1
|
Hiskens MI, Li KM, Schneiders AG, Fenning AS. Repetitive mild traumatic brain injury-induced neurodegeneration and inflammation is attenuated by acetyl-L-carnitine in a preclinical model. Front Pharmacol 2023; 14:1254382. [PMID: 37745053 PMCID: PMC10514484 DOI: 10.3389/fphar.2023.1254382] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Repetitive mild traumatic brain injuries (rmTBI) may contribute to the development of neurodegenerative diseases through secondary injury pathways. Acetyl-L-carnitine (ALC) shows neuroprotection through anti-inflammatory effects and via regulation of neuronal synaptic plasticity by counteracting post-trauma excitotoxicity. This study aimed to investigate mechanisms implicated in the etiology of neurodegeneration in rmTBI mice treated with ALC. Adult male C57BL/6J mice were allocated to sham, rmTBI or ALC + rmTBI groups. 15 rmTBIs were administered across 23 days using a modified weight drop model. Neurological testing and spatial learning and memory assessments via the Morris Water Maze (MWM) were undertaken at 48 h and 3 months. RT-PCR analysis of the cortex and hippocampus was undertaken for MAPT, GFAP, AIF1, GRIA, CCL11, TDP43, and TNF genes. Gene expression in the cortex showed elevated mRNA levels of MAPT, TNF, and GFAP in the rmTBI group that were reduced by ALC treatment. In the hippocampus, mRNA expression was elevated for GRIA1 in the rmTBI group but not the ALC + rmTBI treatment group. ALC treatment showed protective effects against the deficits displayed in neurological testing and MWM assessment observed in the rmTBI group. While brain structures display differential vulnerability to insult as evidenced by location specific postimpact disruption of key genes, this study shows correlative mRNA neurodegeneration and functional impairment that was ameliorated by ALC treatment in several key genes. ALC may mitigate damage inflicted in the various secondary neurodegenerative cascades and contribute to functional protection following rmTBI.
Collapse
Affiliation(s)
- Matthew I. Hiskens
- Mackay Institute of Research and Innovation, Mackay Hospital and Health Service, Mackay, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Katy M. Li
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Anthony G. Schneiders
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Andrew S. Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| |
Collapse
|
2
|
Essawy AE, El-Sayed SA, Tousson E, Abd El-Gawad HS, Alhasani RH, Abd Elkader HTAE. Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48573-48587. [PMID: 35194715 PMCID: PMC9252962 DOI: 10.1007/s11356-022-19251-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/12/2022] [Indexed: 06/09/2023]
Abstract
Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.
Collapse
Affiliation(s)
- Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Soad Ahmed El-Sayed
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | | | | | |
Collapse
|
3
|
AL-Nasser MN, Mellor IR, Carter WG. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci 2022; 12:577. [PMID: 35624964 PMCID: PMC9139234 DOI: 10.3390/brainsci12050577] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.
Collapse
Affiliation(s)
- Maryam N. AL-Nasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
4
|
Pan T, Qian Y, Li T, Zhang Z, He Y, Wang J, Li L, Hu Y, Lin M. Acetyl l-carnitine protects adipose-derived stem cells against serum-starvation: regulation on the network composed of reactive oxygen species, autophagy, apoptosis and senescence. Cytotechnology 2022; 74:105-121. [PMID: 35185289 PMCID: PMC8816993 DOI: 10.1007/s10616-021-00514-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/05/2021] [Indexed: 02/03/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) play an important role in cell therapy and regenerative medicine. However, local nutritional deficiency often limits therapeutical effect of the transplanted cells. Acetyl l-carnitine (ALC) is a common energy metabolism regulator and free radical scavenger. This study investigated the effect of ALC on ADSCs exposed to severe serum-deprivation and explored the relative machanisms. Treating with 1 mM ALC improved proliferation and alleviated senescence of starved cells, accompanied with reduced reactive oxygen species (ROS) and increased protein expression of SOD1 and catalase. In addition, ALC inhibited apoptosis but increased starvation-induced autophagy, which might be related to the regulation of phases of dissociation of Bcl-2-Beclin1 and Bcl-2-Bax complexes. Evidence obtained by replacing ALC with N-acetylcysteine (N-AC) suggested that ROS might be the central inducer of autophagy, apoptosis and senescence. There was a difference between ALC and N-AC in the protection mechanism, that was, compared with N-AC, ALC maintained autophagy well at the same time as anti-oxidation. Inhibition of autophagy by 3-methyladenine (3-MA) partially offset the protective effect of ALC. However, despite low-level ROS and enhanced autophagy, ALC with high concentration (10 mM) markedly aggravated cell apoptosis and senescence, thus losing cytoprotection and even causing damage.
