1
|
Serra L, Petrosini L, Mandolesi L, Bonarota S, Balsamo F, Bozzali M, Caltagirone C, Gelfo F. Walking, Running, Swimming: An Analysis of the Effects of Land and Water Aerobic Exercises on Cognitive Functions and Neural Substrates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16310. [PMID: 36498383 PMCID: PMC9740550 DOI: 10.3390/ijerph192316310] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In the brain and cognitive reserves framework, aerobic exercise is considered as a protective lifestyle factor able to induce positive effects on both brain structure and function. However, specific aspects of such a beneficial effect still need to be completely clarified. To this aim, the present narrative review focused on the potential brain/cognitive/neural reserve-construction mechanisms triggered by different aerobic exercise types (land activities; such as walking or running; vs. water activities; such as swimming), by considering human and animal studies on healthy subjects over the entire lifespan. The literature search was conducted in PubMed database. The studies analyzed here indicated that all the considered kinds of activities exert a beneficial effect on cognitive/behavioral functions and on the underlying brain neurobiological processes. In particular, the main effects observed involve the cognitive domains of memory and executive functions. These effects appear related to structural and functional changes mainly involving the fronto-hippocampal axis. The present review supports the requirement of further studies that investigate more specifically and systematically the effects of each type of aerobic activity, as a basis to plan more effective and personalized interventions on individuals as well as prevention and healthy promotion policies for the general population.
Collapse
Affiliation(s)
- Laura Serra
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, 80138 Naples, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Torino, 10126 Turin, Italy
- Department of Neuroscience, Brighton & Sussex Medical School, University of Sussex, Brighton BN1 9RY, UK
| | | | - Francesca Gelfo
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| |
Collapse
|
2
|
Hu M, Gao Y, Kwok TCY, Shao Z, Xiao LD, Feng H. Derivation and Validation of the Cognitive Impairment Prediction Model in Older Adults: A National Cohort Study. Front Aging Neurosci 2022; 14:755005. [PMID: 35309895 PMCID: PMC8931520 DOI: 10.3389/fnagi.2022.755005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/18/2022] [Indexed: 11/23/2022] Open
Abstract
Objective This prediction model quantifies the risk of cognitive impairment. This aim of this study was to develop and validate a prediction model to calculate the 6-year risk of cognitive impairment. Methods Participants from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) 2008-2014 and 2011-2018 surveys were included for developing the cognitive impairment prediction model. The least absolute shrinkage and selection operator, clinical knowledge, and previous experience were performed to select predictors. The Cox proportional hazard model and Fine-Gray analysis adjusting for death were conducted to construct the model. The discriminative ability was measured using C-statistics. The model was evaluated externally using the temporal validation method via the CLHLS 2002-2008 survey. A nomogram was conducted to enhance the practical use. The population attributable fraction was calculated. Results A total of 10,053 older adults were included for model development. During a median of 5.68 years, 1,750 (17.4%) participants experienced cognitive impairment. Eight easy-to-obtain predictors were used to develop the model. The overall proportion of death was 43.3%. The effect of age on cognitive impairment reduced after adjusting the competing risk of death. The Cox and Fine-Gray models showed a similar discriminative ability, with average C-statistics of 0.71 and 0.69 in development and external validation datasets, respectively. The model performed better in younger older adults (65-74 years). The proportion of 6-year cognitive impairment due to modifiable risk factors was 47.7%. Conclusion This model could be used to identify older adults aged 65 years and above at high risk of cognitive impairment and initiate timely interventions on modifiable factors to prevent nearly half of dementia.
