1
|
Schanne G, Vincent A, Chain F, Ruffié P, Carbonne C, Quévrain E, Mathieu E, Balfourier A, Bermúdez-Humarán LG, Langella P, Thenet S, Carrière V, Hammoudi N, Svrcek M, Demignot S, Seksik P, Policar C, Delsuc N. SOD mimics delivered to the gut using lactic acid bacteria mitigate the colitis symptoms in a mouse model of inflammatory bowel diseases. Free Radic Res 2025; 59:262-273. [PMID: 40079422 DOI: 10.1080/10715762.2025.2478121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/06/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Inflammatory bowel diseases (IBD), which include Crohn's disease and ulcerative colitis, represent a global health issue as a prevalence of 1% is expected in the western world by the end of this decade. These diseases are associated with a high oxidative stress that induces inflammatory pathways and severely damages gut tissues. IBD patients suffer from antioxidant defenses weakening, through, for instance, an impaired activity of superoxide dismutases (SOD)-that catalyze the dismutation of superoxide-or other endogenous antioxidant enzymes including catalase and glutathione peroxidase. Manganese complexes mimicking SOD activity have shown beneficial effects on cells and murine models of IBD. However, efficient SOD mimics are often manganese complexes that can suffer from decoordination and thus inactivation in acidic stomachal pH. To improve their delivery in the gut after oral administration, two SOD mimics Mn1 and Mn1C were loaded into lactic acid bacteria that serve as delivery vectors. When orally administrated to mice suffering from a colitis, these chemically modified bacteria (CMB) showed protective effects on the global health status of mice. In addition, they have shown beneficial effects on lipocalin-2 content and intestinal permeability. Interestingly, mRNA SOD2 content in colon homogenates was significantly decreased upon mice feeding with CMB loaded with Mn1C, suggesting that the beneficial effects observed may be due to the release of the SOD mimic in the gut that complement for this enzyme. These CMB represent new efficient chemically modified antioxidant probiotics for IBD treatment.
Collapse
Affiliation(s)
- Gabrielle Schanne
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Amandine Vincent
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Florian Chain
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Pauline Ruffié
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Célia Carbonne
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Elodie Quévrain
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Emilie Mathieu
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Alice Balfourier
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | | | - Philippe Langella
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Sophie Thenet
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Véronique Carrière
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
| | - Nassim Hammoudi
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, Paris, France
| | - Magali Svrcek
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
| | - Sylvie Demignot
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- EPHE, PSL University, Paris, France
| | - Philippe Seksik
- Centre de Recherche Saint Antoine, INSERM, UMRS 938, Microbiota, Intestine and Inflammation Team, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, Paris, France
- Gastroenterology Department, Saint-Antoine Hospital, Sorbonne Université, APHP, Paris, France
| | - Clotilde Policar
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Nicolas Delsuc
- Laboratoire Chimie Pysique et Chimie du Vivant, CPCV UMR8228, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| |
Collapse
|
2
|
Brishti MR, Venkatraman G, Baba ASBH, Yajit NLM, Karsani SA. Natural Bioactive Compounds Enriched Functional Yogurt: Impact on the Probiotic Bacteria and Its Potential Health Benefits. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10461-1. [PMID: 39934501 DOI: 10.1007/s12602-025-10461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Recently, there has been a high demand for the development of yogurt-based nutraceuticals and functional medications. This surge is primarily driven by the increasing global need for pharmaceutical and nutraceutical products, arising from widespread nutrient deficiencies and the emergence of various communicable and non-communicable diseases (NCDs), including respiratory infections, cancer, gastrointestinal, diabetes, obesity, and cardiovascular diseases. Probiotic yogurt provides an effective medium for delivering essential nutrients to the human body. Additionally, various prebiotic combinations, such as bioactive compounds from plants, animals, and microbes, can enrich the viability of probiotics, nutritional value, and efficacy. However, the gastric environment can significantly impact the viability of probiotic microorganisms as well as the absorption of nutrients and bioactive molecules. Therefore, utilizing biopolymer-based encapsulation for functional nutrients, metal nanostructures, and medications can improve the bioavailability of these compounds, protect the probiotics from gastric enzymes, increase nutrient and microbial absorption in colonic fluids, and enhance the antioxidant level in the body. This review investigates various methods for producing yogurt enriched with prebiotic and probiotic combinations alongside techniques such as microencapsulation, emulsification, and the incorporation of metal nanoparticles. Key factors such as viability, texture, and syneresis are examined to optimize yogurt-based nutraceuticals and functional medications.