Collapse
Affiliation(s)
- Tianyun Pan
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 315 South Street, Wuxing Direct, Huzhou City, 313000 Zhejiang Province China
| | - Yao Qian
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng Direct, Wenzhou City, China
| | - Tian Li
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai Direct, Wenzhou City, China
| | - Zikai Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai Direct, Wenzhou City, China
| | - Yucang He
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai Direct, Wenzhou City, China
| | - Jingping Wang
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai Direct, Wenzhou City, China
| | - Liqun Li
- The First Affiliated Hospital of Wenzhou Medical University, Ouhai Direct, Wenzhou City, China
| | - Yun Hu
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, 315 South Street, Wuxing Direct, Huzhou City, 313000 Zhejiang Province China
| | - Ming Lin
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Lucheng Direct, Wenzhou City, China
| |
Collapse
|
5
|
Dhote VV, Raja MKMM, Samundre P, Sharma S, Anwikar S, Upaganlawar AB. Sports Related Brain Injury and Neurodegeneration in Athletes. Curr Mol Pharmacol 2021; 15:51-76. [PMID: 34515018 DOI: 10.2174/1874467214666210910114324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Sports deserve a special place in human life to impart healthy and refreshing wellbeing. However, sports activities, especially contact sports, renders athlete vulnerable to brain injuries. Athletes participating in a contact sport like boxing, rugby, American football, wrestling, and basketball are exposed to traumatic brain injuries (TBI) or concussions. The acute and chronic nature of these heterogeneous injuries provides a spectrum of dysfunctions that alters the neuronal, musculoskeletal, and behavioral responses of an athlete. Many sports-related brain injuries go unreported, but these head impacts trigger neurometabolic disruptions that contribute to long-term neuronal impairment. The pathophysiology of post-concussion and its underlying mechanisms are undergoing intense research. It also shed light on chronic disorders like Parkinson's disease, Alzheimer's disease, and dementia. In this review, we examined post-concussion neurobehavioral changes, tools for early detection of signs, and their impact on the athlete. Further, we discussed the role of nutritional supplements in ameliorating neuropsychiatric diseases in athletes.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | | | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Supriya Sharma
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Shraddha Anwikar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| | - Aman B Upaganlawar
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP,462044. India
| |
Collapse
|
6
|
Latham LE, Wang C, Patterson TA, Slikker W, Liu F. Neuroprotective Effects of Carnitine and Its Potential Application to Ameliorate Neurotoxicity. Chem Res Toxicol 2021; 34:1208-1222. [PMID: 33570912 DOI: 10.1021/acs.chemrestox.0c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carnitine is an essential metabolite that is absorbed from the diet and synthesized in the kidney, liver, and brain. It ferries fatty acids across the mitochondrial membrane to undergo β-oxidation. Carnitine has been studied as a therapy or protective agent for many neurological diseases and neurotoxicity (e.g., prolonged anesthetic exposure-induced developmental neurotoxicity in preclinical models). Preclinical and clinical data support the notion that carnitine or acetyl carnitine may improve a patient's quality of life through increased mitochondrial respiration, release of neurotransmitters, and global gene expression changes, showing the potential of carnitine beyond its approved use to treat primary and secondary carnitine deficiency. In this review, we summarize the beneficial effects of carnitine or acetyl carnitine on the central nervous system, highlighting protective effects against neurotoxicity-induced damage caused by various chemicals and encouraging a thorough evaluation of carnitine use as a therapy for patients suffering from neurotoxicant exposure.
