little pathogenicity is observed in both in vitro and in vivo infection models. The finding that human albumin, the most abundant protein in the human body, is boosting C. glabrata pathogenicity in vitro provides novel insights into C. glabrata pathogenicity mechanisms and shows that the presence of distinct human factors can have a significant influence on the virulence potential of a pathogenic microbe.
Collapse
Affiliation(s)
- Marina Pekmezovic
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Ann-Kristin Kaune
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophie Austermeier
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Sophia U. J. Hitzler
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
| | - Hrant Hovhannisyan
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Mechanisms of Disease Department, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mark S. Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- * E-mail: (MSG); (BH)
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- * E-mail: (MSG); (BH)
| |
Collapse
|
16
|
Han Y, Ren QL. Does probiotics work for bacterial vaginosis and vulvovaginal candidiasis. Curr Opin Pharmacol 2021; 61:83-90. [PMID: 34649216 DOI: 10.1016/j.coph.2021.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/09/2023]
Abstract
The different Lactobacillus strains of probiotics have been applied to the treatment and prevention of bacterial vaginosis and vulvovaginal candidiasis. The experimental data demonstrated that it works well via reducing the number of harmful bacteria, maintaining the acidic microenvironment, inhibiting the immune response, and so on, to restore the vaginal microecology. However, the clinical data indicated that it is not sufficient to support the use of probiotics in the intervention of vulvovaginal candidiasis rather than bacterial vaginosis. Hunting for novel probiotic strains and uncovering the precise mechanism of probiotics, especially with the new concept gut-vagina axis, to maintain the homeostasis of vaginal microbiota should be a great challenge in the future.
Collapse
Affiliation(s)
- Yue Han
- The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu, China
| | - Qing-Ling Ren
- The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Czechowicz P, Jaśkiewicz M, Neubauer D, Gościniak G, Kamysz W. Anticandidal Activity of Omiganan and Its Retro Analog Alone and in Combination with Fluconazole. Probiotics Antimicrob Proteins 2021; 13:1173-1182. [PMID: 33655458 PMCID: PMC8342346 DOI: 10.1007/s12602-021-09757-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Vulvovaginal candidiasis (VVC) is a vaginal infection that manifests itself as several symptoms which can lead to various life-threatening complications. The majority of VVC is caused by Candida albicans strains, and it is estimated that approximately 75% of women worldwide would suffer from this condition at least once during their lifetime. Surprisingly, the detailed pathomechanism of yeast-like fungi invasions in vagina is not yet fully understood. However, the ability to form biofilm on vaginal mucosa is considered as one of the critical factors associated with failure of the therapy and recurrences of the disease. Antimicrobial peptides (AMPs) are a promising class of compounds that are receiving a growing interest owing to their antibacterial, antifungal, and antibiofilm properties. Omiganan is a synthetic analog of Indolicidin that is characterized by wide spectrum of antimicrobial and antibiofilm activities. Recent reports suggest improved activity of analogs with a reversed sequence (retro-analog concept). Therefore, Omiganan and its retro analog were tested against planktonic forms and biofilm of 18 Candida strains isolated from VVC. Moreover, the synergy between the AMPs and fluconazole was studied as well. The AMPs appeared to be effective against C. albicans biofilm, and the reversion of the sequence generally led to an improved antimicrobial activity. Furthermore, confocal and scanning electron microscopic visualizations revealed the effectiveness of AMPs-fluconazole combinations also against fluconazole-resistant strains.
Collapse
Affiliation(s)
- Paulina Czechowicz
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Maciej Jaśkiewicz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdansk, Poland
| |
Collapse
|
18
|
Iseppi R, Tardugno R, Brighenti V, Benvenuti S, Sabia C, Pellati F, Messi P. Phytochemical Composition and In Vitro Antimicrobial Activity of Essential Oils from the Lamiaceae Family against Streptococcus agalactiae and Candida albicans Biofilms. Antibiotics (Basel) 2020; 9:antibiotics9090592. [PMID: 32927692 PMCID: PMC7558348 DOI: 10.3390/antibiotics9090592] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The antimicrobial activity of different essential oils (EOs) from the Lamiaceae family was evaluated on Streptococcus agalactiae, Candida albicans, and lactobacilli. S. agalactiae is the main cause of severe neonatal infections, such as sepsis, meningitis, and pneumonia. C. albicans is a primary causative agent of vulvovaginal candidiasis, a multifactorial infectious disease of the lower female reproductive tract. Lactobacilli represent the dominant bacterial species of the vaginal flora and constitute the natural defense against pathogens. On the basis of the preliminary results, the attention was focused on the EOs from Lavandula x intermedia Emeric ex Loisel. and Mentha arvensis L. By using gas ghromatography (GS) retention data and mass spectra, it was possible to identify more than 90% of the total composition of the EO samples. The minimal inhibitory concentration (MIC) and anti-biofilm activity of the two EOs were determined against all isolated strains, using the EOs by themselves or in combination with each other and with drugs (erythromycin and fluconazole). The results showed a good antimicrobial and anti-biofilm activity of both EOs and a synergistic effect, leading to the best results against all the strains, resulted using the combinations EOs/EOs and antimicrobials/EOs.
Collapse
Affiliation(s)
- Ramona Iseppi
- Correspondence: (R.I.); (F.P.); Tel.: +39-059-205-5795 (R.I.); +39-059-205-8565 (F.P.)
| | | | | | | | | | - Federica Pellati
- Correspondence: (R.I.); (F.P.); Tel.: +39-059-205-5795 (R.I.); +39-059-205-8565 (F.P.)
| | | |
Collapse
|