1
|
Abstract
Differentiated neurons can undergo cell cycle re-entry during pathological conditions, but it remains largely accepted that M-phase is prohibited in these cells. Here we show that primary neurons at post-synaptogenesis stages of development can enter M-phase. We induced cell cycle re-entry by overexpressing a truncated Cyclin E isoform fused to Cdk2. Cyclin E/Cdk2 expression elicits canonical cell cycle checkpoints, which arrest cell cycle progression and trigger apoptosis. As in mitotic cells, checkpoint abrogation enables cell cycle progression through S and G2-phases into M-phase. Although most neurons enter M-phase, only a small subset undergo cell division. Alternatively, neurons can exit M-phase without cell division and recover the axon initial segment, a structural determinant of neuronal viability. We conclude that neurons and mitotic cells share S, G2 and M-phase regulation.
Collapse
|
2
|
Cheng SY, Wang SC, Lei M, Wang Z, Xiong K. Regulatory role of calpain in neuronal death. Neural Regen Res 2018; 13:556-562. [PMID: 29623944 PMCID: PMC5900522 DOI: 10.4103/1673-5374.228762] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2017] [Indexed: 12/19/2022] Open
Abstract
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death and various neurological disorders. This review introduces recent research progress related to the regulatory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system diseases.
Collapse
Affiliation(s)
- Si-ying Cheng
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Shu-chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Ming Lei
- Xiangya Medical School, Central South University, Changsha, Hunan Province, China
| | - Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
3
|
Hwang JY, Lee J, Oh CK, Kang HW, Hwang IY, Um JW, Park HC, Kim S, Shin JH, Park WY, Darnell RB, Um HD, Chung KC, Kim K, Oh YJ. Proteolytic degradation and potential role of onconeural protein cdr2 in neurodegeneration. Cell Death Dis 2016; 7:e2240. [PMID: 27253404 PMCID: PMC5143381 DOI: 10.1038/cddis.2016.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/21/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
Cerebellar degeneration-related protein 2 (cdr2) is expressed in the central nervous system, and its ectopic expression in tumor cells of patients with gynecological malignancies elicits immune responses by cdr2-specific autoantibodies and T lymphocytes, leading to neurological symptoms. However, little is known about the regulation and function of cdr2 in neurodegenerative diseases. Because we found that cdr2 is highly expressed in the midbrain, we investigated the role of cdr2 in experimental models of Parkinson's disease (PD). We found that cdr2 levels were significantly reduced after stereotaxic injection of 1-methyl-4-phenylpyridinium (MPP(+)) into the striatum. cdr2 levels were also decreased in the brains of post-mortem PD patients. Using primary cultures of mesencephalic neurons and MN9D cells, we confirmed that MPP(+) reduces cdr2 in tyrosine hydroxylase-positive dopaminergic neuronal cells. The MPP(+)-induced decrease of cdr2 was primarily caused by calpain- and ubiquitin proteasome system-mediated degradation, and cotreatment with pharmacological inhibitors of these enzymes or overexpression of calcium-binding protein rendered cells less vulnerable to MPP(+)-mediated cytotoxicity. Consequently, overexpression of cdr2 rescued cells from MPP(+)-induced cytotoxicity, whereas knockdown of cdr2 accelerated toxicity. Collectively, our findings provide insights into the novel regulatory mechanism and potentially protective role of onconeural protein during dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- J-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - C-K Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H W Kang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - I-Y Hwang
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J W Um
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - H C Park
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - S Kim
- Graduate School of Medicine, Korea University, Ansan 425-707, Gyeonggi-do, Korea
| | - J-H Shin
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - W-Y Park
- Division of Pharmacology, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Gyeonggi-do, Korea
| | - R B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - H-D Um
- Division of Radiation Cancer Biology, Korean Institute of Radiological & Medical Sciences, Seoul 01812, Korea