Collapse
Affiliation(s)
- Mingyue Hu
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Yinyan Gao
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Timothy C. Y. Kwok
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhanfang Shao
- Xiangya School of Nursing, Central South University, Changsha, China
| | - Lily Dongxia Xiao
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA, Australia
| | - Hui Feng
- Xiangya School of Nursing, Central South University, Changsha, China
- Oceanwide Health Management Institute, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Yousef Yengej DN, Ferando I, Kechechyan G, Nwaobi SE, Raman S, Charles A, Faas GC. Continuous long-term recording and triggering of brain neurovascular activity and behaviour in freely moving rodents. J Physiol 2021; 599:4545-4559. [PMID: 34438476 DOI: 10.1113/jp281514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
A minimally invasive, microchip-based approach enables continuous long-term recording of brain neurovascular activity, heart rate, and head movement in freely behaving rodents. This approach can also be used for transcranial optical triggering of cortical activity in mice expressing channelrhodopsin. The system uses optical intrinsic signal recording to measure cerebral blood volume, which under baseline conditions is correlated with spontaneous neuronal activity. The arterial pulse and breathing can be quantified as a component of the optical intrinsic signal. Multi-directional head movement is measured simultaneously with a movement sensor. A separate movement tracking element through a camera enables precise mapping of overall movement within an enclosure. Data is processed by a dedicated single board computer, and streamed from multiple enclosures to a central server, enabling simultaneous remote monitoring and triggering in many subjects. One application of this system described here is the characterization of changes in of cerebral blood volume, heart rate and behaviour that occur with the sleep-wake cycle over weeks. Another application is optical triggering and recording of cortical spreading depression (CSD), the slowly propagated wave of neurovascular activity that occurs in the setting of brain injury and migraine aura. The neurovascular features of CSD are remarkably different in the awake vs. anaesthetized state in the same mouse. With its capacity to continuously and synchronously record multiple types of physiological and behavioural data over extended time periods in combination with intermittent triggering of brain activity, this inexpensive method has the potential for widespread practical application in rodent research. KEY POINTS: Recording and triggering of brain activity in mice and rats has typically required breaching the skull, and experiments are often performed under anaesthesia A minimally invasive microchip system enables continuous recording and triggering of neurovascular activity, and analysis of heart rate and behaviour in freely behaving rodents over weeks This system can be used to characterize physiological and behavioural changes associated with the sleep-wake cycle over extended time periods This approach can also be used with mice expressing channelrhodopsin to trigger and record cortical spreading depression (CSD) in freely behaving subjects. The neurovascular responses to CSD are remarkably different under anaesthesia compared with the awake state. The method is inexpensive and straightforward to employ at a relatively large scale. It enables translational investigation of a wide range of physiological and pathological conditions in rodent models of neurological and systemic diseases.
Collapse
Affiliation(s)
- Dmitri N Yousef Yengej
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,Department of Neurology, Miller School of Medicine at the University of Miami, 1150 NW 14th street, Miami, FL, 33136, USA
| | - Gayane Kechechyan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC 0657, La Jolla, CA, 92093-0657, USA
| | - Sinifunanya E Nwaobi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Shrayes Raman
- School of Letters and Sciences, UCLA, 1309 Murphy Hall Box 951413, Los Angeles, CA, 90095-1413, USA
| | - Andrew Charles
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Guido C Faas
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| |
Collapse
|
4
|
Fattoretti P, Malatesta M, Mariotti R, Zancanaro C. Testosterone administration increases synaptic density in the gyrus dentatus of old mice independently of physical exercise. Exp Gerontol 2019; 125:110664. [DOI: 10.1016/j.exger.2019.110664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/17/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
5
|
Modaberi S, Shahbazi M, Dehghan M, Naghdi N. The role of mild treadmill exercise on spatial learning and memory and motor activity in animal models of ibotenic acid-induced striatum lesion. SPORT SCIENCES FOR HEALTH 2018. [DOI: 10.1007/s11332-018-0467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Palta P, Sharrett AR, Deal JA, Evenson KR, Gabriel KP, Folsom AR, Gross AL, Windham BG, Knopman D, Mosley TH, Heiss G. Leisure-time physical activity sustained since midlife and preservation of cognitive function: The Atherosclerosis Risk in Communities Study. Alzheimers Dement 2018; 15:273-281. [PMID: 30321503 DOI: 10.1016/j.jalz.2018.08.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/25/2018] [Accepted: 08/21/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION We tested the hypotheses that higher levels of and persistence of midlife leisure-time physical activity (LTPA) are associated long-term with lower cognitive decline and less incident dementia. METHODS A total of 10,705 participants (mean age: 60 years) had LTPA (no, low, middle, or high) measured in 1987-1989 and 1993-1995. LTPA was assessed in relation to incident dementia and 14-year change in general cognitive performance. RESULTS Over a median follow-up of 17.4 years, 1063 dementia cases were observed. Compared with no LTPA, high LTPA in midlife was associated with lower incidence of dementia (hazard ratio [95% confidence interval], 0.71 [0.61, 0.86]) and lower declines in general cognitive performance (-0.07 standard deviation difference [-0.12 to -0.04]). These associations were stronger when measured against persistence of midlife LTPA over 6 years. DISCUSSION LTPA is a readily modifiable factor associated inversely with long-term dementia incidence and cognitive decline.
