1
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
2
|
Wang M, Guo J, Lin H, Zou D, Zhu J, Yang Z, Huang Y, He F. UHPLC-QQQ-MS/MS method for the simultaneous quantification of 18 amino acids in various meats. Front Nutr 2024; 11:1467149. [PMID: 39539371 PMCID: PMC11559428 DOI: 10.3389/fnut.2024.1467149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Amino acids are an essential source of human protein, and their content and composition are the main factors determining food protein utilization rate. Determining amino acids is essential in the component analysis of food. Therefore, a groundbreaking technique was developed utilizing ultra-high performance liquid chromatography interfaced with a triple quadrupole mass spectrometer (UHPLC-QQQ-MS/MS) for concurrently quantifying 18 amino acids across various types of meat. According to the test results, it can be known that the average content of glutamate (2.03 × 104 ± 3.94 × 103 μg/g in pig feet) was the highest in all meat samples, and the content of aspartate (0.0945 ± 0.0950 μg/g in pork) was the lowest, which was not detected in some samples such as beef and lean meat. Orthogonal partial least-squares discrimination analysis (OPLS-DA) showed: (1) 13 amino acids (arginine, valine, serine, alanine, lysine, glycine, asparagine, methionine, proline, threonine, glutamate, phenylalanine, and leucine, VIP > 1) were used as characteristic amino acids between pork and pig feet; (2) serine, threonine, alanine, histidine, asparagine, and arginine (VIP > 1) were used as signature amino acids in different components of pork (lean meat, fat, and pigskin); (3) asparagine, glutamate, histidine, tyrosine, and valine (VIP > 1) were considered as signature amino acids in different types of meats (pork, mutton, beef, and chicken). This study provides a new UHPLC-QQQ-MS/MS method for the determination of amino acid content in meat and also provides data support for the comprehensive evaluation of the nutritional value of foods containing amino acids.
Collapse
Affiliation(s)
- Mengxian Wang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Junxiu Guo
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Huimin Lin
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Dawei Zou
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jiaxuan Zhu
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhenyuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yufeng Huang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| | - Fan He
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
3
|
Kolić D, Kovarik Z. N-methyl-d-aspartate receptors: Structure, function, and role in organophosphorus compound poisoning. Biofactors 2024; 50:868-884. [PMID: 38415801 DOI: 10.1002/biof.2048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Acute organophosphorus compound (OP) poisoning induces symptoms of the cholinergic crises with the occurrence of severe epileptic seizures. Seizures are induced by hyperstimulation of the cholinergic system, but are enhanced by hyperactivation of the glutamatergic system. Overstimulation of muscarinic cholinergic receptors by the elevated acetylcholine causes glutamatergic hyperexcitation and an increased influx of Ca2+ into neurons through a type of ionotropic glutamate receptors, N-methyl-d-aspartate (NMDA) receptors (NMDAR). These excitotoxic signaling processes generate reactive oxygen species, oxidative stress, and activation of the neuroinflammatory response, which can lead to recurrent epileptic seizures, neuronal cell death, and long-term neurological damage. In this review, we illustrate the NMDAR structure, complexity of subunit composition, and the various receptor properties that change accordingly. Although NMDARs are in normal physiological conditions important for controlling synaptic plasticity and mediating learning and memory functions, we elaborate the detrimental role NMDARs play in neurotoxicity of OPs and focus on the central role NMDAR inhibition plays in suppressing neurotoxicity and modulating the inflammatory response. The limited efficacy of current medical therapies for OP poisoning concerning the development of pharmacoresistance and mitigating proinflammatory response highlights the importance of NMDAR inhibitors in preventing neurotoxic processes and points to new avenues for exploring therapeutics for OP poisoning.