| | - K C Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - K Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
4
|
Zou Y, Wang R, Guo H, Dong M. Phytoestrogen β-Ecdysterone Protects PC12 Cells Against MPP+-Induced NeurotoxicityIn Vitro: Involvement of PI3K-Nrf2-Regulated Pathway. Toxicol Sci 2015; 147:28-38. [DOI: 10.1093/toxsci/kfv111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
5
|
Lin YL, Tsay HJ, Lai TH, Tzeng TT, Shiao YJ. Lithospermic acid attenuates 1-methyl-4-phenylpyridine-induced neurotoxicity by blocking neuronal apoptotic and neuroinflammatory pathways. J Biomed Sci 2015; 22:37. [PMID: 26018660 PMCID: PMC4445499 DOI: 10.1186/s12929-015-0146-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/12/2015] [Indexed: 12/20/2022] Open
Abstract
Background Parkinson’s disease is the second most common neurodegenerative disorders after Alzheimer’s disease. The main cause of the disease is the massive degeneration of dopaminergic neurons in the substantia nigra. Neuronal apoptosis and neuroinflammation are thought to be the key contributors to the neuronal degeneration. Results Both CATH.a cells and ICR mice were treated with 1-methyl-4-phenylpyridin (MPP+) to induce neurotoxicity in vitro and in vivo. Western blotting and immunohistochemistry were also used to analyse neurotoxicity, neuroinflammation and aberrant neurogenesis in vivo. The experiment in CATH.a cells showed that the treatment of MPP+ impaired intake of cell membrane and activated caspase system, suggesting that the neurotoxic mechanisms of MPP+ might include both necrosis and apoptosis. Pretreatment of lithospermic acid might prevent these toxicities. Lithospermic acid possesses specific inhibitory effect on caspase 3. In mitochondria, MPP+ caused mitochondrial depolarization and induced endoplasmic reticulum stress via increasing expression of chaperone protein, GRP-78. All the effects mentioned above were reduced by lithospermic acid. In animal model, the immunohistochemistry of mice brain sections revealed that MPP+ decreased the amount of dopaminergic neurons, enhanced microglia activation, promoted astrogliosis in both substantia nigra and hippocampus, and MPP+ provoked the aberrant neurogenesis in hippocampus. Lithospermic acid significantly attenuates all of these effects induced by MPP+. Conclusions Lithospermic acid is a potential candidate drug for the novel therapeutic intervention on Parkinson’s disease.
Collapse
Affiliation(s)
- Yun-Lian Lin
- National Research Institute of Chinese Medicine, 11221, Taipei, Taiwan, Republic of China.
| | - Huey-Jen Tsay
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, 11221, Taipei, Taiwan, Republic of China.
| | - Tzu-Hsuan Lai
- Institute of Biopharmaceutical Science, National Yang-Ming University, 11221, Taipei, Taiwan, Republic of China.
| | - Tsai-Teng Tzeng
- Institute of Biopharmaceutical Science, National Yang-Ming University, 11221, Taipei, Taiwan, Republic of China.
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, 11221, Taipei, Taiwan, Republic of China. .,Institute of Biopharmaceutical Science, National Yang-Ming University, 11221, Taipei, Taiwan, Republic of China. .,Ph.D Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy, Taipei Medical University, 110, Taipei, Taiwan, Republic of China.
| |
Collapse
|
6
|
Abstract
DJ-1 (PARK7) is a gene linked to autosomal recessive Parkinson disease (PD). We showed previously that DJ-1 loss sensitizes neurons in models of PD and stroke. However, the biochemical mechanisms underlying this protective role are not completely clear. Here, we identify Von Hippel Lindau (VHL) protein as a critical DJ-1-interacting protein. We provide evidence that DJ-1 negatively regulates VHL ubiquitination activity of the α-subunit of hypoxia-inducible factor-1 (HIF-1α) by inhibiting HIF-VHL interaction. Consistent with this observation, DJ-1 deficiency leads to lowered HIF-1α levels in models of both hypoxia and oxidative stress, two stresses known to stabilize HIF-1α. We also demonstrate that HIF-1α accumulation rescues DJ-1-deficient neurons against 1-methyl-4-phenylpyridinium-induced toxicity. Interestingly, lymphoblast cells extracted from DJ-1-related PD patients show impaired HIF-1α stabilization when compared with normal individuals, indicating that the DJ-1-VHL link may also be relevant to a human context. Together, our findings delineate a model by which DJ-1 mediates neuronal survival by regulation of the VHL-HIF-1α pathway.