Collapse
Affiliation(s)
- Priya Palta
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kelly R Evenson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelley Pettee Gabriel
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, Austin, TX, USA; Department of Women's Health, University of Texas at Austin, Dell Medical School, Austin, TX, USA
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Alden L Gross
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - B Gwen Windham
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - David Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Fattoretti P, Malatesta M, Cisterna B, Milanese C, Zancanaro C. Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus. Front Aging Neurosci 2018; 10:141. [PMID: 29867450 PMCID: PMC5964889 DOI: 10.3389/fnagi.2018.00141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/27/2018] [Indexed: 11/13/2022] Open
Abstract
Aerobic physical exercise (APE) leads to improved brain functions. To better understand the beneficial effect of APE on the aging brain, a morphometric study was carried out of changes in hippocampal synapses of old (>27 months) Balb/c mice undergoing treadmill training (OTT) for 4 weeks in comparison with old sedentary (OS), middle-aged sedentary (MAS) and middle-aged treadmill training (MATT) mice. The inner molecular layer of the hippocampal dentate gyrus (IMLDG) and the molecular stratum of Ammon’s horn1 neurons (SMCA1) were investigated. The number of synapses per cubic micron of tissue (numeric density, Nv), overall synaptic area per cubic micron of tissue (surface density, Sv), average area of synaptic contact zones (S), and frequency (%) of perforated synapses (PS) were measured in electron micrographs of ethanol-phosphotungstic acid (E-PTA) stained tissue. Data were analyzed with analysis of variance (ANOVA). In IMLDG, an effect of age was found for Nv and Sv, but not S and %PS. Similar results were found for exercise and the interaction of age and exercise. In post hoc analysis Nv was higher (60.6% to 75.1%; p < 0.001) in MATT vs. MAS, OS and OTT. Sv was higher (32.3% to 54.6%; p < 0.001) in MATT vs. MAS, OS and OTT. In SMCA1, age affected Nv, Sv and %PS, but not S. The effect of exercise was significant for Sv only. The interaction of age and exercise was significant for Nv, Sv and %PS. In post hoc analysis Nv was lower in OS vs. MAS, MATT and OTT (−26.1% to −32.1%; p < 0.038). MAS and OTT were similar. Sv was lower in OS vs. MAS, MATT and OTT (−23.4 to −30.3%, p < 0.004). MAS and OTT were similar. PS frequency was higher in OS vs. MAS, MATT and OTT (48.3% to +96.6%, p < 0.023). APE positively modulated synaptic structural dynamics in the aging hippocampus, possibly in a region-specific way. The APE-associated reduction in PS frequency in SMCA1 of old mice suggests that an increasing complement of PS is a compensatory phenomenon to maintain synaptic efficacy. In conclusion, the modulation of synaptic plasticity by APE gives quantitative support to the concept that APE protects from neurodegeneration and improves learning and memory in aging.
Collapse
Affiliation(s)
- Patrizia Fattoretti
- Cellular Bioenergetics Laboratory, Center for Neurobiology of Aging, Istituto Nazionale di Riposo e Cura per Anziani (INRCA), Ancona, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Milanese
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Goetz TG, Mamillapalli R, Sahin C, Majidi-Zolbin M, Ge G, Mani A, Taylor HS. Addition of Estradiol to Cross-Sex Testosterone Therapy Reduces Atherosclerosis Plaque Formation in Female ApoE-/- Mice. Endocrinology 2018; 159:754-762. [PMID: 29253190 PMCID: PMC5774248 DOI: 10.1210/en.2017-00884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022]
Abstract
The contributions of estradiol and testosterone to atherosclerotic lesion progression are not entirely understood. Cross-sex hormone therapy (XHT) for transgender individuals dramatically alters estrogen and testosterone levels and consequently could have widespread consequences for cardiovascular health. Yet, no preclinical research has assessed atherosclerosis risk after XHT. We examined the effects of testosterone XHT after ovariectomy on atherosclerosis plaque formation in female mice and evaluated whether adding low-dose estradiol to cross-sex testosterone treatments after ovariectomy reduced lesion formation. Six-week-old female ApoE-/- C57BL/6 mice underwent ovariectomy and began treatments with testosterone, estradiol, testosterone with low-dose estradiol, or vehicle alone until euthanized at 23 weeks of age. Atherosclerosis lesion progression was measured by Oil Red O stain and confirmed histologically. We found reduced atherosclerosis in the estradiol- and combined testosterone/estradiol-treated mice compared with those treated with testosterone or vehicle only in the whole aorta (-75%), aortic arch (-80%), and thoracic aorta (-80%). Plaque size was similarly reduced in the aortic sinus. These reductions in lesion size after combined testosterone/estradiol treatment were comparable to those obtained with estrogen alone. Testosterone/estradiol combined therapy resulted in less atherosclerosis plaque formation than either vehicle or testosterone alone after ovariectomy. Testosterone/estradiol therapy was comparable to estradiol replacement alone, whereas mice treated with testosterone only fared no better than untreated controls after ovariectomy. Adding low-dose estrogen to cross-sex testosterone therapy after oophorectomy could improve cardiovascular outcomes for transgender patients. Additionally, these results contribute to understanding of the effects of estrogen and testosterone on atherosclerosis progression.
