1
|
Tadege G, Dagne A, Bizuneh GK, Abebe D, Nureye D. Efficacy of Albizia malacophylla (A.Rich.) Walp. (Leguminosae) methanol (80%) leaf extract and solvent fractions against Plasmodium berghei-induced malaria in mice model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118413. [PMID: 38824975 DOI: 10.1016/j.jep.2024.118413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Novel drugs are needed to address the issue of malarial infection resistance; natural items can be a different source of these medications. Albizia malacophylla (A. Rich.) Walp. (Leguminosae) is listed as one of the antimalarial medicinal plants in Ethiopian folk medicine. However, there are no reports regarding the biological activity or phytochemistry of the plant. AIM OF THE STUDY Thus, this study aimed to evaluate the A. malacophylla crude extract and solvent fractions' in vivo antimalarial activity utilizing 4-day suppressive, preventative, and curative tests in mice infected with P. berghei. MATERIALS AND METHODS The parasite Plasmodium berghei, which causes rodent malaria, was used to infect healthy male Swiss Albino mice, weighing 23-28 g and aged 6-8 weeks. Solvent fractions such as methanol, water, and chloroform were given in addition to an 80% methanolic extract at 100, 200, and 400 mg/kg doses. A Conventional test such as parasitemia, survival time, body weight, temperature, and packed cell capacity were employed to ascertain factors such as the suppressive, curative, and preventive tests. RESULTS Every test substance dramatically reduced the number of parasites in every experiment. Crude extract (with the highest percentage suppression of 67.78%) performs better antimalarial effect than the methanol fraction, which is the most efficient solvent fraction with a percentage suppression of 55.74%. With a suppression value of 64.83% parasitemia level, the therapeutic effects of 80% methanolic crude extract were greater than its curative and preventative effects in a four-day suppressive test. The survival period (17 days) was longer with the hydroalcoholic crude extract dose of 400 mg/kg than with other doses of the materials under investigation. CONCLUSIONS The results of this investigation validate the antimalarial characteristics of A. malacophylla leaf extract. The crude extract prevented weight loss, a decline in temperature, and a reduction in PCV. The results demonstrate that the plant has a promising antimalarial effect against P. berghei, hence supporting the traditional use of the plant. Therefore, it could serve as a foundation for the development of new antimalarial drugs.
Collapse
Affiliation(s)
- Getnet Tadege
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia.
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia
| | - Gizachew Kassahun Bizuneh
- Department of Pharmacognosy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | - Dehnnet Abebe
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Northwest, Ethiopia.
| | - Dejen Nureye
- School of Pharmacy, Institute of Health, Jimma University, Jimma, Oromia, Ethiopia; School of Pharmacy, College of Medicine and Health Sciences, Mizan-Tepi University, Southwest, Ethiopia
| |
Collapse
|
2
|
Tatsinkou LLT, Fossi BT, Sotoing GT, Mambou HMAY, Ivo PEA, Achidi EA. Prophylactic effects of probiotic bacterium Latilactobacillus sakei on haematological parameters and cytokine profile of mice infected with Plasmodium berghei ANKA during early malaria infection. Life Sci 2023; 331:122056. [PMID: 37652156 DOI: 10.1016/j.lfs.2023.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Malaria is a deadly parasitic disease caused a by protozoan parasite of the genus plasmodium. The challenges facing by chemotherapy and vector control couple with the lack of vaccine against malaria necessitate an urgent need for the development of alternative treatment regimens to combat this disease. One possible antimalarial treatment regimen is the use of probiotic bacteria as dietary supplements. Traditionally fermented milk is a rich source of probiotic bacteria that up to date, very few studies have been carried out on their immunoprotective effects against early malaria infection in mice. This study sought to assess the prophylactic activities of a probiotic bacterium Latilactobacillus sakei on malaria and inflammation in Plasmodium berghei infected mice. The probiotic bacterium was isolated from the Fulani's traditionally fermented milk and identified using the sequencing of the 16S r RNA gene. The repository activity of L. sakei on malaria was assessed using the method described by Peters with slight modification. Eighty-four BALB/c mice were randomly divided into two sets of seven groups of six mice each. One set received orally different doses of L. sakei Chloroquine and Sulfadoxine/Pyrimethamine for seven days before infection while the other set received for fourteen days before infection with 0.1 mL of 107Plasmodium berghei. Parasitaemia density, haematological parameters and inflammatory cytokines profile were evaluated. Data were presented as Mean ± SEM and analysed using SPSS version 20.0. The results of this study revealed that L. sakei significantly (p < 0.05) reduced in dose dependent manner parasite load, body weight loss and reduction of body temperature in all the treated mice when compare to untreated mice. Leukocytopenia, thrombocytosis and inflammation were also found to be significantly (p < 0.05) prevented in treated mice as compared to untreated mice. This study suggested that L sakei possesses immunomodulation and protective effects on early malaria infection in Plasmodium berghei mice.