Collapse
Affiliation(s)
- Leah E Latham
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Tucker A Patterson
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - William Slikker
- Office of Director, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, Arkansas 72079, United States
| |
Collapse
|
7
|
Uppakara K, Jamornwan S, Duan LX, Yue KR, Sunrat C, Dent EW, Wan SB, Saengsawang W. Novel α-Lipoic Acid/3- n-Butylphthalide Conjugate Enhances Protective Effects against Oxidative Stress and 6-OHDA Induced Neuronal Damage. ACS Chem Neurosci 2020; 11:1634-1642. [PMID: 32374999 DOI: 10.1021/acschemneuro.0c00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neurodegenerative diseases are irreversible conditions that result in progressive degeneration and death of nerve cells. Although the underlying mechanisms may vary, oxidative stress is considered to be one of the major causes of neuronal loss. Importantly, there are still no comprehensive treatments to completely cure these diseases. Therefore, protecting neurons from oxidative damage may be the most effective therapeutic strategy. Here we report a neuroprotective effects of a novel hybrid compound (dlx-23), obtained by conjugating α-lipoic acid (ALA), a natural antioxidant agent, and 3-n-butylphthalide (NBP), a clinical anti-ischemic drug. Dlx-23 protected against neuronal death induced by both H2O2 induced oxidative stress in Cath.-a-differentiated (CAD) cells and 6-OHDA, a toxin model of Parkinson's disease (PD) in SH-SY5Y cells. These activities proved to be more potent than the parent compound (ALA) alone. Dlx-23 scavenged free radicals, increased glutathione levels, and prevented mitochondria damage. In addition, live imaging of primary cortical neurons demonstrated that dlx-23 protected against neuronal growth cone damage induced by H2O2. Taken together these results suggest that dlx-23 has substantial potential to be further developed into a novel neuroprotective agent against oxidative damage and toxin induced neurodegeneration.
Collapse
Affiliation(s)
- Kwanchanok Uppakara
- Toxicology Graduate Program; Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sopana Jamornwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Liang-xing Duan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kai-rui Yue
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chotchanit Sunrat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Sheng-biao Wan
- Qingdao National Laboratory for Marine Science and Technology; School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Witchuda Saengsawang
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
8
|
ALSUntangled 53: Carnitine supplements. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:477-483. [PMID: 32046513 DOI: 10.1080/21678421.2020.1726565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Giorgi C, Marchi S, Simoes IC, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jȩdrak P, Pierzynowska K, Szymański J, Wang DQ, Portincasa P, Wȩgrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and Reactive Oxygen Species in Aging and Age-Related Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:209-344. [PMID: 30072092 PMCID: PMC8127332 DOI: 10.1016/bs.ircmb.2018.05.006] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aging has been linked to several degenerative processes that, through the accumulation of molecular and cellular damage, can progressively lead to cell dysfunction and organ failure. Human aging is linked with a higher risk for individuals to develop cancer, neurodegenerative, cardiovascular, and metabolic disorders. The understanding of the molecular basis of aging and associated diseases has been one major challenge of scientific research over the last decades. Mitochondria, the center of oxidative metabolism and principal site of reactive oxygen species (ROS) production, are crucial both in health and in pathogenesis of many diseases. Redox signaling is important for the modulation of cell functions and several studies indicate a dual role for ROS in cell physiology. In fact, high concentrations of ROS are pathogenic and can cause severe damage to cell and organelle membranes, DNA, and proteins. On the other hand, moderate amounts of ROS are essential for the maintenance of several biological processes, including gene expression. In this review, we provide an update regarding the key roles of ROS-mitochondria cross talk in different fundamental physiological or pathological situations accompanying aging and highlighting that mitochondrial ROS may be a decisive target in clinical practice.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ines C.M. Simoes
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ziyu Ren
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
| | - Giampaolo Morciano
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Maria Pia Hospital, GVM Care & Research, Torino, Italy
| | - Mariasole Perrone
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paulina Patalas-Krawczyk