Collapse
Affiliation(s)
- Teddy G. Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cagdas Sahin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Masoumeh Majidi-Zolbin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Guanghao Ge
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Arya Mani
- Yale Cardiovascular Genetics Program, Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Goetz TG, Mamillapalli R, Devlin MJ, Robbins AE, Majidi-Zolbin M, Taylor HS. Cross-sex testosterone therapy in ovariectomized mice: addition of low-dose estrogen preserves bone architecture. Am J Physiol Endocrinol Metab 2017; 313:E540-E551. [PMID: 28765273 PMCID: PMC5792142 DOI: 10.1152/ajpendo.00161.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023]
Abstract
Cross-sex hormone therapy (XHT) is widely used by transgender people to alter secondary sex characteristics to match their desired gender presentation. Here, we investigate the long-term effects of XHT on bone health using a murine model. Female mice underwent ovariectomy at either 6 or 10 wk and began weekly testosterone or vehicle injections. Dual-energy X-ray absorptiometry (DXA) was performed (20 wk) to measure bone mineral density (BMD), and microcomputed tomography was performed to compare femoral cortical and trabecular bone architecture. The 6-wk testosterone group had comparable BMD with controls by DXA but reduced bone volume fraction, trabecular number, and cortical area fraction and increased trabecular separation by microcomputed tomography. Ten-week ovariectomy/XHT maintained microarchitecture, suggesting that estrogen is critical for bone acquisition during adolescence and that late, but not early, estrogen loss can be sufficiently replaced by testosterone alone. Given these findings, we then compared effects of testosterone with effects of weekly estrogen or combined testosterone/low-dose estrogen treatment after a 6-wk ovariectomy. Estrogen treatment increased spine BMD and microarchitecture, including bone volume fraction, trabecular number, trabecular thickness, and connectivity density, and decreased trabecular separation. Combined testosterone-estrogen therapy caused similar increases in femur and spine BMD and improved architecture (increased bone volume fraction, trabecular number, trabecular thickness, and connectivity density) to estrogen therapy and were superior compared with mice treated with testosterone only. These results demonstrate estradiol is critical for bone acquisition and suggest a new cross-sex hormone therapy adding estrogens to testosterone treatments with potential future clinical implications for treating transgender youth or men with estrogen deficiency.
Collapse
Affiliation(s)
- Teddy G Goetz
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; and
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; and
| | - Maureen J Devlin
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Amy E Robbins
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan
| | - Masoumeh Majidi-Zolbin
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; and
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut; and
| |
Collapse
|
10
|
Febo M, Foster TC. Preclinical Magnetic Resonance Imaging and Spectroscopy Studies of Memory, Aging, and Cognitive Decline. Front Aging Neurosci 2016; 8:158. [PMID: 27468264 PMCID: PMC4942756 DOI: 10.3389/fnagi.2016.00158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/16/2016] [Indexed: 01/14/2023] Open
Abstract
Neuroimaging provides for non-invasive evaluation of brain structure and activity and has been employed to suggest possible mechanisms for cognitive aging in humans. However, these imaging procedures have limits in terms of defining cellular and molecular mechanisms. In contrast, investigations of cognitive aging in animal models have mostly utilized techniques that have offered insight on synaptic, cellular, genetic, and epigenetic mechanisms affecting memory. Studies employing magnetic resonance imaging and spectroscopy (MRI and MRS, respectively) in animal models have emerged as an integrative set of techniques bridging localized cellular/molecular phenomenon and broader in vivo neural network alterations. MRI methods are remarkably suited to longitudinal tracking of cognitive function over extended periods permitting examination of the trajectory of structural or activity related changes. Combined with molecular and electrophysiological tools to selectively drive activity within specific brain regions, recent studies have begun to unlock the meaning of fMRI signals in terms of the role of neural plasticity and types of neural activity that generate the signals. The techniques provide a unique opportunity to causally determine how memory-relevant synaptic activity is processed and how memories may be distributed or reconsolidated over time. The present review summarizes research employing animal MRI and MRS in the study of brain function, structure, and biochemistry, with a particular focus on age-related cognitive decline.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, William L. and Evelyn F. McKnight Brain Institute, University of Florida Gainesville, FL, USA
| |
Collapse
|
11
|
Neuroplasticity and MRI: A perfect match. Neuroimage 2016; 131:13-28. [DOI: 10.1016/j.neuroimage.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
|
12
|
Morley JE. Exercise: The Ultimate Medicine. J Am Med Dir Assoc 2015; 16:351-3. [DOI: 10.1016/j.jamda.2015.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 12/25/2022]
|