Collapse
Affiliation(s)
| | - Bertrand Tatsinkou Fossi
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Germain Taiwe Sotoing
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon
| | | | | | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon
| |
Collapse
|
3
|
Sinha S, Medhi B, Radotra BD, Batovska D, Markova N, Sehgal R. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model. 3 Biotech 2023; 13:260. [PMID: 37405268 PMCID: PMC10314887 DOI: 10.1007/s13205-023-03676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Cerebral malaria is a severe complication of Plasmodium falciparum infection with a complex pathophysiology. The current course of treatment is ineffective in lowering mortality or post-treatment side effects such as neurological and cognitive abnormalities. Chalcones are enormously distributed in spices, fruits, vegetables, tea, and soy-based foodstuffs that are well known for their antimalarial activity, and in recent years they have been widely explored for brain diseases like Alzheimer's disease. Therefore, considering the previous background of chalcones serving as both antimalarial and neuroprotective, the present study aimed to study the effect of these chalcone derivatives on an experimental model of cerebral malaria (CM). CM-induced mice were tested behaviorally (elevated plus maze, rota rod test, and hanging wire test), biochemically (nitric oxide estimation, cytokines (IL-1, IL-6, IL-10, IL-12p70, TNF, IFN-y), histopathologically and immunohistochemically, and finally ultrastructural changes were examined using a transmission electron microscope. All three chalcones treated groups showed a significant (p < 0.001) decrease in percentage parasitemia at the 10th day post-infection. Mild anxiolytic activity of chalcones as compared to standard treatment with quinine has been observed during behavior tests. No pigment deposition was observed in the QNN-T group and other chalcone derivative treated groups. Rosette formation was seen in the derivative 1 treated group. The present derivatives may be pioneered by various research and science groups to design such a scaffold that will be a future antimalarial with therapeutic potential or, because of its immunomodulatory properties, it could be used as an adjunct therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03676-y.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B. D. Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Daniela Batovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nadezhda Markova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012 India
| |
Collapse
|
4
|
Sevik Kilicaslan O, Cretton S, Hausmann E, Quirós-Guerrero L, Karimou S, Kaiser M, Mäser P, Christen P, Cuendet M. Antiprotozoal activity of natural products from Nigerien plants used in folk medicine. Front Pharmacol 2023; 14:1190241. [PMID: 37426806 PMCID: PMC10326435 DOI: 10.3389/fphar.2023.1190241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
In the course of the screening of plants from Niger for antiprotozoal activity, the methanol extract of Cassia sieberiana, and the dichloromethane extracts of Ziziphus mauritiana and Sesamun alatum were found to be active against protozoan parasites, namely Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani and/or Plasmodium falciparum. Myricitrin (1), quercitrin (2) and 1-palmitoyl-lysolecithin (3) were isolated from C. sieberiana. From Z. mauritiana, the three triterpene derivatives 13, 15, and 16 are described here for the first time. Their chemical structures were determined by 1D and 2D NMR experiments, UV, IR and HRESIMS data. The absolute configurations were assigned via comparison of the experimental and calculated ECD spectra. In addition, eight known cyclopeptide alkaloids (4, 5, 7-12), and five known triterpenoids (6, 14, 17-19) were isolated. The antiprotozoal activity of the isolated compounds, as well as of eleven quinone derivatives (20-30) previously isolated from S. alatum was determined in vitro. The cytotoxicity in L6 rat myoblast cells was also evaluated. Compound 18 showed the highest antiplasmodial activity (IC50 = 0.2 µm) and compound 24 inhibited T. b. rhodesiense with an IC50 value of 0.007 µM. However, it also displayed significant cytotoxicity in L6 cells (IC50 = 0.4 µm).