Collapse
Affiliation(s)
- Dora Kolić
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zrinka Kovarik
- Division of Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
Hayes TR, Chao CK, Blecha JE, Huynh TL, VanBrocklin HF, Zinn KR, Gerdes JM, Thompson CM. [ 11C]Paraoxon: Radiosynthesis, Biodistribution and In Vivo Positron Emission Tomography Imaging in Rat. J Pharmacol Exp Ther 2024; 388:333-346. [PMID: 37770203 PMCID: PMC10801775 DOI: 10.1124/jpet.123.001832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([11C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [11C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [11C]POX. Ex vivo biodistribution and imaging profiles in naïve rats had the highest radioactivity levels in lung followed by heart and kidney, and brain and liver the lowest. Brain radioactivity levels were low but observed immediately after injection and persisted over the 60-minute experiment. This showed for the first time that even low POX exposures (∼200 ng tracer) can rapidly enter brain. Rats given an LD50 dose of nonradioactive paraoxon at the LD50 20 or 60 minutes prior to [11C]POX tracer revealed that protein pools were blocked. Blood radioactivity at 20 minutes was markedly lower than naïve levels due to rapid protein modification by nonradioactive POX; however, by 60 minutes the blood radioactivity returned to near naïve levels. Live rat tissue imaging-derived radioactivity values were 10%-37% of naïve levels in nonradioactive POX pretreated rats at 20 minutes, but by 60 minutes the area under the curve (AUC) values had recovered to 25%-80% of naïve. The live rat imaging supported blockade by nonradioactive POX pretreatment at 20 minutes and recovery of proteins by 60 minutes. SIGNIFICANCE STATEMENT: Paraoxon (POX) is an organophosphorus (OP) compound and a powerful prototype and substitute for OP chemical warfare agents (CWAs) such as sarin, VX, etc. To study the distribution and penetration of POX into the central nervous system (CNS) and other tissues, a positron emission tomography (PET) tracer analog, carbon-11-labeled paraoxon ([11C]POX), was prepared. Blood and tissue radioactivity levels in live rats demonstrated immediate penetration into the CNS and persistent radioactivity levels in tissues indicative of covalent target modification.
Collapse
Affiliation(s)
- Thomas R Hayes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Chih-Kai Chao
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Joseph E Blecha
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Tony L Huynh
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Henry F VanBrocklin
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Kurt R Zinn
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - John M Gerdes
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| | - Charles M Thompson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana (C.-K.C., J.M.G., C.M.T.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California (T.R.H., J.E.B., T.L.H., H.F.V.); and Departments of Radiology, Small Animal Clinical Sciences, and Biomedical Engineering and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan (K.R.Z.)
| |
Collapse
|
5
|
Martin R, Hazemi M, Flynn K, Villeneuve D, Wehmas L. Short-Term Transcriptomic Points of Departure Are Consistent with Chronic Points of Departure for Three Organophosphate Pesticides across Mouse and Fathead Minnow. TOXICS 2023; 11:820. [PMID: 37888672 PMCID: PMC10611195 DOI: 10.3390/toxics11100820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
New approach methods (NAMs) can reduce the need for chronic animal studies. Here, we apply benchmark dose (concentration) (BMD(C))-response modeling to transcriptomic changes in the liver of mice and in fathead minnow larvae after short-term exposures (7 days and 1 day, respectively) to several dose/concentrations of three organophosphate pesticides (OPPs): fenthion, methidathion, and parathion. The mouse liver transcriptional points of departure (TPODs) for fenthion, methidathion, and parathion were 0.009, 0.093, and 0.046 mg/Kg-bw/day, while the fathead minnow larva TPODs were 0.007, 0.115, and 0.046 mg/L, respectively. The TPODs were consistent across both species and reflected the relative potencies from traditional chronic toxicity studies with fenthion identified as the most potent. Moreover, the mouse liver TPODs were more sensitive than or within a 10-fold difference from the chronic apical points of departure (APODs) for mammals, while the fathead minnow larva TPODs were within an 18-fold difference from the chronic APODs for fish species. Short-term exposure to OPPs significantly impacted acetylcholinesterase mRNA abundance (FDR p-value <0.05, |fold change| ≥2) and canonical pathways (IPA, p-value <0.05) associated with organism death and neurological/immune dysfunctions, indicating the conservation of key events related to OPP toxicity. Together, these results build confidence in using short-term, molecular-based assays for the characterization of chemical toxicity and risk, thereby reducing reliance on chronic animal studies.