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Paulina Jȩdrak
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | | | - Jȩdrzej Szymański
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - David Q. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Dept. of Biomedical Sciences & Human Oncology, University of Bari "Aldo Moro" Medical School, Bari, Italy
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Pawel Dobrzyn
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Massimo Bonora
- Departments of Cell Biology and Gottesman Institute for Stem Cell & Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jerzy Duszynski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alessandro Rimessi
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Barbara Zavan
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paulo J. Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Vilma A. Sardao
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Cantanhede, Portugal
| | - Paolo Pinton
- Department of Morphology Surgery and Experimental Medicine, Section of Pathology Oncology and Experimental Biology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Mariusz R. Wieckowski
- Department of Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
N-Adamantyl-4-Methylthiazol-2-Amine Attenuates Glutamate-Induced Oxidative Stress and Inflammation in the Brain. Neurotox Res 2017; 32:107-120. [PMID: 28285348 DOI: 10.1007/s12640-017-9717-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 12/15/2022]
Abstract
In this study, we explored the possible mechanisms underlying the neuroprotective and anti-oxidative effects of N-adamantyl-4-methylthiazol-2-amine (KHG26693) against in vivo glutamate-induced toxicity in the rat cerebral cortex. Our results showed that pretreatment with KHG26693 significantly attenuated glutamate-induced elevation of lipid peroxidation, tumor necrosis factor-α, interferon gamma, IFN-γ, interleukin-1β, nitric oxide, reactive oxygen species, NADPH oxidase, caspase-3, calpain activity, and Bax. Furthermore, KHG26693 pretreatment attenuated key antioxidant parameters such as levels of superoxide dismutase, catalase, glutathione, and glutathione reductase. KHG26693 also attenuated the protein levels of inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor erythroid 2-related factor 2, heme oxygenase-1, and glutamate cysteine ligase catalytic subunit caused by glutamate toxicity. Finally, KHG26693 mitigated glutamate-induced changes in mitochondrial ATP level and cytochrome oxidase c. Thus, KHG26693 functions as neuroprotective and anti-oxidative agent against glutamate-induced toxicity through its antioxidant and anti-inflammatory activities in rat brain at least in part.
Collapse
|
11
|
Connell BJ, Saleh MC, Rajagopal D, Saleh TM. UPEI-400, a conjugate of lipoic acid and scopoletin, mediates neuroprotection in a rat model of ischemia/reperfusion. Food Chem Toxicol 2017; 100:175-182. [DOI: 10.1016/j.fct.2016.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
|
12
|
Lin Z, Guichun Z, Lifeng L, Chen C, Xuecheng C, Jinfang C. Protective effect of α-lipoic acid against antimycin A cytotoxicity in MC3T3-E1 osteoblastic cells. Cell Stress Chaperones 2017; 22:5-13. [PMID: 27796798 PMCID: PMC5225054 DOI: 10.1007/s12192-016-0735-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/20/2016] [Accepted: 09/10/2016] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress represents a major cause of cellular damage and death in the process of osteoporosis. Antimycin A (AMA) has been shown to stimulate mitochondrial superoxide anions and reactive oxygen species (ROS). α-Lipoic acid (α-LA) is a naturally occurring essential coenzyme in mitochondrial multienzyme complexes and acts as a key player in mitochondrial energy production. However, whether α-LA affects the cytotoxicity of AMA in osteoblastic cells is unknown. In this study, we investigated the protective effects of α-LA against AMA-induced cytotoxicity using the MC3T3-E1 osteoblast-like cell line. Our results indicated that α-LA treatment attenuated AMA-induced cytotoxicity and LDH release in a dose-dependent manner. Notably, a significant recovery effect of α-LA on mineralization inhibited by AMA was found. Our results also demonstrated that treatment with 50 μM AMA leads to a reduction of mitochondrial membrane potential (MMP) and the complex IV dysfunction, which was inhibited by pretreatment with α-LA in a dose-dependent manner. In addition, treatment with α-LA significantly reduced the generation of ROS and mitochondrial superoxide production induced by AMA. In addition, our result suggests that PI3K/Akt and CREB pathways are related to the protective effect of α-LA. Importantly, Hoechst 33258 staining results indicated that pretreatment with α-LA prevented AMA-induced apoptosis. Mechanistically, we found that α-LA prevents MC3T3-E1 cells from apoptosis through attenuating cytochrome C release and reducing the level of cleaved caspase-3.