Collapse
|
7
|
Hohnholt MC, Dringen R. Short time exposure to hydrogen peroxide induces sustained glutathione export from cultured neurons. Free Radic Biol Med 2014; 70:33-44. [PMID: 24524999 DOI: 10.1016/j.freeradbiomed.2014.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/18/2022]
Abstract
Hydrogen peroxide is a normal by-product of cellular metabolism that in higher concentrations can cause oxidative stress. Cultured cerebellar granule neurons efficiently disposed of micromolar concentrations of hydrogen peroxide with half-times in the minute range in a process that predominately involved catalase. Application of up to 100 µM hydrogen peroxide did not affect the cell viability for up to 4h, but caused a time- and concentration-dependent increase in the extracellular glutathione (GSH) content that was accompanied by a matching decrease in the cellular GSH content. Hydrogen peroxide at 100 µM stimulated maximally the GSH export from viable neurons, but did not affect GSH export from cultured astrocytes. The peroxide-induced extracellular GSH accumulation from neurons was lowered by 70% in the presence of MK571, an inhibitor of multidrug resistance protein (Mrp) 1. The extracellular GSH content determined after 4h of incubation was already significantly increased after a 5-min exposure of neurons to hydrogen peroxide and became maximal after 15 min of peroxide application. These data demonstrate that just a short exposure of viable cerebellar granule neurons to micromolar concentrations of hydrogen peroxide stimulates a prolonged Mrp1-mediated export of cellular GSH. This process may compromise the antioxidative potential of neurons and increase their sensitivity toward drugs and toxins.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28334 Bremen, Germany; Centre for Environmental Research, and Sustainable Technology, University of Bremen, 28334 Bremen, Germany.
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28334 Bremen, Germany; Centre for Environmental Research, and Sustainable Technology, University of Bremen, 28334 Bremen, Germany
| |
Collapse
|
8
|
Villalba RM, Wichmann T, Smith Y. Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson's disease. Brain Struct Funct 2014; 219:381-94. [PMID: 23508713 PMCID: PMC3864539 DOI: 10.1007/s00429-013-0507-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/06/2013] [Indexed: 02/07/2023]
Abstract
In light of postmortem human studies showing extensive degeneration of the center median (CM) and parafascicular (Pf) thalamic nuclei in Parkinson's disease patients, the present study assessed the extent of neuronal loss in CM/Pf of non-human primates that were rendered parkinsonian by repeated injections of low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In order to determine the course of CM/Pf degeneration during the MPTP intoxication, motor-asymptomatic animals with partial striatal dopamine denervation were also used. The Cavalieri's principle for volume estimation and the unbiased stereological cell count method with the optical dissector technique were used to estimate the total number of neurons in the CM/Pf. We found substantial neurons loss in the CM/Pf in both, motor-symptomatic MPTP-treated monkeys in which the striatal dopamine innervation was reduced by more than 80%, and in motor-asymptomatic MPTP-treated animals with 40-50% striatal dopamine loss. In MPTP-treated parkinsonian monkeys, 60 and 62% neurons loss was found in CM and Pf, respectively, while partially dopamine-depleted asymptomatic animals displayed 59 and 52% neurons loss in the CM and Pf, respectively. Thus, our study demonstrates that the CM/Pf neurons loss is an early phenomenon that occurs prior to the development of parkinsonian motor symptoms in these animals. In contrast, the neighboring mediodorsal nucleus of the thalamus was only mildly affected (18% neurons loss) in the parkinsonian monkeys. Together with recent findings about the possible role of the CM/Pf-striatal system in cognition, our findings suggest that the pathology of the thalamostriatal system may precede the development of motor symptoms in PD, and may account for some of the cognitive deficits in attentional set-shifting often seen in these patients. Future studies in this animal model, and in monkeys with selective lesion of CM or Pf, are needed to further elucidate the role of the CM/Pf-striatal system in normal and parkinsonian conditions.