Collapse
Affiliation(s)
- Ozlem Sevik Kilicaslan
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Sylvian Cretton
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Estelle Hausmann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Luis Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | | | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Philippe Christen
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Ejigu YW, Endalifer BL. In vitro anti-plasmodial activity of three selected medicinal plants that are used in local traditional medicine in Amhara region of Ethiopia. BMC Pharmacol Toxicol 2023; 24:30. [PMID: 37170269 PMCID: PMC10173518 DOI: 10.1186/s40360-023-00672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The plants Aloe weloensis, Lepidium sativum, and Lobelia gibberoa have been used in Ethiopian folklore medicine to treat various diseases including malaria. METHOD The in vitro anti-plasmodial activity of the three crude extracts was evaluated using parasite lactate dehydrogenase assay against the chloroquine (CQ)-sensitive D10 and the chloroquine (CQ)-resistant W2 strains. RESULT The methanolic extract of L. gibberoa roots showed the highest in vitro anti-plasmodial effect against both D10 and W2 Plasmodium falciparum strains with IC50 value of 103.83 ± 26.17 µg/mL and 47.11 ± 12.46 µg/mL, respectively. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis were not active with an IC50 value > 200 µg/mL against both D10 and W2 strains. CONCLUSION The methanolic extract of L. gibberoa roots showed a promising in vitro anti-plasmodial activity against the CQ-sensitive (D10) and CQ-resistant (W2) strains of P. falciparum. Thus, the anti-plasmodial activity of this plant partly justifies and may also support the traditional use against malaria. However, the methanolic extract of L. sativum seeds and the leaf latex of A. weloensis did not exert suppressive activity on the growth of P. falciparum strains.
Collapse
Affiliation(s)
- Yenesew Wudu Ejigu
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O.Box: 1145, Dessie, Ethiopia.
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
| | - Bedilu Linger Endalifer
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O.Box: 1145, Dessie, Ethiopia
| |
Collapse
|
6
|
Virendra SA, Sahu C, Kumar A, Chawla PA. Natural Antioxidants as Additional Weapons in the Fight against Malarial Parasite. Curr Top Med Chem 2022; 22:2045-2067. [PMID: 35524663 DOI: 10.2174/1568026622666220504172655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND All currently available antimalarial drugs are developed from natural product lineages that may be traced back to herbal medicines, including quinine, lapachol, and artemisinin. Natural products that primarily target free radicals or reactive oxygen species, play an important role in treating malaria. OBJECTIVES This review analyses the role of antioxidative therapy in treating malaria by scavenging or countering free radicals and reviews the importance of natural plant extracts as antioxidants in oxidative therapy of malaria treatment. METHODS The search for natural antioxidants was conducted using the following databases: ResearchGate, ScienceDirect, Google Scholar, and Bentham Science with the keywords malaria, reactive oxygen species, natural antioxidants, and antiplasmodial. CONCLUSION This study reviewed various literature sources related to natural products employed in antimalarial therapy directly or indirectly by countering/scavenging reactive oxygen species published between 2016 till date. The literature survey made it possible to summarize the natural products used in treating malaria, emphasizing botanical extracts as a single component and in association with other botanical extracts. Natural antioxidants like polyphenols, flavonoids, and alkaloids, have a broad range of biological effects against malaria. This review is pivoted around natural antioxidants obtained from food and medicinal plants and explores their application in restraining reactive oxygen species (ROS). We anticipate this article will provide information for future research on the role of antioxidant therapy in malaria infection.