Collapse
Affiliation(s)
- Rubia Martin
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Durham, NC 27709, USA;
| | - Monique Hazemi
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Duluth, MN 55804, USA;
| | - Kevin Flynn
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, U.S. Environmental Protection Agency, Duluth, MN 55804, USA; (K.F.); (D.V.)
| | - Daniel Villeneuve
- Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Ecology Division, U.S. Environmental Protection Agency, Duluth, MN 55804, USA; (K.F.); (D.V.)
| | - Leah Wehmas
- Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, U.S. Environmental Protection Agency, Durham, NC 27709, USA
| |
Collapse
|
6
|
Souza JADCR, Souza T, Quintans ILADCR, Farias D. Network Toxicology and Molecular Docking to Investigate the Non-AChE Mechanisms of Organophosphate-Induced Neurodevelopmental Toxicity. TOXICS 2023; 11:710. [PMID: 37624215 PMCID: PMC10458981 DOI: 10.3390/toxics11080710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Organophosphate pesticides (OPs) are toxic substances that contaminate aquatic environments, interfere with the development of the nervous system, and induce Neurodevelopmental Toxicity (NDT) in animals and humans. The canonical mechanism of OP neurotoxicity involves the inhibition of acetylcholinesterase (AChE), but other mechanisms non-AChE are also involved and not fully understood. We used network toxicology and molecular docking to identify molecular targets and toxicity mechanisms common to OPs. Targets related to diazinon-oxon, chlorpyrifos oxon, and paraoxon OPs were predicted using the Swiss Target Prediction and PharmMapper databases. Targets related to NDT were compiled from GeneCards and OMIM databases. In order to construct the protein-protein interaction (PPI) network, the common targets between OPs and NDT were imported into the STRING. Network topological analyses identified EGFR, MET, HSP90AA1, and SRC as hub nodes common to the three OPs. Using the Reactome pathway and gene ontology, we found that signal transduction, axon guidance, cellular responses to stress, and glutamatergic signaling activation play key roles in OP-induced NDT.
Collapse
Affiliation(s)
- Juliana Alves da Costa Ribeiro Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| | | | - Davi Farias
- Postgraduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-970, Brazil;
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, Brazil;
| |
Collapse
|
7
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
8
|
Weitman M, Eisenkraft A, TaShma Z, Makarovsky I, Last D, Daniels D, Guez D, Shneor R, Mardor Y, Nudelman A, Krivoy A. Synthesis and preliminary biological evaluation of gabactyzine, a benactyzine-GABA mutual prodrug, as an organophosphate antidote. Sci Rep 2022; 12:18078. [PMID: 36302937 PMCID: PMC9613653 DOI: 10.1038/s41598-022-23141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 01/09/2023] Open
Abstract
Organophosphates (OPs) are inhibitors of acetylcholinesterase and have deleterious effects on the central nervous system. Clinical manifestations of OP poisoning include convulsions, which represent an underlying toxic neuro-pathological process, leading to permanent neuronal damage. This neurotoxicity is mediated through the cholinergic, GABAergic and glutamatergic (NMDA) systems. Pharmacological interventions in OP poisoning are designed to mitigate these specific neuro-pathological pathways, using anticholinergic drugs and GABAergic agents. Benactyzine is a combined anticholinergic, anti-NMDA compound. Based on previous development of novel GABA derivatives (such as prodrugs based on perphenazine for the treatment of schizophrenia and nortriptyline against neuropathic pain), we describe the synthesis and preliminary testing of a mutual prodrug ester of benactyzine and GABA. It is assumed that once the ester crosses the blood-brain-barrier it will undergo hydrolysis, releasing benactyzine and GABA, which are expected to act synergistically. The combined release of both compounds in the brain offers several advantages over the current OP poisoning treatment protocol: improved efficacy and safety profile (where the inhibitory properties of GABA are expected to counteract the anticholinergic cognitive adverse effects of benactyzine) and enhanced chemical stability compared to benactyzine alone. We present here preliminary results of animal studies, showing promising results with early gabactyzine administration.