Collapse
Affiliation(s)
- Moumika Rahman Brishti
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical @ Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | | | - Noor Liana Mat Yajit
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Department of Biochemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Yadav M, Mallappa RH, Ambatipudi K. Human milk fat globule delivers entrapped probiotics to the infant's gut and acts synergistically to ameliorate oxidative and pathogenic stress. Food Chem 2025; 462:141030. [PMID: 39241685 DOI: 10.1016/j.foodchem.2024.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024]
Abstract
The human milk fat globule membrane (hMFGM) and Lactobacillus modulate the infant's gut and benefit health. Hence, the current study assesses the probiotic potential of Lactiplantibacillus plantarum (MRK3), Limosilactobacillus ferementum (MK1) isolated from infant feces, and its interaction with hMFGM during conditions mimicking infant digestive tract. Both strains showed high tolerance to gastrointestinal conditions, cell surface hydrophobicity, and strong anti-pathogen activity against Staphylococcus aureus. During digestion, hMFGM significantly exhibited xanthine oxidase activity, membrane roughness, and surface topography. In the presence of hMFGM, survival of MRK3 was higher than MK1, and electron microscopic observation revealed successful entrapment of MRK3 in the membrane matrix throughout digestion. Interestingly, probiotic-membrane matrix interaction showed significant synergy to alleviate oxidative stress and damage induced by cell-free supernatant of Escherichia coli in Caco-2 cells. Our results show that a probiotic-encapsulated membrane matrix potentially opens the functional infant formula development pathway.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Dairy Microbiology Division, Indian Council of Agriculture Research-National Dairy Research Institute, Karnal 132001, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
4
|
Gu X, Wang H, Wang L, Zhang K, Tian Y, Wang X, Xu G, Guo Z, Ahmad S, Egide H, Liu J, Li J, Savelkoul HFJ, Zhang J, Wang X. The antioxidant activity and metabolomic analysis of the supernatant of Streptococcus alactolyticus strain FGM. Sci Rep 2024; 14:8413. [PMID: 38600137 PMCID: PMC11006861 DOI: 10.1038/s41598-024-58933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Strain-specific probiotics can present antioxidant activity and reduce damage caused by oxidation. Streptococcus alactolyticus strain FGM (S. alactolyticus strain FGM) isolated from the chicken cecum shows potential probiotic properties which have been previously demonstrated. However, the antioxidant properties of S. alactolyticus strain FGM remain unknown. In this view, cell-free supernatant (CFS), intact cells (IC) and intracellular extracts (CFE) of strain FGM and 3 strains of Lactobacillus (LAB) were prepared, and their scavenging capacities against DPPH, hydroxyl radicals and linoleic acid peroxidation inhibitory were compared in this study. The effects of strain FGM cell-free supernatant (FCFS) on NO production, activity of SOD and GSH-Px in RAW264.7 cells and LPS-induced RAW264.7 cells were analyzed. The metabolites in the supernatant were quantitated by N300 Quantitative Metabolome. It was shown that the physicochemical characteristics of CFS to scavenge DPPH, hydroxyl radicals, and linoleic acid peroxidation inhibitory were significantly stronger than that of IC and CFE in the strain FGM (P < 0.05), respectively 87.12% ± 1.62, 45.03% ± 1.27, 15.63% ± 1.34. FCFS had a promotional effect on RAW264.7 cells, and significantly elevated SOD and GSH-Px activities in RAW264.7 cells. 25 μL FCFS significantly promoted the proliferation of RAW264.7 cells induced by LPS, increased the activities of SOD and GSH-PX, and decreased the release of NO. Furthermore, among the differential metabolites of FCFS quantified by N300, 12 metabolites were significantly up-regulated, including lactic acid, indole lactic acid, linoleic acid, pyruvic acid etc., many of which are known with antioxidant properties. In conclusion, FCFS had good antioxidant properties and activity, which can be attributed to metabolites produced from strain FGM fermentation. It was further confirmed that S. alactolyticus strain FGM and its postbiotic have potential probiotic properties and bright application prospects in livestock and poultry breeding.
Collapse
Affiliation(s)
- Xueyan Gu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Heng Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Lei Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Kang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Yuhu Tian
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Xiaoya Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Guowei Xu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Zhiting Guo
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Saad Ahmad
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Hanyurwumutima Egide
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jiahui Liu
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Jianxi Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Jingyan Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China.