Collapse
Affiliation(s)
- Sharma Arvind Virendra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Chandrakant Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Ankur Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Pooja Abrol Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
7
|
Ceravolo IP, Aguiar AC, Adebayo JO, Krettli AU. Studies on Activities and Chemical Characterization of Medicinal Plants in Search for New Antimalarials: A Ten Year Review on Ethnopharmacology. Front Pharmacol 2021; 12:734263. [PMID: 34630109 PMCID: PMC8493299 DOI: 10.3389/fphar.2021.734263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Malaria is an endemic disease that affected 229 million people and caused 409 thousand deaths, in 2019. Disease control is based on early diagnosis and specific treatment with antimalarial drugs since no effective vaccines are commercially available to prevent the disease. Drug chemotherapy has a strong historical link to the use of traditional plant infusions and other natural products in various cultures. The research based on such knowledge has yielded two drugs in medicine: the alkaloid quinine from Cinchona species, native in the Amazon highland rain forest in South America, and artemisinin from Artemisia annua, a species from the millenary Chinese medicine. The artemisinin-based combination therapies (ACTs), proven to be highly effective against malaria parasites, and considered as “the last bullet to fight drug-resistant malaria parasites,” have limited use now due to the emergence of multidrug resistance. In addition, the limited number of therapeutic options makes urgent the development of new antimalarial drugs. This review focuses on the antimalarial activities of 90 plant species obtained from a search using Pubmed database with keywords “antimalarials,” “plants” and “natural products.” We selected only papers published in the last 10 years (2011–2020), with a further analysis of those which were tested experimentally in malaria infected mice. Most plant species studied were from the African continent, followed by Asia and South America; their antimalarial activities were evaluated against asexual blood parasites, and only one species was evaluated for transmission blocking activity. Only a few compounds isolated from these plants were active and had their mechanisms of action delineated, thereby limiting the contribution of these medicinal plants as sources of novel antimalarial pharmacophores, which are highly necessary for the development of effective drugs. Nevertheless, the search for bioactive compounds remains as a promising strategy for the development of new antimalarials and the validation of traditional treatments against malaria. One species native in South America, Ampelozyzyphus amazonicus, and is largely used against human malaria in Brazil has a prophylactic effect, interfering with the viability of sporozoites in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Isabela P Ceravolo
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Anna C Aguiar
- Departamento de Biociência, Universidade Federal de São Paulo, Santos, Brazil
| | - Joseph O Adebayo
- Department of Biochemistry, University of Ilorin, Ilorin, Nigeria
| | - Antoniana U Krettli
- Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| |
Collapse
|
8
|
Evaluation of the Antimalarial Activity of the Leaf Latex of Aloe weloensis (Aloaceae) against Plasmodium Parasites. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6664711. [PMID: 34221087 PMCID: PMC8221875 DOI: 10.1155/2021/6664711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Background The lack of available vaccines and the emerging resistance to antimalarial drugs have provided the necessity to find noble antimalarial plant-based medicines. The leaf latex Aloe weloensis has been used in folk medicine against malarial and other human ailments in Ethiopia. Hence, the present study aimed to investigate the antimalarial activity of the leaf latex of A. weloensis against Plasmodium parasites. Materials and Methods The prophylactic and curative models were employed to determine the in vivo antimalarial activity of the leaf latex A. weloensis against P. berghei infected mice, and the antioxidant activity of the latex was assessed using diphenyl-1-picrylhydrazine (DPPH) assay. Female mice were recruited for toxicity study, and the leaf latex was administered to fasted mice at a dose of 5000 mg/kg. The mice were kept under continuous observation for fourteen days for any signs of overt toxicity. Results The leaf latex of A. weloensis was safe up to 5000 mg/kg, and the latex endowed free radical inhibition activity (IC50 = 10.25 μg/ml). The latex of A. weloensis leaf demonstrated the inhibitory activity against the 3D7 strain of P. falciparum (IC50 = 9.14 μg/ml). The prophylactic and curative effect of the latex was found to be dose-dependent. The mice's parasitemia level was significantly (p < 0.001) reduced at all tested doses of the leaf latex compared to negative control in the curative test. Parasitemia reduction was significant (200 mg/kg, p < 0.01, and 400 and 600 mg/kg, p < 0.001) in the prophylactic test compared to the control. In addition, the leaf latex significantly (p < 0.01) improved mean survival time, packed cell volume, rectal temperature, and bodyweight of P. berghei infected mice. Conclusion The leaf latex of Aloe weloensis was endowed with the antimalarial activity at various doses, corroborating the plant's claimed traditional use.
