1
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
2
|
Tao H, Shen L. RESEARCH PROGRESS OF CURCUMIN IN THE TREATMENT OF SEPSIS. Shock 2024; 61:805-816. [PMID: 38664750 DOI: 10.1097/shk.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. In recent years, with the increasing research on the epidemiology, and pathogenesis, diagnostic and therapeutic strategies of sepsis, great progress has been made in clinical practice, but there is still a lack of specific and effective treatment plans. Curcuma longa , a leafy plant of the ginger family, which is a common and safe compound, has multiple pharmacological actions, including, but not limited to, scavenging of oxygen free radicals, attenuation of inflammatory response, and antifibrotic effects. Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.
Collapse
|
3
|
Xu G, Chen H, Cong Z, Wang R, Li X, Xie Y, Wang Y, Li B. Promotion of transcription factor EB-dependent autophagic process by curcumin alleviates arsenic-caused lung oxidative stress and inflammation in mice. J Nutr Biochem 2024; 125:109550. [PMID: 38141737 DOI: 10.1016/j.jnutbio.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Arsenic is a human carcinogen widely distributed in the environment, and arsenic exposure from drinking water has received widespread attention as a global public health problem. Curcumin is a natural bioactive substance with high efficiency and low toxicity extracted from turmeric, which has a variety of biological properties such as antioxidation, anti-inflammation, anticancer, and immuno-modulatory activities. Curcumin is widely used in daily life as a food additive and dietary supplement. However, its protective effects in lung injuries by chronic arsenic exposure orally remain unexplored. In this study, curcumin treatment not only significantly accelerated arsenic elimination and improved lung tissue morphology, but also decreased arsenic-generated ROS by activating Nrf2 and its down-stream antioxidants. Further, curcumin alleviated inflammatory changes in mice exposed to arsenic for 6 and 12 weeks, as manifested by lung MPO levels, total protein and cellular levels in bronchoalveolar lavage fluid (BALF), serum IL-4 levels, and MAPK/NF-κB expression in lung tissue. Notably, our study also confirmed that curcumin could promote the expression and nuclear translocation of the transcription factor EB (TFEB), as well as activate TFEB-regulated autophagy in lung tissue of arsenic-treated mice, accompanied by inhibition of the AKT-mTOR signaling pathway. Overall, our study here suggests that natural bioactive compound curcumin could alleviate arsenic-induced pulmonary oxidative stress and inflammation in vivo, which is closely related to enhanced TFEB activity and induction of the autophagic process.
Collapse
Affiliation(s)
- Guowei Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Haiyang Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Zheng Cong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Ruiqiang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Xiangping Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuxuan Xie
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
4
|
Zheng Z, Song X, Shi Y, Long X, Li J, Zhang M. Recent Advances in Biologically Active Ingredients from Natural Drugs for Sepsis Treatment. Comb Chem High Throughput Screen 2024; 27:688-700. [PMID: 37254548 DOI: 10.2174/1386207326666230529101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Sepsis refers to the dysregulated host response to infection; its incidence and mortality rates are high. It is a worldwide medical problem but there is no specific drug for it. In recent years, clinical and experimental studies have found that many monomer components of traditional Chinese medicine have certain effects on the treatment of sepsis. This paper reviews the advances in research on the active ingredients of traditional Chinese medicine involved in the treatment of sepsis in recent years according to their chemical structure; it could provide ideas and references for further research and development in Chinese materia medica for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Xiayinan Song
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yanmei Shi
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofeng Long
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Jie Li
- Innovation Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Min Zhang
- Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
5
|
Impacts of Curcumin Treatment on Experimental Sepsis: A Systematic Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2252213. [PMID: 36756300 PMCID: PMC9902115 DOI: 10.1155/2023/2252213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/27/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Background and Aims Sepsis is defined as a life-threatening organ dysfunction due to a dysregulated host immune response to an infection. Curcumin is a yellow polyphenol derived from the rhizome of Curcuma longa with anti-inflammatory and antioxidant properties scientifically proven, a condition that allowed its use as a tool in the treatment of sepsis. Thus, the purpose of this article was to systematically review the evidence on the impact of curcumin's anti-inflammatory effect on experimental sepsis. Methods For this, the PubMed, MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were used, and the research was not limited to a specific publication period. Only original articles in English using in vivo experimental models (rats or mice) of sepsis induction performed by administration of lipopolysaccharide (LPS) or cecal ligation and perforation surgery (CLP) were included in the study. Studies using curcumin in dry extract or with a high degree of purity were included. At initial screening, 546 articles were selected, and of these, 223 were eligible for primary evaluation. Finally, 12 articles with full text met all inclusion criteria. Our results showed that curcumin may inhibit sepsis-induced complications such as brain, heart, liver, lungs, and kidney damage. Curcumin can inhibit inflammatory factors, prevent oxidative stress, and regulate immune responses in sepsis. Additionally, curcumin increased significantly the survival rates after experimental sepsis in several studies. The modulation of the immune response and mortality by curcumin reinforces its protective effect on sepsis and indicates a potential therapeutic tool for the treatment of sepsis.