Collapse
Affiliation(s)
- Michal Weitman
- Chemistry Department, Bar Ilan University, 52900, Ramat Gan, Israel
| | - Arik Eisenkraft
- The Institute for Research in Military Medicine, The Hebrew University Faculty of Medicine and The IDF Medical Corps, Jerusalem, Israel.
- The IDF Medical Corps Headquarters, Ramat Gan, Israel.
| | - Zeev TaShma
- The IDF Medical Corps Headquarters, Ramat Gan, Israel
| | - Igor Makarovsky
- Chemistry Department, Bar Ilan University, 52900, Ramat Gan, Israel
| | - David Last
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Dianne Daniels
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - David Guez
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Ran Shneor
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Yael Mardor
- The Advanced Technology Center, Sheba Medical Center, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Abraham Nudelman
- Chemistry Department, Bar Ilan University, 52900, Ramat Gan, Israel.
| | - Amir Krivoy
- The IDF Medical Corps Headquarters, Ramat Gan, Israel.
- Geha Mental Health Center, Petach-Tikva, Israel.
| |
Collapse
|
9
|
Abhari AP, Etemadifar M, Yazdanpanah N, Rezaei N. N-Methyl-D-Aspartate (NMDA)-Type Glutamate Receptors and Demyelinating Disorders: A Neuroimmune Perspective. Mini Rev Med Chem 2022; 22:2624-2640. [PMID: 35507747 DOI: 10.2174/1389557522666220504135853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors, highly important in regulating substantial physiologic processes in the brain and the nervous system, and disturbance in their function could contribute to different pathologies. Overstimulation and hyperactivity of NMDARs, termed as glutamate toxicity, could promote cell death and apoptosis. Meanwhile, their blockade could lead to dysfunction of the brain and nervous system as well. A growing body of evidence has demonstrated the prominent role of NMDARs in demyelinating disorders and anti-NMDAR encephalitis. Herein, we provide an overview of the role of NMDARs' dysfunction in the physiopathology of demyelinating disorders such as multiple sclerosis and neuromyelitis optica spectrum disorders.
Collapse
Affiliation(s)
- Amir Parsa Abhari
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.,School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children\'s Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Haigis AC, Ottermanns R, Schiwy A, Hollert H, Legradi J. Getting more out of the zebrafish light dark transition test. CHEMOSPHERE 2022; 295:133863. [PMID: 35124091 DOI: 10.1016/j.chemosphere.2022.133863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In (eco-)toxicological studies the light/dark transition (LDT) test is one of the most frequently used behaviour assays with zebrafish eleutheroembryos. However, study results vary regarding data presentation and analysis and mostly focus on a limited amount of the recorded data. In this study, we investigated whether monitoring two behavioural outcomes (time and distance moved) together with analysing multiple parameters can improve test sensitivity and data interpretation. As a proof of principle 5-day old zebrafish (Danio rerio) eleutheroembryos exposed to either endocrine disruptors (EDs) or acetylcholine esterase (AChE) inhibitors were investigated. We analysed conventional parameters such as mean and sum and implemented additional endpoints such as minimum or maximum distance moved and new parameters assessing the bursting response of eleutheroembryos. Furthermore, changes in eleutheroembryonic behaviour during the moment of the light to dark transition were added. To improve data presentation control-normalised results were displayed in radar charts, enabling the simultaneous presentation of different parameters in relation to each other. This enabled us to identify parameters most relevant to a certain behavioural response. A cut off threshold using control data was applied to identify parameters that were altered in a biological relevant manner. Our approach was able to detect effects on different parameters that remained undetected when analysis was done using conventional bar graphs on - in most cases analysed - averaged, mean distance moved values. By combining the radar charts with additional parameters and by using control-based thresholds, we were able to increase the test sensitivity and promote a deeper understanding of the behaviour response of zebrafish eleutheroembryos in the LDT test and thereby increased its usability for behavioural toxicity studies.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Richard Ottermanns
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany.