Collapse
|
9
|
Dkhil MA, Al-Quraishy S, Al-Shaebi EM, Abdel-Gaber R, Thagfan FA, Qasem MA. Medicinal plants as a fight against murine blood-stage malaria. Saudi J Biol Sci 2021; 28:1723-1738. [PMID: 33732056 PMCID: PMC7938113 DOI: 10.1016/j.sjbs.2020.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Malaria is an infectious parasitic disease affecting most of countries worldwide. Due to antimalarial drug resistance, researchers are seeking to find another safe efficient source for treatment of malaria. Since many years ago, medicinal plants were widely used for the treatment of several diseases. In general, most application is done first on experimental animals then human. In this article, medicinal plants as antimalarial agents in experimental animals were reviewed from January 2000 until November 2020. MATERIALS AND METHODS In this systematic review published articles were reviewed using the electronic databases NCBI, ISI Web of knowledge, ScienceDirect and Saudi digital library to check articles and theses for M.Sc/Ph.D. The name of the medicinal plant with its taxon ID and family, the used Plasmodium species, plant part used and its extract type and the country of harvest were described. RESULTS AND CONCLUSION The reviewed plants belonged to 83 families. Medicinal plants of families Asteraceae, Meliaceae Fabaceae and Lamiaceae are the most abundant for use in laboratory animal antimalarial studies. According to region, published articles from 33 different countries were reviewed. Most of malaria published articles are from Africa especially Nigeria and Ethiopia. Leaves were the most common plant part used for the experimental malaria research. In many regions, research using medicinal plants to eliminate parasites and as a defensive tool is popular.
Collapse
Affiliation(s)
- Mohamed A. Dkhil
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Egypt
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Esam M. Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
- Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Felwa Abdullah Thagfan
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmood A.A. Qasem
- Department of Zoology, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
10
|
Phytochemistry, pharmacology and medicinal uses of Cola (Malvaceae) family: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Koffi JA, Silué KD, Tano DK, Dable TM, Yavo W. Evaluation of antiplasmodial activity of extracts from endemic medicinal plants used to treat malaria in Côte d'Ivoire. ACTA ACUST UNITED AC 2020; 10:151-157. [PMID: 32793437 PMCID: PMC7416013 DOI: 10.34172/bi.2020.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/27/2023]
Abstract
![]()
Introduction:Plasmodium falciparum strains had been increasingly resistant to commonly used molecules including artemisinin. It is therefore urges to find new therapeutic alternatives. Methods: In this study, the antiplasmodial activity of 21 extracts obtained from seven plants of the Anthocleista djalonensis, Cochlospermum planchonii, Harungana madagascariensis, Hoslundia opposita, Mangifera indica, Margaritaria discoidea and Pericopsis laxiflora of the Ivorian pharmacopoeia was evaluated on the chloroquine sensitive (NF54) and multi-resistant (K1) reference strains and on clinical isolates as well. The technique used was the microtiter method based on fluorescence reading with SYBR Green. Results: The aqueous extract of the bark of H. madagascariensis and methanolic extracts of P. laxiflora showed the best antiplasmodial activity with IC50 values of 6.16 µg/mL and 7.44 µg/mL, respectively. On the other hand, extracts of M. indica showed a very moderate activity with IC50 values between 15 µg/mL and 50 µg/mL (5<IC50<50 µg/mL) on the same strains of P. falciparum. Only the aqueous extract of A. djalonensis had IC50 values greater than 50 µg/mL. The phytochemical analysis showed a strong presence of polyphenols and alkaloids in extracts with a cumulative rate of 90.47% and 95.23%, respectively. Conclusion: The results obtained were also justified by the composition of these plants, which have several secondary metabolites involved in the treatment of malaria. The antiplasmodial properties of these plants could partially justify their use in malaria treatment. Further studies on these extracts are needed to manufacture a stable galenic formulation for the development of an improved traditional medicine.
Collapse
Affiliation(s)
| | | | | | | | - William Yavo
- Institut National de Sante Publique, Abidjan, Côte d'Ivoire
| |
Collapse
|
12
|
Thillainayagam M, Malathi K, Anbarasu A, Singh H, Bahadur R, Ramaiah S. Insights on inhibition of Plasmodium falciparum plasmepsin I by novel epoxyazadiradione derivatives – molecular docking and comparative molecular field analysis. J Biomol Struct Dyn 2018. [DOI: 10.1080/07391102.2018.1510342 pmid: 30092746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Renu Bahadur
- Indian Council for Medical Research, New Delhi, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Thillainayagam M, Malathi K, Anbarasu A, Singh H, Bahadur R, Ramaiah S. Insights on inhibition of Plasmodium falciparum plasmepsin I by novel epoxyazadiradione derivatives – molecular docking and comparative molecular field analysis. J Biomol Struct Dyn 2018; 37:3168-3182. [DOI: 10.1080/07391102.2018.1510342] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Anand Anbarasu
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - Renu Bahadur
- Indian Council for Medical Research, New Delhi, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|