Collapse
|
6
|
Naeini F, Tutunchi H, Razmi H, Mahmoodpoor A, Vajdi M, Sefidmooye Aza P, Najifipour F, Tarighat-Esfanjani A, Karimi A. Does nano-curcumin supplementation improve hematological indices in critically ill patients with sepsis? A randomized controlled clinical trial. J Food Biochem 2022; 46:e14093. [PMID: 35150143 DOI: 10.1111/jfbc.14093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
Abstract
Sepsis is the final common pathway to death for severe infectious diseases worldwide. The present trial aimed to investigate the effects of nano-curcumin supplementation on hematological indices in critically ill patients with sepsis. Fourteen ICU-admitted patients were randomly allocated into either nano-curcumin or placebo group for 10 days. The blood indices, serum levels of inflammatory biomarker and presepsin as well as nutrition status, and clinical outcomes were assessed before the intervention and on days 5 and 10. White blood cells, neutrophils, platelets, erythrocyte sedimentation rate (ESR), and the levels of interleukin-8 significantly decreased in the nano-curcumin group compared to the placebo after 10 days of intervention (p = .024, p = .045, p = .017, p = .041, and p = .004, respectively). There was also a marginal meaningful decrease in serum presepsin levels in the intervention group compared to the placebo at the end of the study (p = .054). However, total lymphocyte count showed a significant increase in the nano-curcumin group compared to the placebo at the end-point (p = .04). No significant differences were found in the level of lymphocyte and the ratios of neutrophil/lymphocyte and platelet/lymphocyte between the study groups. Moreover, no significant between-group differences were observed for other study outcomes, post-intervention. Collectively, nano-curcumin may be a useful adjuvant therapy in critically ill patients with sepsis. However, further trials are suggested to examine the effects of nano-curcumin in the management of sepsis and its complications. PRACTICAL APPLICATIONS: Curcumin (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5- dione) or diferuloylmethane is widely used in medicine due to its several biological properties. Recent evidence has shown that curcumin possesses multiple pharmacological activities including immune-modulatory, antioxidant, anti-inflammatory, anti-cancer, and anti-microbial effects. In this study, it was observed that nano-curcumin at a dose of 160 mg for 10 days, without side effects, reduced some inflammatory factors and regulated the immune responses in sepsis patients. For the first time, this trial was conducted to determine the effect of nano-curcumin on hematological indices and the serum levels of presepsin and IL-8.
Collapse
Affiliation(s)
- Fatemeh Naeini
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Science, Tehran, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Razmi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata Mahmoodpoor
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Vajdi
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Aza
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, University Park, Mississippi, USA
| | - Farzad Najifipour
- Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Endoceine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Liang D, Wen Z, Han W, Li W, Pan L, Zhang R. Curcumin protects against inflammation and lung injury in rats with acute pulmonary embolism with the involvement of microRNA-21/PTEN/NF-κB axis. Mol Cell Biochem 2021; 476:2823-2835. [PMID: 33730297 DOI: 10.1007/s11010-021-04127-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
This study was intended to investigate the effect of Curcumin on acute pulmonary embolism (APE) via microRNA-21 (miR-21)/PTEN/NF-κB axis. APE model was induced on rats and administrated with Curcumin. Western blot analysis and RT-qPCR manifested the downregulation of Sp1, miR-21 and NF-κB, but the upregulation of PTEN in Curcumin-treated APE rats. Blood gas analysis, ELISA, and weighing of wet weight/dry weight (W/D) ratio indicated that Curcumin diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. Further mechanical analysis was conducted by dual-luciferase reporter assays and ChIP assay, which showed that Sp1 increased miR-21 expression by binding to the miR-21 promoter, and that PTEN was targeted by miR-21. The APE rats were injected with adenovirus to evaluate the effect of Sp1, miR-21, or PTEN on lung injury and inflammation. It was observed that downregulation of miR-21 or Sp1, or upregulation of PTEN diminished mPAP and RVSP levels, W/D ratio, thrombus volume, and inflammatory factors in the lungs of APE rats. In summary, Curcumin decreased miR-21 expression by downregulating Sp1 to upregulate PTEN and to impair the NF-κB signaling pathway, thus suppressing lung injury and inflammation in APE rats.