| | - Andreas Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, 52074, Aachen, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Jessica Legradi
- Environment & Health, VU Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Hodo TW, de Aquino MTP, Shimamoto A, Shanker A. Critical Neurotransmitters in the Neuroimmune Network. Front Immunol 2020; 11:1869. [PMID: 32973771 PMCID: PMC7472989 DOI: 10.3389/fimmu.2020.01869] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.
Collapse
Affiliation(s)
- Thomas Wesley Hodo
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,Department of Microbiology and Immunology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States
| | - Maria Teresa Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Akiko Shimamoto
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College School of Medicine, Nashville, TN, United States.,School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, United States.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Golderman V, Shavit-Stein E, Gera O, Chapman J, Eisenkraft A, Maggio N. Thrombin and the Protease-Activated Receptor-1 in Organophosphate-Induced Status Epilepticus. J Mol Neurosci 2018; 67:227-234. [PMID: 30515700 DOI: 10.1007/s12031-018-1228-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022]
Abstract
Organophosphates (OP) are a major threat to the health of soldiers and civilians due to their use as chemical weapons in war and in terror attacks. Among the acute manifestations of OP poisoning, status epilepticus (SE) is bearing the highest potential for long-term damages. Current therapies do not prevent brain damage and seizure-related brain injuries in OP-exposed humans. Thrombin is a serine protease known to have a fundamental function in the clotting cascade. It is highly expressed in the brain where we have previously found that it regulates synaptic transmission and plasticity. In addition, we have found that an excess of thrombin in the brain leads to hyperexcitability and therefore seizures through a glutamate-dependent mechanism. In the current study, we carried out in vitro, ex vivo, and in vivo experiments in order to determine the role of thrombin and its receptor PAR-1 in paraoxon-induced SE. Elevated thrombin activity was found in the brain slices from mice that were treated (in vitro and in vivo) with paraoxon. Increased levels of PAR-1 and pERK proteins and decreased prothrombin mRNA were found in the brains of paraoxon-treated mice. Furthermore, ex vivo and in vivo electrophysiological experiments showed that exposure to paraoxon causes elevated electrical activity in CA1 and CA3 regions of the hippocampus. Moreover, a specific PAR-1 antagonist (SCH79797) reduced this activity. Altogether, these results reveal the importance of thrombin and PAR-1 in paraoxon poisoning. In addition, the results indicate that thrombin and PAR-1 may be a possible target for the treatment of paraoxon-induced status epilepticus.