Collapse
Affiliation(s)
- Zou Lin
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China
| | - Zhang Guichun
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China
| | - Liu Lifeng
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China
| | - Chen Chen
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China
| | - Cao Xuecheng
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China.
| | - Cai Jinfang
- Department of Traumatic Orthopedic Surgery, The General Hospital of Ji'nan Military Command, 25 Shifan St, Jinan, Shandong Province, 250031, China
| |
Collapse
|
13
|
Vonder Haar C, Peterson TC, Martens KM, Hoane MR. Vitamins and nutrients as primary treatments in experimental brain injury: Clinical implications for nutraceutical therapies. Brain Res 2016; 1640:114-129. [PMID: 26723564 PMCID: PMC4870112 DOI: 10.1016/j.brainres.2015.12.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023]
Abstract
With the numerous failures of pharmaceuticals to treat traumatic brain injury in humans, more researchers have become interested in combination therapies. This is largely due to the multimodal nature of damage from injury, which causes excitotoxicity, oxidative stress, edema, neuroinflammation and cell death. Polydrug treatments have the potential to target multiple aspects of the secondary injury cascade, while many previous therapies focused on one particular aspect. Of specific note are vitamins, minerals and nutrients that can be utilized to supplement other therapies. Many of these have low toxicity, are already FDA approved and have minimal interactions with other drugs, making them attractive targets for therapeutics. Over the past 20 years, interest in supplementation and supraphysiologic dosing of nutrients for brain injury has increased and indeed many vitamins and nutrients now have a considerable body of the literature backing their use. Here, we review several of the prominent therapies in the category of nutraceutical treatment for brain injury in experimental models, including vitamins (B2, B3, B6, B9, C, D, E), herbs and traditional medicines (ginseng, Gingko biloba), flavonoids, and other nutrients (magnesium, zinc, carnitine, omega-3 fatty acids). While there is still much work to be done, several of these have strong potential for clinical therapies, particularly with regard to polydrug regimens. This article is part of a Special Issue entitled SI:Brain injury and recovery.
Collapse
|
14
|
Mitochondrial modulators in experimental Huntington’s disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol Aging 2015; 36:2186-200. [DOI: 10.1016/j.neurobiolaging.2015.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 12/25/2014] [Accepted: 02/05/2015] [Indexed: 01/19/2023]
|
15
|
Kamarudin MNA, Mohd Raflee NA, Syed Hussein SS, Lo JY, Supriady H, Abdul Kadir H. (R)-(+)-α-lipoic acid protected NG108-15 cells against H₂O₂-induced cell death through PI3K-Akt/GSK-3β pathway and suppression of NF-κβ-cytokines. Drug Des Devel Ther 2014; 8:1765-80. [PMID: 25336920 PMCID: PMC4199983 DOI: 10.2147/dddt.s67980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Nur Afiqah Mohd Raflee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Jia Ye Lo
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hadi Supriady
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr 2014; 5:394-403. [PMID: 25022989 PMCID: PMC4085188 DOI: 10.3945/an.113.005264] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Neurodegenerative disorders and diseases (NDDs) that are either chronically acquired or triggered by a singular detrimental event are a rapidly growing cause of disability and/or death. In recent times, there have been major advancements in our understanding of various neurodegenerative disease states that have revealed common pathologic features or mechanisms. The many mechanistic parallels discovered between various neurodegenerative diseases suggest that a single therapeutic approach may be used to treat multiple disease conditions. Of late, natural compounds and supplemental substances have become an increasingly attractive option to treat NDDs because there is growing evidence that these nutritional constituents have potential adjunctive therapeutic effects (be it protective or restorative) on various neurodegenerative diseases. Here we review relevant experimental and clinical data on supplemental substances (i.e., curcuminoids, rosmarinic acid, resveratrol, acetyl-L-carnitine, and ω-3 (n-3) polyunsaturated fatty acids) that have demonstrated encouraging therapeutic effects on chronic diseases, such as Alzheimer's disease and neurodegeneration resulting from acute adverse events, such as traumatic brain injury.