Collapse
Affiliation(s)
- R. M. Villalba
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA, , Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - T. Wichmann
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA, , Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USADepartment of Neurology, Emory University, Atlanta, GA, USA
| | - Y. Smith
- Yerkes National Primate Research Center, Emory University, 954 Gatewood Rd. NE, Atlanta, GA 30329, USA, , Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA, Department of Neurology, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Villalpando Rodriguez GE, Torriglia A. Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2244-53. [DOI: 10.1016/j.bbamcr.2013.05.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/17/2022]
|
10
|
Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R. Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP⁺-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 2013; 136:166-82. [PMID: 23997112 DOI: 10.1093/toxsci/kft188] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Controversial reports on the role of autophagy as a survival or cell death mechanism in dopaminergic cell death induced by parkinsonian toxins exist. We investigated the alterations in autophagic flux and the role of autophagy protein 5 (Atg5)-dependent autophagy in dopaminergic cell death induced by parkinsonian toxins. Dopaminergic cell death induced by the mitochondrial complex I inhibitors 1-methyl-4-phenylpyridinium (MPP⁺) and rotenone, the pesticide paraquat, and the dopamine analog 6-hydroxydopamine (6-OHDA) was paralleled by increased autophagosome accumulation. However, when compared with basal autophagy levels using chloroquine, autophagosome accumulation was a result of impaired autophagic flux. Only 6-OHDA induced an increase in autophagosome formation. Overexpression of a dominant negative form of Atg5 increased paraquat- and MPP⁺-induced cell death. Stimulation of mammalian target of rapamycin (mTOR)-dependent signaling protected against cell death induced by paraquat, whereas MPP⁺-induced toxicity was enhanced by wortmannin, a phosphoinositide 3-kinase class III inhibitor, rapamycin, and trehalose, an mTOR-independent autophagy activator. Modulation of autophagy by either pharmacological or genetic approaches had no effect on rotenone or 6-OHDA toxicity. Cell death induced by parkinsonian neurotoxins was inhibited by the pan caspase inhibitor (Z-VAD), but only caspase-3 inhibition was able to decrease MPP⁺-induced cell death. Finally, inhibition of the lysosomal hydrolases, cathepsins, increased the toxicity by paraquat and MPP⁺, supporting a protective role of Atg5-dependent autophagy and lysosomes degradation pathways on dopaminegic cell death. These results demonstrate that in dopaminergic cells, Atg5-dependent autophagy acts as a protective mechanism during apoptotic cell death induced by paraquat and MPP⁺ but not during rotenone or 6-OHDA toxicity.
Collapse
|
11
|
Stankiewicz TR, Schroeder EK, Kelsey NA, Bouchard RJ, Linseman DA. C-terminal binding proteins are essential pro-survival factors that undergo caspase-dependent downregulation during neuronal apoptosis. Mol Cell Neurosci 2013; 56:322-332. [PMID: 23859824 DOI: 10.1016/j.mcn.2013.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
C-terminal binding proteins (CtBPs) are transcriptional co-repressors that are subject to proteasome-dependent downregulation during apoptosis. Alternative mechanisms that regulate CtBP expression are currently under investigation and the role of CtBPs in neuronal survival is largely unexplored. Here, we show that CtBPs are downregulated in cerebellar granule neurons (CGNs) induced to undergo apoptosis by a variety of stressors. Moreover, antisense-mediated downregulation of CtBP1 is sufficient to cause CGN apoptosis. Similarly, the CtBP inhibitor, 4-methylthio-2-oxobutyric acid, induces expression of the CtBP target Noxa and causes actinomycin-sensitive CGN apoptosis. Unexpectedly, we found that the mechanism of CtBP downregulation in CGNs undergoing apoptosis varies in a stimulus-specific manner involving either the proteasome or caspases. In the case of CGNs deprived of depolarizing potassium (5K apoptotic condition), caspases appear to play a dominant role in CtBP downregulation. However, incubation in 5K does not enhance the kinetics of CtBP1 degradation and recombinant CtBP1 is not cleaved in vitro by caspase-3. In addition, 5K has no significant effect on CtBP transcript expression. Finally, mouse embryonic stem cells display caspase-dependent downregulation of CtBP1 following exposure to staurosporine, an effect that is not observed in DGCR8 knockout cells which are deficient in miRNA processing. These data identify caspase-dependent downregulation of CtBPs as an alternative mechanism to the proteasome for regulation of these transcriptional co-repressors in neurons undergoing apoptosis. Moreover, caspases appear to regulate CtBP expression indirectly, at a post-transcriptional level, and via a mechanism that is dependent upon miRNA processing. We conclude that CtBPs are essential pro-survival proteins in neurons and their downregulation contributes significantly to neuronal apoptosis via the de-repression of pro-apoptotic genes.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Emily K Schroeder
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Natalie A Kelsey
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA
| | - Ron J Bouchard
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA
| | - Daniel A Linseman
- Research Service, Veterans Affairs Medical Center, Denver, Colorado, 80220, USA.,Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado, 80208, USA.,Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
12
|
Mount MP, Zhang Y, Amini M, Callaghan S, Kulczycki J, Mao Z, Slack RS, Anisman H, Park DS. Perturbation of transcription factor Nur77 expression mediated by myocyte enhancer factor 2D (MEF2D) regulates dopaminergic neuron loss in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Biol Chem 2013; 288:14362-14371. [PMID: 23536182 DOI: 10.1074/jbc.m112.439216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have earlier reported the critical nature of calpain-CDK5-MEF2 signaling in governing dopaminergic neuronal loss in vivo. CDK5 mediates phosphorylation of the neuronal survival factor myocyte enhancer factor 2 (MEF2) leading to its inactivation and loss. However, the downstream factors that mediate MEF2-regulated survival are unknown. Presently, we define Nur77 as one such critical downstream survival effector. Following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo, Nur77 expression in the nigrostriatal region is dramatically reduced. This loss is attenuated by expression of MEF2. Importantly, MEF2 constitutively binds to the Nur77 promoter in neurons under basal conditions. This binding is lost following 1-methyl-4-phenylpyridinium treatment. Nur77 deficiency results in significant sensitization to dopaminergic loss following 1-methyl-4-phenylpyridinium/MPTP treatment, in vitro and in vivo. Furthermore, Nur77-deficient MPTP-treated mice displayed significantly reduced levels of dopamine and 3,4-Dihydroxyphenylacetic acid in the striatum as well as elevated post synaptic FosB activity, indicative of increased nigrostriatal damage when compared with WT MPTP-treated controls. Importantly, this sensitization in Nur77-deficient mice was rescued with ectopic Nur77 expression in the nigrostriatal system. These results indicate that the inactivation of Nur77, induced by loss of MEF2 activity, plays a critical role in nigrostriatal degeneration in vivo.