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Xuezhi Wang
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730030, China.
| |
Collapse
|
5
|
Garcia-Morena D, Fernandez-Cantos MV, Escalera SL, Lok J, Iannone V, Cancellieri P, Maathuis W, Panagiotou G, Aranzamendi C, Aidy SE, Kolehmainen M, El-Nezami H, Wellejus A, Kuipers OP. In Vitro Influence of Specific Bacteroidales Strains on Gut and Liver Health Related to Metabolic Dysfunction-Associated Fatty Liver Disease. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10219-1. [PMID: 38319537 DOI: 10.1007/s12602-024-10219-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has become a major health risk and a serious worldwide issue. MAFLD typically arises from aberrant lipid metabolism, insulin resistance, oxidative stress, and inflammation. However, subjacent causes are multifactorial. The gut has been proposed as a major factor in health and disease, and over the last decade, bacterial strains with potentially beneficial effects on the host have been identified. In vitro cell models have been commonly used as an early step before in vivo drug assessment and can confer complementary advantages in gut and liver health research. In this study, several selected strains of the order Bacteroidales were used in a three-cell line in vitro analysis (HT-29, Caco-2, and HepG2 cell lines) to investigate their potential as new-generation probiotics and microbiota therapeutics. Antimicrobial activity, a potentially useful trait, was studied, and the results showed that Bacteroidales can be a source of either wide- or narrow-spectrum antimicrobials targeting other closely related strains. Moreover, Bacteroides sp. 4_1_36 induced a significant decrease in gut permeability, as evidenced by the high TEER values in the Caco-2 monolayer assay, as well as a reduction in free fatty acid accumulation and improved fatty acid clearance in a steatosis HepG2 model. These results suggest that Bacteroidales may spearhead the next generation of probiotics to prevent or diminish MAFLD.
Collapse
Affiliation(s)
- Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Silvia Lopez Escalera
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
- Friedrich-Schiller Universität Jena, Fakultät für Biowissenschaften, 18K, 07743, Bachstraβe, Germany
| | - Johnson Lok
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Valeria Iannone
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Pierluca Cancellieri
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Willem Maathuis
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745, Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
| | - Carmen Aranzamendi
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Sahar El Aidy
- Groningen Biomolecular Sciences and Biotechnology Institute, Host-Microbe Metabolic Interactions, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, the Netherlands
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70200, Kuopio, Finland
| | - Hani El-Nezami
- Molecular and Cell Biology Division, School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR
| | - Anja Wellejus
- Chr. Hansen A/S, Bøge Allé 10-12, 2970, Hørsholm, Denmark
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
6
|
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM. Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol 2024; 15:1327010. [PMID: 38371928 PMCID: PMC10869629 DOI: 10.3389/fmicb.2024.1327010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Bifidobacterium species are essential members of a healthy human gut microbiota. Their presence in the gut is associated with numerous health outcomes such as protection against gastrointestinal tract infections, inflammation, and metabolic diseases. Regular intake of Bifidobacterium in foods is a sustainable way of maintaining the health benefits associated with its use as a probiotic. Owing to their global acceptance, fermented dairy products (particularly yogurt) are considered the ideal probiotic carrier foods. As envisioned in the definition of probiotics as "live organisms," the therapeutic functionalities of Bifidobacterium spp. depend on maintaining their viability in the foods up to the point of consumption. However, sustaining Bifidobacterium spp. viability during the manufacture and shelf-life of fermented dairy products remains challenging. Hence, this paper discusses the significance of viability as a prerequisite for Bifidobacterium spp. probiotic functionality. The paper focuses on the stress factors that influence Bifidobacterium spp. viability during the manufacture and shelf life of yogurt as an archetypical fermented dairy product that is widely accepted as a delivery vehicle for probiotics. It further expounds the Bifidobacterium spp. physiological and genetic stress response mechanisms as well as the methods for viability retention in yogurt, such as microencapsulation, use of oxygen scavenging lactic acid bacterial strains, and stress-protective agents. The report also explores the topic of viability determination as a critical factor in probiotic quality assurance, wherein, the limitations of culture-based enumeration methods, the challenges of species and strain resolution in the presence of lactic acid bacterial starter and probiotic species are discussed. Finally, new developments and potential applications of next-generation viability determination methods such as flow cytometry, propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), next-generation sequencing, and single-cell Raman spectroscopy (SCRS) methods are examined.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
- Department of Biology, National of University of Lesotho, Maseru, Lesotho
| | - Tlaleo Azael Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Silva AS, Casarotti SN, Penna ALB. Trends and challenges for the application of probiotic lactic acid bacteria in functional foods. CIÊNCIA RURAL 2024; 54. [DOI: 10.1590/0103-8478cr20230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
ABSTRACT: It is increasingly challenging for the food industries to develop products which meet the consumers’ demands. They seek foods that are innovative and present health benefits. In this review, the main objectives are to show the tendencies and innovations in the dairy food market and to indicate the challenges to apply probiotic bacteria to non-dairy products. Moreover, the safety of probiotic lactic acid bacteria (LAB) to be applied to food products and the beneficial effect of probiotic bacteria on the intestinal microbiota and overall human health were also discussed. We considered that the development of probiotic fermented products added with fruits and fruit by-products, cereals or other vegetables aligns with the market tendencies and the consumers’ demands.