Collapse
Affiliation(s)
- Gregory E Bigford
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL; and
| | - Gianluca Del Rossi
- Department of Orthopedics and Sports Medicine, College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
17
|
Connell BJ, Saleh MC, Kucukkaya I, Abd-El-Aziz AS, Khan BV, Saleh TM. UPEI-300, a conjugate of lipoic acid and edaravone, mediates neuroprotection in ischemia/reperfusion. Neurosci Lett 2014; 561:151-5. [PMID: 24394910 DOI: 10.1016/j.neulet.2013.12.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/21/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Edaravone, an electron spin trapper with radical scavenging activity, has been shown to be effective in reducing infarct volume in humans following ischemic stroke. However, concerns of edaravone-induced renal toxicity have limited its clinical adoption. Previous work has demonstrated that edaravone produced significant neuroprotection when injected prior to a period of ischemia and/or reperfusion. The current investigation was designed to determine if a newly synthesized co-drug consisting of lipoic acid and edaravone, named UPEI-300, could produce neuroprotection in in vitro and/or an in vivo rodent model of stroke. UPEI-300 produced dose-dependent neuroprotection in vitro and was subsequently tested in vivo. Male rats were anaesthetized and the middle cerebral artery was occluded for 30 min followed by 5.5 h of reperfusion (ischemia/reperfusion; I/R). Pre-administration of UPEI-300 dose-dependently decreased infarct volume. Significant neuroprotection was also observed when UPEI-300 (1.0 mg/kg) was injected during the 30 min period of ischemia as well as up to 60 min following the start of reperfusion. These results indicate that a co-drug consisting of edaravone and lipoic acid is a potent neuroprotectant, and clinically, the use of such a novel co-drug following an ischemic stroke might maintain neuroprotection while potentially decreasing edaravone associated renal toxicity.
Collapse
Affiliation(s)
- Barry J Connell
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Monique C Saleh
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Inan Kucukkaya
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Alaa S Abd-El-Aziz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3
| | - Bobby V Khan
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3; Carmel BioSciences, 5673 Peachtree Dunwoody Road, Atlanta, GA 30342, USA
| | - Tarek M Saleh
- Dept. of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada C1A 4P3.