Collapse
Affiliation(s)
- Matthew P Mount
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Yi Zhang
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Mandana Amini
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steve Callaghan
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jerzy Kulczycki
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Ruth S Slack
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hymie Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - David S Park
- Department of Neuroscience and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Cogno-Mechatronics Engineering, Pusan National University, Miryang 627-706, South Korea.
| |
Collapse
|
13
|
De Simoni S, Linard D, Hermans E, Knoops B, Goemaere J. Mitochondrial peroxiredoxin-5 as potential modulator of mitochondria-ER crosstalk in MPP+-induced cell death. J Neurochem 2013; 125:473-85. [PMID: 23216451 DOI: 10.1111/jnc.12117] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 12/11/2022]
Abstract
Peroxiredoxin-5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca²⁺ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca²⁺ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH-SY5Y cells to dissect the role of this enzyme in 1-methyl-4-phenylpyridinium (MPP)⁺-induced cell death. Our data show that mitochondria-dependent apoptosis triggered by MPP⁺, assessed by the measurement of caspase-9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca²⁺, Ca²⁺-dependent activation of calpains and Bax cleavage. Finally, using Ca²⁺ channel inhibitors (Nimodipine, Dantrolene and 2-APB), we show that Ca²⁺ release arises essentially from ER stores through 1,4,5-inositol-trisphosphate receptors (IP3 R). Altogether, our results suggest that the MPP⁺ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca²⁺ transporters via a crosstalk between mitochondria and ER.
Collapse
Affiliation(s)
- Stéphanie De Simoni
- Group of Cell Biology, Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
14
|
Gray JJ, Zommer AE, Bouchard RJ, Duval N, Blackstone C, Linseman DA. N-terminal cleavage of the mitochondrial fusion GTPase OPA1 occurs via a caspase-independent mechanism in cerebellar granule neurons exposed to oxidative or nitrosative stress. Brain Res 2012; 1494:28-43. [PMID: 23220553 DOI: 10.1016/j.brainres.2012.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/16/2012] [Accepted: 12/01/2012] [Indexed: 01/02/2023]
Abstract
Neuronal cell death via apoptosis or necrosis underlies several devastating neurodegenerative diseases associated with aging. Mitochondrial dysfunction resulting from oxidative or nitrosative stress often acts as an initiating stimulus for intrinsic apoptosis or necrosis. These events frequently occur in conjunction with imbalances in the mitochondrial fission and fusion equilibrium, although the cause and effect relationships remain elusive. Here, we demonstrate in primary rat cerebellar granule neurons (CGNs) that oxidative or nitrosative stress induces an N-terminal cleavage of optic atrophy-1 (OPA1), a dynamin-like GTPase that regulates mitochondrial fusion and maintenance of cristae architecture. This cleavage event is indistinguishable from the N-terminal cleavage of OPA1 observed in CGNs undergoing caspase-mediated apoptosis (Loucks et al., 2009) and results in removal of a key lysine residue (K301) within the GTPase domain. OPA1 cleavage in CGNs occurs coincident with extensive mitochondrial fragmentation, disruption of the microtubule network, and cell death. In contrast to OPA1 cleavage induced in CGNs by removing depolarizing extracellular potassium (5K apoptotic conditions), oxidative or nitrosative stress-induced OPA1 cleavage caused by complex I inhibition or nitric oxide, respectively, is caspase-independent. N-terminal cleavage of OPA1 is also observed in vivo in aged rat and mouse midbrain and hippocampal tissues. We conclude that N-terminal cleavage and subsequent inactivation of OPA1 may be a contributing factor in the neuronal cell death processes underlying neurodegenerative diseases, particularly those associated with aging. Furthermore, these data suggest that OPA1 cleavage is a likely convergence point for mitochondrial dysfunction and imbalances in mitochondrial fission and fusion induced by oxidative or nitrosative stress.