Collapse
Affiliation(s)
- Valery Golderman
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel. .,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel
| | - Orna Gera
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.,Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Arik Eisenkraft
- Institute for Research in Military Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, 52621, Ramat Gan, Israel.,Department of Neurology, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.,Talpiot medical leadership program, Chaim Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel
| |
Collapse
|
13
|
Ferrara-Bowens TM, Chandler JK, Guignet MA, Irwin JF, Laitipaya K, Palmer DD, Shumway LJ, Tucker LB, McCabe JT, Wegner MD, Johnson EA. Neuropathological and behavioral sequelae in IL-1R1 and IL-1Ra gene knockout mice after soman (GD) exposure. Neurotoxicology 2017; 63:43-56. [DOI: 10.1016/j.neuro.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 08/28/2017] [Accepted: 08/28/2017] [Indexed: 01/03/2023]
|
14
|
Morris G, Puri BK, Frye RE. The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 2017; 32:1335-1355. [PMID: 28752219 PMCID: PMC5596046 DOI: 10.1007/s11011-017-0077-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
Abstract
The conceptualisation of autistic spectrum disorder and Alzheimer's disease has undergone something of a paradigm shift in recent years and rather than being viewed as single illnesses with a unitary pathogenesis and pathophysiology they are increasingly considered to be heterogeneous syndromes with a complex multifactorial aetiopathogenesis, involving a highly complex and diverse combination of genetic, epigenetic and environmental factors. One such environmental factor implicated as a potential cause in both syndromes is aluminium, as an element or as part of a salt, received, for example, in oral form or as an adjuvant. Such administration has the potential to induce pathology via several routes such as provoking dysfunction and/or activation of glial cells which play an indispensable role in the regulation of central nervous system homeostasis and neurodevelopment. Other routes include the generation of oxidative stress, depletion of reduced glutathione, direct and indirect reductions in mitochondrial performance and integrity, and increasing the production of proinflammatory cytokines in both the brain and peripherally. The mechanisms whereby environmental aluminium could contribute to the development of the highly specific pattern of neuropathology seen in Alzheimer's disease are described. Also detailed are several mechanisms whereby significant quantities of aluminium introduced via immunisation could produce chronic neuropathology in genetically susceptible children. Accordingly, it is recommended that the use of aluminium salts in immunisations should be discontinued and that adults should take steps to minimise their exposure to environmental aluminium.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Richard E Frye
- College of Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock, AR, 72202, USA
| |
Collapse
|
15
|
Reddy DS, Colman E. A Comparative Toxidrome Analysis of Human Organophosphate and Nerve Agent Poisonings Using Social Media. Clin Transl Sci 2017; 10:225-230. [PMID: 28238224 PMCID: PMC5421825 DOI: 10.1111/cts.12435] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022] Open
Abstract
Here we utilized social media to compare the toxidrome of three lethal chemical exposures worldwide. YouTube videos were the main source from which the data were collected, but published reports and news were also utilized to fill in some gaps. All videos were organized in a database detailing symptoms and severity of each victim, along with demographics such as approximate age and gender. Each symptom was rated as mild, moderate, or severe and corresponding pie graphs for each incident were compared. The videos displayed symptoms ranging from mild to severe cholinergic toxicity and life‐threatening convulsions. Social media may represent an important resource in developing a viable approach to the early detection and identification of chemical exposure, reinforce our preparedness for better antidotes, long‐term follow up, and training about deadly chemical nerve agent attacks.
Collapse
Affiliation(s)
- D S Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - E Colman
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, USA
| |
Collapse
|
16
|
Golderman V, Shavit-Stein E, Tamarin I, Rosman Y, Shrot S, Rosenberg N, Maggio N, Chapman J, Eisenkraft A. The Organophosphate Paraoxon and Its Antidote Obidoxime Inhibit Thrombin Activity and Affect Coagulation In Vitro. PLoS One 2016; 11:e0163787. [PMID: 27689805 PMCID: PMC5045196 DOI: 10.1371/journal.pone.0163787] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/14/2016] [Indexed: 11/18/2022] Open
Abstract
Organophosphates (OPs) are potentially able to affect serine proteases by reacting with their active site. The potential effects of OPs on coagulation factors such as thrombin and on coagulation tests have been only partially characterized and potential interactions with OPs antidotes such as oximes and muscarinic blockers have not been addressed. In the current study, we investigated the in vitro interactions between coagulation, thrombin, the OP paraoxon, and its antidotes obidoxime and atropine. The effects of these substances on thrombin activity were measured in a fluorescent substrate and on coagulation by standard tests. Both paraoxon and obidoxime but not atropine significantly inhibited thrombin activity, and prolonged prothrombin time, thrombin time, and partial thromboplastin time. When paraoxon and obidoxime were combined, a significant synergistic effect was found on both thrombin activity and coagulation tests. In conclusion, paraoxon and obidoxime affect thrombin activity and consequently alter the function of the coagulation system. Similar interactions may be clinically relevant for coagulation pathways in the blood and possibly in the brain.