| |
Collapse
|
18
|
Ozturk G, Ginis Z, Kurt SN, Albayrak A, Bilen S, Fadillioglu E. Effect of alpha lipoic acid on ifosfamide-induced central neurotoxicity in rats. Int J Neurosci 2013; 124:110-6. [DOI: 10.3109/00207454.2013.823962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav Brain Res 2013; 247:17-26. [DOI: 10.1016/j.bbr.2013.02.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/19/2013] [Accepted: 02/24/2013] [Indexed: 02/07/2023]
|
20
|
Rocamonde B, Paradells S, Barcia J, Barcia C, García Verdugo J, Miranda M, Romero Gómez F, Soria J. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience 2012; 224:102-15. [DOI: 10.1016/j.neuroscience.2012.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/08/2012] [Accepted: 08/14/2012] [Indexed: 12/30/2022]
|
21
|
Connell BJ, Saleh MC, Khan BV, Rajagopal D, Saleh TM. UPEI-100, a conjugate of lipoic acid and apocynin, mediates neuroprotection in a rat model of ischemia/reperfusion. Am J Physiol Regul Integr Comp Physiol 2012; 302:R886-95. [DOI: 10.1152/ajpregu.00644.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous work in our laboratory has provided evidence that preadministration of apocynin and lipoic acid at subthreshold levels for neuroprotection enhanced the neuroprotective capacity when injected in combination. Therefore, the present investigation was designed to determine whether a co-drug consisting of lipoic acid and apocynin functional groups bound by a covalent bond, named UPEI-100, is capable of similar efficacy using a rodent model of stroke. Male rats were anesthetized with Inactin (100 mg/kg iv), and the middle cerebral artery was occluded for 6 h or allowed to reperfuse for 5.5 h following a 30-min occlusion (ischemia/reperfusion, I/R). Preadministration of UPEI-100 dose-dependently decreased infarct volume in the I/R model ( P < 0.05), but not in the middle cerebral artery occlusion model of stroke. Using the optimal dose, we then injected UPEI-100 during the stroke or at several time points during reperfusion, and significant neuroprotection was observed when UPEI-100 was administered up to 90 min following the start of reperfusion ( P < 0.05). A time course for this neuroprotective effect showed that UPEI-100 resulted in a decrease in infarct volume following 2 h of reperfusion compared with vehicle. The time course of this neuroprotective effect was also used to study several mediators along the antioxidant pathway and showed that UPEI-100 increased the level of mitochondrial superoxide dismutase and oxidized glutathione and decreased a marker of lipid peroxidation due to oxidative stress (HNE-His adduct formation). Taken together, the data suggest that UPEI-100 may utilize similar pathways to those observed for the two parent compounds; however, it may also act through a different mechanism of action.
Collapse
Affiliation(s)
- Barry J. Connell
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| | - Monique C. Saleh
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| | - Bobby V. Khan
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
- InVasc Therapeutics, Atlanta, Georgia
| | | | - Tarek M. Saleh
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward, Canada; and
| |
Collapse
|
22
|
Assaf N, Shalby AB, Khalil WKB, Ahmed HH. Biochemical and genetic alterations of oxidant/antioxidant status of the brain in rats treated with dexamethasone: protective roles of melatonin and acetyl-l-carnitine. J Physiol Biochem 2011; 68:77-90. [DOI: 10.1007/s13105-011-0121-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 09/12/2011] [Indexed: 11/30/2022]
|
23
|
Mingorance C, Rodriguez-Rodriguez R, Justo ML, Herrera MD, de Sotomayor MA. Pharmacological effects and clinical applications of propionyl-L-carnitine. Nutr Rev 2011; 69:279-90. [PMID: 21521230 DOI: 10.1111/j.1753-4887.2011.00387.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Propionyl-L-carnitine (PLC) is a naturally occurring derivative of carnitine that plays an important role in the metabolism of both carbohydrates and lipids, leading to an increase of ATP generation. PLC, however, is not only a metabolic drug; it is also a potent antiradical agent and thus may protect tissues from oxidative damage. PLC has been demonstrated to exert a protective effect in different models of both cardiac and endothelial dysfunction, to prevent the progression of atherosclerosis, and, more recently, to improve some of the cardiometabolic alterations that frequently accompany insulin resistance. As a result, most of the clinical trials conducted in humans highlight PLC as a potential treatment option in cardiovascular diseases such as peripheral arterial disease, chronic heart failure, or stable angina, especially when type 2 diabetes mellitus or hyperglycemia (i.e., patients on hemodialysis) are also present. The aim of this review is to summarize the pharmacological effects and possible therapeutic applications of PLC, including the most recent findings to date.
Collapse
Affiliation(s)
- Carmen Mingorance
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|