Collapse
Affiliation(s)
- Josie J Gray
- Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, 2199 S. University Blvd., Denver, CO 80208, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kang H, Han BS, Kim SJ, Oh YJ. Mechanisms to prevent caspase activation in rotenone-induced dopaminergic neurodegeneration: role of ATP depletion and procaspase-9 degradation. Apoptosis 2012; 17:449-462. [PMID: 22289916 DOI: 10.1007/s10495-012-0699-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The evidence implicating a mode of cell death that either favors or argues against caspase-dependent apoptosis is available in studies that used experimental models of Parkinson's disease. We sought to investigate the mechanisms by which release of cytochrome c is not linked to caspase activation during rotenone-induced dopaminergic (DA) neurodegeneration. Unlike caspase activation in 6-hydroxydopamine-treated cells, both MN9D DA neuronal cells and primary cultures of mesencephalic neurons showed no obvious signs of caspase activation upon exposure to rotenone. We found that intracellular levels of ATP significantly decreased at the early phase of neurodegeneration (<~24 h) and therefore external addition of ATP to the lysates obtained at this stage reconstituted caspase-3 activity. At a later phase of cell death (>~24 h), both decreased levels of ATP and procaspase-9 contributed to the lack of caspase-3 activation. Under this condition, calpain and the proteasome system were responsible for the degradation of procaspase-9. Consequently, external addition of ATP and procaspase-9 to the lysates harvested at the later phase was required for activation of caspase-3. Similarly, caspase-3 activity was also reconstituted in the lysates harvested from cells co-treated with inhibitors of these proteases and incubated in the presence of external ATP. Taken together, our findings provided a sequential mechanism underlying how DA neurons may undergo caspase-independent cell death, even in the presence of cytoplasmic cytochrome c following inhibition of mitochondrial complex I.
Collapse
Affiliation(s)
- Heewon Kang
- Department of Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 120-749, Korea
| | | | | | | |
Collapse
|
16
|
Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 2011; 192:263-74. [PMID: 21723922 DOI: 10.1016/j.neuroscience.2011.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD), characterized by selective midbrain nigrostriatal dopaminergic degeneration, is consistently associated with moderate systemic mitochondrial dysfunction. Downstream degeneration of spinal cord has also been suggested in PD, although the mechanisms have not been much investigated. In the present study, two mitochondrial toxicants, 1-methyl-4-phenylpyridinium ion (MPP(+)) and rotenone were tested in ventral spinal cord (VSC 4.1) motoneuronal cells. Cell death was assessed by morphological and biochemical means to discern a lower apoptosis-inducing concentration and lethal concentration of 50% cell death (LC(50)), which were subsequently compared in further cytoprotection experiments. Mitochondrial toxicants dose-dependently induced increase in intracellular free Ca(2+) level, which was conducive for increased expression and activities of Ca(2+)-activated neutral protease calpain and downstream caspase-3. Thus, mitochondrial damage triggered apoptotic mechanisms in spinal cord motoneurons. Inhibition of calpain by calpeptin significantly attenuated damaging effects of MPP(+) and rotenone on motoneurons, especially at low apoptosis-inducing concentrations of toxicants and partly at their LC(50), as demonstrated by absence of DNA ladder formation and decrease in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Cytoprotection by calpeptin was observed with marked decreases in Bax: Bcl-2 ratio and activities of calpain and caspase-3, which affirmed the role of mitochondrial dysfunction and involvement of intrinsic pathway in mediation of apoptosis. These findings strongly suggested that parkinsonian toxicants MPP(+) and rotenone at low doses induced cascade of cell-damaging effects in spinal cord motoneurons, thus, highlighting the possibility of induction of apoptotic mechanisms in these cells, when subjected to mitochondrial stress. Cytoprotection rendered by calpeptin further validated the involvement of calpain in apoptosis and suggested calpain inhibition as a potential neuroprotective strategy.
Collapse
|