Collapse
Affiliation(s)
- Valery Golderman
- Laboratory for Neurological Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, the Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Ilia Tamarin
- Department of Hematology, Coagulation Laboratory, Sheba Medical Center, Tel HaShomer, Israel
| | - Yossi Rosman
- Surgeon General Headquarters, Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Shrot
- Surgeon General Headquarters, Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Israel
- Department of radiology, MedStar Georgetown University Hospital, Washington DC, United States of America
| | - Nurit Rosenberg
- Department of Hematology, Coagulation Laboratory, Sheba Medical Center, Tel HaShomer, Israel
| | - Nicola Maggio
- Department of Neurology, the Chaim Sheba Medical Center, Tel HaShomer, Israel
- Department of Neurology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Joab Chapman
- Department of Neurology, the Chaim Sheba Medical Center, Tel HaShomer, Israel
- Department of Neurology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arik Eisenkraft
- Surgeon General Headquarters, Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Israel
- NBC Protection Division, IMoD, Hakyria, Tel Aviv, Israel
- Institute for Research in Military Medicine, the Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
17
|
Zebrafish is a predictive model for identifying compounds that protect against brain toxicity in severe acute organophosphorus intoxication. Arch Toxicol 2016; 91:1891-1901. [PMID: 27655295 PMCID: PMC5364264 DOI: 10.1007/s00204-016-1851-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included “standard therapy” drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-d-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC50)] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.
Collapse
|
18
|
Du J, Li XH, Li YJ. Glutamate in peripheral organs: Biology and pharmacology. Eur J Pharmacol 2016; 784:42-8. [PMID: 27164423 DOI: 10.1016/j.ejphar.2016.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 01/28/2023]
Abstract
Glutamate is a versatile molecule existing in both the central nervous system and peripheral organs. Previous studies have mainly focussed on the biological effect of glutamate in the brain. Recently, abundant evidence has demonstrated that glutamate also participates in the regulation of physiopathological functions in peripheral tissues, including the lung, kidney, liver, heart, stomach and immune system, where the glutamate/glutamate receptor/glutamate transporter system plays an important role in the pathogenesis of certain diseases, such as myocardial ischaemia/reperfusion injury and acute gastric mucosa injury. All these findings provide new insight into the biology and pharmacology of glutamate and suggest a potential therapeutic role of glutamate in non-neurological diseases.
Collapse
Affiliation(s)
- Jie Du
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiao-Hui Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuan-Jian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
19
|
Eisenkraft A, Falk A. The possible role of intravenous lipid emulsion in the treatment of chemical warfare agent poisoning. Toxicol Rep 2016; 3:202-210. [PMID: 28959540 PMCID: PMC5615427 DOI: 10.1016/j.toxrep.2015.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/29/2015] [Accepted: 12/24/2015] [Indexed: 12/19/2022] Open
Abstract
Organophosphates (OPs) are cholinesterase inhibitors that lead to a characteristic toxidrome of hypersecretion, miosis, dyspnea, respiratory insufficiency, convulsions and, without proper and early antidotal treatment, death. Most of these compounds are highly lipophilic. Sulfur mustard is a toxic lipophilic alkylating agent, exerting its damage through alkylation of cellular macromolecules (e.g., DNA, proteins) and intense activation of pro-inflammatory pathways. Currently approved antidotes against OPs include the peripheral anticholinergic drug atropine and an oxime that reactivates the inhibited cholinesterase. Benzodiazepines are used to stop organophosphate-induced seizures. Despite these approved drugs, efforts have been made to introduce other medical countermeasures in order to attenuate both the short-term and long-term clinical effects following exposure. Currently, there is no antidote against sulfur mustard poisoning. Intravenous lipid emulsions are used as a source of calories in parenteral nutrition. In recent years, efficacy of lipid emulsions has been shown in the treatment of poisoning by fat-soluble compounds in animal models as well as clinically in humans. In this review we discuss the usefulness of intravenous lipid emulsions as an adjunct to the in-hospital treatment of chemical warfare agent poisoning.