Collapse
Affiliation(s)
- Aline Sousa Silva
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil
| | | | | |
Collapse
|
8
|
Kosmerl E, González-Orozco BD, García-Cano I, Ortega-Anaya J, Jiménez-Flores R. Milk phospholipids protect Bifidobacterium longum subsp. infantis during in vitro digestion and enhance polysaccharide production. Front Nutr 2023; 10:1194945. [PMID: 38024346 PMCID: PMC10657999 DOI: 10.3389/fnut.2023.1194945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Bifidobacterium longum subsp. infantis is associated with the gut microbiota of breast-fed infants. Bifidobacterium infantis promotes intestinal barrier and immune function through several proposed mechanisms, including interactions between their surface polysaccharides, the host, and other gut microorganisms. Dairy foods and ingredients are some of the most conspicuous food-based niches for this species and may provide benefits for their delivery and efficacy in the gut. Milk phospholipid (MPL)-rich ingredients have been increasingly recognized for their versatile benefits to health, including interactions with the gut microbiota and intestinal cells. Therefore, our objective was to investigate the capacity for MPL to promote survival of B. infantis during simulated digestion and to modulate bacterial polysaccharide production. To achieve these aims, B. infantis was incubated with or without 0.5% MPL in de Man, Rogosa, and Sharpe (MRS) media at 37°C under anaerobiosis. Survival across the oral, gastric, and intestinal phases using in vitro digestion was measured using plate count, along with adhesion to goblet-like intestinal cells. MPL increased B. infantis survival at the end of the intestinal phase by at least 7% and decreased adhesion to intestinal cells. The bacterial surface characteristics, which may contribute to these effects, were assessed by ζ-potential, changes in surface proteins using comparative proteomics, and production of bound polysaccharides. MPL decreased the surface charge of the bifidobacteria from -17 to -24 mV and increased a 50 kDa protein (3-fold) that appears to be involved in protection from stress. The production of bound polysaccharides was measured using FTIR, HPLC, and TEM imaging. These techniques all suggest an increase in bound polysaccharide production at least 1.7-fold in the presence of MPL. Our results show that MPL treatment increases B. infantis survival during simulated digestion, induces a stress resistance surface protein, and yields greater bound polysaccharide production, suggesting its use as a functional ingredient to enhance probiotic and postbiotic effects.
Collapse
Affiliation(s)
- Erica Kosmerl
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | | | - Israel García-Cano
- Department of Food Science and Technology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
10
|
Araújo MM, Botelho PB. Probiotics, prebiotics, and synbiotics in chronic constipation: Outstanding aspects to be considered for the current evidence. Front Nutr 2022; 9:935830. [PMID: 36570175 PMCID: PMC9773270 DOI: 10.3389/fnut.2022.935830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
This integrative aimed to evaluate the effects and the potential mechanism of action of prebiotics, probiotics, and synbiotics on constipation-associated gastrointestinal symptoms and to identify issues that still need to be answered. A literature search was performed in the PubMed database. Animal models (n = 23) and clinical trials (n = 39) were included. In animal studies, prebiotic, probiotic, and synbiotic supplementation showed a decreased colonic transit time (CTT) and an increase in the number and water content of feces. In humans, inulin is shown to be the most promising prebiotic, while B. lactis and L. casei Shirota probiotics were shown to increase defecation frequency, the latter strain being more effective in improving stool consistency and constipation symptoms. Overall, synbiotics seem to reduce CTT, increase defecation frequency, and improve stool consistency with a controversial effect on the improvement of constipation symptoms. Moreover, some aspects of probiotic use in constipation-related outcomes remain unanswered, such as the best dose, duration, time of consumption (before, during, or after meals), and matrices, as well as their effect and mechanisms on the regulation of inflammation in patients with constipation, on polymorphisms associated with constipation, and on the management of constipation via 5-HT. Thus, more high-quality randomized control trials (RCTs) evaluating these lacking aspects are necessary to provide safe conclusions about their effectiveness in managing intestinal constipation.