Collapse
Affiliation(s)
- Dean Liang
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Zhiguo Wen
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wanli Han
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Wenming Li
- Department of Vascular Surgery, Luoyang Central Hospital Affiliated To Zhengzhou University, Luoyang, 471009, Henan, People's Republic of China
| | - Longfei Pan
- Department of Emergency Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, People's Republic of China
| | - Ruipeng Zhang
- Department of Vascular Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Beilin District, Xi'an, 710068, Shaanxi, People's Republic of China.
| |
Collapse
|
8
|
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a Potential Treatment for COVID-19. Front Pharmacol 2021; 12:675287. [PMID: 34025433 PMCID: PMC8138567 DOI: 10.3389/fphar.2021.675287] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.
Collapse
Affiliation(s)
- Bruna A. C. Rattis
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| | - Simone G. Ramos
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Mara R. N. Celes
- Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
9
|
Almatroodi SA, Alrumaihi F, Alsahli MA, Alhommrani MF, Khan A, Rahmani AH. Curcumin, an Active Constituent of Turmeric Spice: Implication in the Prevention of Lung Injury Induced by Benzo(a) Pyrene (BaP) in Rats. Molecules 2020; 25:molecules25030724. [PMID: 32046055 PMCID: PMC7037262 DOI: 10.3390/molecules25030724] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Benzo(a)pyrene (BaP) is a well-known carcinogen and enhances oxidative stress and apoptosis and also alters several molecular pathways. Curcumin is an active ingredient of Curcuma longa, and it has potent anti-inflammatory, antioxidant activity that defends cells from oxidative stress and cell death. The objectives of the present study were to explore the protective effects of curcumin against long-term administration of BaP induced disturbances in lungs of rats. Male rats were randomly divided into four groups: saline control, BaP only, BaP + curcumin, and curcumin only. Lung histopathology, electron microscopy, inflammatory cytokine release, antioxidant levels, apoptosis, and cell cycle were examined. Instillation of BaP significantly increased infiltration of inflammatory cells in alveolar space and inflammatory cytokine in blood. BaP induced lung tissue alterations including mild bronchitis, scant chronic inflammatory cell infiltrate in the wall of the respiratory bronchiole, and mild intra-alveolar haemorrhage. However, these alterations were found to be significantly less as mild inflammatory cell infiltrate in curcumin plus BaP treated group. Furthermore, electron microscopy results also showed necrotic changes and broken cell membrane of Type-II epithelial cell of alveoli in BaP group, which was reduced after adding curcumin treatment. In addition, we found BaP plus curcumin treatment effectively reduced inflammatory cytokines Tumour Necrosis Factor alpha (TNF-α), Interleukin 6 (IL-6), and C-reactive protein (CRP) levels in blood serum. Moreover, the levels of tunnel staining and p53 expression were significantly increased by BaP, whereas these changes were noticeably modulated after curcumin treatment. BaP also interferes in normal cell cycle, which was significantly improved with curcumin treatment. Overall, our findings suggest that curcumin attenuates BaP -induced lung injury, probably through inhibiting inflammation, oxidative stress and apoptosis in lung epithelial cells, and improving cell proliferation and antioxidants level. Thus, curcumin may be an alternative therapy for improving the outcomes of Benzo(a)pyrene-induced lung injury.
Collapse
Affiliation(s)
- Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia; (S.A.A.); (F.A.); (M.A.A.); (M.F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia; (S.A.A.); (F.A.); (M.A.A.); (M.F.A.)
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia; (S.A.A.); (F.A.); (M.A.A.); (M.F.A.)
| | - Mazen Fahad Alhommrani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia; (S.A.A.); (F.A.); (M.A.A.); (M.F.A.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Science, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia; (S.A.A.); (F.A.); (M.A.A.); (M.F.A.)
- Correspondence: ; Tel.: +3800050 (ext. 4835)
| |
Collapse
|
10
|
Karimi A, Ghodsi R, Kooshki F, Karimi M, Asghariazar V, Tarighat-Esfanjani A. Therapeutic effects of curcumin on sepsis and mechanisms of action: A systematic review of preclinical studies. Phytother Res 2019; 33:2798-2820. [PMID: 31429161 DOI: 10.1002/ptr.6467] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/28/2019] [Accepted: 07/12/2019] [Indexed: 12/18/2022]
Abstract
Sepsis is a complex disease that begins with an infectious disorder and causes excessive immune responses. Curcumin is considered as an active component of turmeric that can improve the condition in sepsis due to its anti-inflammatory and antioxidant properties. PubMed, Embase, Google Scholar, Web of Science, and Scopus databases were searched. Searching was not limited to a specific publication period. Only English-language original articles, which had examined the effect of curcumin on sepsis, were included. At first, 1,098 articles were totally found, and 209 articles were selected after excluding duplicated data; 46 articles were remained due to the curcumin effects on sepsis. These included 23 in vitro studies and 23 animal studies. Our results showed that curcumin and various analogs of curcumin can have an inhibitory effect on sepsis-induced complications. Curcumin has the ability to inhibit the inflammatory, oxidative coagulation factors, and regulation of immune responses in sepsis. Despite the promising evidence of the therapeutic effects of curcumin on the sepsis complication, further studies seem necessary to investigate its effect and possible mechanisms of action in human studies.