Collapse
|
11
|
Oral supplementation with selected Lactobacillus acidophilus triggers IL-17-dependent innate defense response, activation of innate lymphoid cells type 3 and improves colitis. Sci Rep 2022; 12:17591. [PMID: 36266398 PMCID: PMC9585059 DOI: 10.1038/s41598-022-21643-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2022] [Indexed: 01/13/2023] Open
Abstract
Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that is illustrated by improvement of intestinal inflammation and antimicrobial activity against several pathogens. In this study, we evaluated the immunomodulatory properties of the L. acidophilus strain BIO5768 at steady state and upon acute inflammation. Supplementation of naïve mice with BIO5768 heightened the transcript level of some IL-17 target genes encoding for protein with microbicidal activity independently of NOD2 signaling. Of these, the BIO5768-induced expression of Angiogenin-4 was blunted in monocolonized mice that are deficient for the receptor of IL-17 (but not for NOD2). Interestingly, priming of bone marrow derived dendritic cells by BIO5768 enhanced their ability to support the secretion of IL-17 by CD4+ T cells. Equally of importance, the production of IL-22 by type 3 innate lymphoid cells is concomitantly heightened in response to BIO5768. When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was able to alleviate at least partially intestinal inflammation induced by Citrobacter rodentium infection. Furthermore, BIO5768 was also able to improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). In conclusion, we identify a new potential probiotic strain for the management of inflammatory bowel diseases, and provide some insights into its IL-17-dependent and independent mode of action.
Collapse
|
12
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
13
|
Aziz G, Zaidi A, Tariq M. Compositional Quality and Possible Gastrointestinal Performance of Marketed Probiotic Supplements. Probiotics Antimicrob Proteins 2022; 14:288-312. [PMID: 35199309 DOI: 10.1007/s12602-022-09931-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
Abstract
The local pharmacies and shops are brimming with various probiotic products that herald a range of health benefits. The poor quality of probiotic products in both dosage and species is symptomatic of this multi-billion-dollar market making it difficult for consumers to single out reliable ones. This study aims to fill the potential gap in the labeling accuracy of probiotic products intended for human consumption. We describe a combinatorial approach using classical culture-dependent technique to quantify and molecular techniques (16 s rRNA gene sequencing, multilocus sequence, and ribotyping) for strain recognition of the microbial contents. The full gamut of probiotic characteristics including acid, bile and lysozyme tolerances, adhesiveness, anti-pathogenicity, and degree of safeness were performed. Their capacity to endure gastro-intestinal (GIT) stresses and select drugs was assessed in vitro. Our results forced us to declare that the local probiotic market is essentially unregulated. Almost none of the probiotic products tested met the label claim. Some (11%) have no viable cells, and a quarter (27%) showing significant inter-batch variation. A lower microbial count was typical with undesirables constituting a quarter of the total (~ 27%). Half of the products contained antibiotic-resistant strains; the unregulated use of these probiotics carries the risk of spreading antibiotic resistance to gut pathobionts. Poor tolerance to gut conditions and mediocre functionalism make the case worse. The current regulatory systems do not take this discrepancy into account. We recommend an evidence-based regular market surveillance of marketed probiotics to ensure the authenticity of the claims and product effectiveness.
Collapse
Affiliation(s)
- Ghazal Aziz
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan.
| | - Muhammad Tariq
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C)-PIEAS, Faisalabad, 38000, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, ICT, Pakistan
| |
Collapse
|
14
|
Zhang Y, Wei X, Sun Q, Qian W, Liu X, Li J, Long Y, Wan X. Different Types and Functional Effects of Probiotics on Human Health through Regulating Glucose Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14781-14791. [PMID: 34855398 DOI: 10.1021/acs.jafc.1c04291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increasing improvement of people's living standards, hyperglycemia has become one of the most frequent diseases in the world. The current drug therapy may have some negative effects and even cause some complications. As one of the most popular functional ingredients, probiotic bacteria have been proven to play important roles in balancing the glucose homeostasis level in animal and human clinic trials. In this perspective, we sorted three types of probiotics, discussed probiotic safety evaluation, and listed the known probiotic functional foods that assist to control glucose homeostasis. Then, the further summarization of the mechanisms on how probiotic bacteria could regulate glucose homeostasis and the developing trend of probiotic functional foods were discussed.
Collapse
Affiliation(s)
- Yong Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Qian Sun
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
| | - Weiyi Qian
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
| | - Xinjie Liu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Jinping Li
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing 100024, People's Republic of China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, People's Republic of China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Company, Limited, Beijing 100192, People's Republic of China
| |
Collapse
|