Collapse
Affiliation(s)
- Arash Karimi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Ghodsi
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fateme Kooshki
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhdeh Karimi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Student Research Committee, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Zhang C, He Y, Shen Y. L-Lysine protects against sepsis-induced chronic lung injury in male albino rats. Biomed Pharmacother 2019; 117:109043. [PMID: 31238259 DOI: 10.1016/j.biopha.2019.109043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a severe, life-threatening condition primarily caused by the cellular response to infection. Sepsis leads to increased tissue damage and mortality in patients in the intensive care unit. L-Lysine is an essential amino acid required for protein biosynthesis and is abundant in lamb, pork, eggs, red meat, fish oil, cheese, beans, peas, and soy. Male albino rats were divided into sham, control, 10-mg/kg bwt L-lysine, and 20-mg/kg bwt L-lysine groups. At the end of treatment, we determined the levels of oxidative and inflammatory markers, myeloperoxidase (MPO) and catalase activities, total cell count, the wet/dry ratio of lung tissue, and total protein content. Furthermore, the effect of L-lysine on the cellular architecture of lung tissue was evaluated. L-Lysine significantly reduced the magnitude of lipid peroxidation; total protein content; wet/dry ratio of lung tissue; tumor necrosis factor-alpha, interleukin-8, and macrophage inhibitory factor levels; MPO activity; and total cell, neutrophil, and lymphocyte counts, and it increased the reduced glutathione levels and the glutathione peroxidase, superoxide dismutase, and catalase activities. A normal cellular architecture was noted in rats in the sham group, whereas proinflammatory changes, such as edema and neutrophilic infiltration, were detected in rats in the control group. L-lysine significantly ameliorated these proinflammatory changes. Thus, L-lysine has the potential for the treatment of sepsis-induced CLI.
Collapse
Affiliation(s)
- Chunyun Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China.
| | - Yaojun He
- Department of Critical Care Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, China
| | - Yifeng Shen
- Guangzhou Wondfo Biotech Co.Ltd, Guangzhou, Guangdong, 510700, China
| |
Collapse
|
12
|
Meta-analysis of randomized controlled trials of 4 weeks or longer suggest that curcumin may afford some protection against oxidative stress. Nutr Res 2018; 60:1-12. [PMID: 30527253 DOI: 10.1016/j.nutres.2018.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
Oxidative stress (OS) is associated with aging and multiple diseases, yet the effects of curcumin in humans are not definite. We undertook a meta-analysis of the effects of curcumin on OS biomarkers. In January 2018, we searched PubMed, Books@Ovid, Journals@Ovid, EMBASE, MEDLINE(R), and Web of Science to identify randomized controlled trials conducted ≥4 weeks and investigating the effects of curcumin on OS biomarkers, including glutathione peroxidase (GPX) activity in red blood cells (RBC), serum malondialdehyde (MDA) concentrations, and superoxide dismutase (SOD) activity. The standardized mean difference (SMD) with a 95% confidence interval (CI) was used to present the results. The meta-analysis included eight clinical studies (626 patients). There was a significant reduction in circulating MDA concentrations (SMD = -0.769, 95% CI: -1.059 to -0.478) and a significant increase in SOD activity (SMD = 1.084, 95% CI: 0.487 to 1.680) following curcumin supplementation. There was no change in the GPX activity in RBC. There was no significant association between the MDA-lowering effect of curcumin with underlying diseases or treatment duration. However, curcumin showed the MDA-lowering effect at curcuminoids doses ≥600 mg/d (P < .0001). This effect was greater when combined with piperine than curcuminoids alone (SMD = -1.085, 95% CI: -1.357 to -0.813; SMD = -0.850, 95% CI: -1.158 to -0.542). Curcumin may play an anti-oxidative role by reducing circulating MDA concentrations and increasing SOD activity. Further research of curcumin in different populations with multiple biomarkers of redox status is required.
Collapse
|