Collapse
Affiliation(s)
- Arik Eisenkraft
- NBC Protection Division, IMOD, Israel.,Israel Defense Forces Medical Corps, Israel.,The Institute for Research in Military Medicine, The Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
20
|
Faria M, Garcia-Reyero N, Padrós F, Babin PJ, Sebastián D, Cachot J, Prats E, Arick Ii M, Rial E, Knoll-Gellida A, Mathieu G, Le Bihanic F, Escalon BL, Zorzano A, Soares AMVM, Raldúa D. Zebrafish Models for Human Acute Organophosphorus Poisoning. Sci Rep 2015; 5:15591. [PMID: 26489395 PMCID: PMC4614985 DOI: 10.1038/srep15591] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/29/2015] [Indexed: 12/13/2022] Open
Abstract
Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.
Collapse
Affiliation(s)
- Melissa Faria
- Department of Biology and CESAM, University of Aveiro, Portugal.,IDÆA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA.,Institute for Genomics, Biocomputing &Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Francesc Padrós
- Pathological Diagnostic Service in Fish, Universitat Autònoma de Barcelona, 08190 Bellaterra, Spain
| | - Patrick J Babin
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | - Jérôme Cachot
- EPOC, UMR CNRS 5805, Université de Bordeaux, 33405 Talence, France
| | - Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Mark Arick Ii
- Institute for Genomics, Biocomputing & Biotechnology (IGBB), Mississippi State University, Starkville, Mississippi, USA
| | - Eduardo Rial
- Department of Cellular and Molecular Medicine, CIB-CSIC, Ramiro de Maetzu 9, 28040, Madrid, Spain
| | - Anja Knoll-Gellida
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | - Guilaine Mathieu
- Rare Diseases, Genetic and Metabolism (MRGM), Université de Bordeaux, EA 4576, F-3340 Talence, France
| | | | - B Lynn Escalon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), 08028 Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain.,Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08017 Barcelona, Spain
| | | | | |
Collapse
|
21
|
Gur I, Shapira S, Katalan S, Rosner A, Baranes S, Grauer E, Moran-Gilad J, Eisenkraft A. Biphasic cuirass ventilation is better than bag-valve mask ventilation for resuscitation following organophosphate poisoning. Toxicol Rep 2014; 2:40-45. [PMID: 28962335 PMCID: PMC5598215 DOI: 10.1016/j.toxrep.2014.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/01/2014] [Accepted: 11/01/2014] [Indexed: 11/28/2022] Open
Abstract
Objective Exposure to organophosphates (OP) may lead to a life threatening cholinergic crisis with death attributed to a rapidly progressive respiratory failure. In a toxicological mass casualty event involving organophosphate exposure, many of the victims may depend on immediate short-term ventilation to overcome the respiratory distress which may exhaust life supporting resources. In addition, the mandatory use of personal protective gear by first responders emphasizes the need for a noninvasive, easy-to-operate ventilation device. Our objective was to assess the efficacy of MRTX, a Biphasic Cuirass Ventilation device, in comparison with standard bag-valve mask ventilation following acute organophosphate poisoning. Methods Pigs were exposed to paraoxon poisoning (1.4 LD50), and treated 8 min later with atropine (0.05 mg/kg). The control group received no further support (n = 9), the two experimental groups received ventilation support initiated 15 min post exposure and lasted for 25 min: one group was ventilated with the commonly used bag-valve mask (Mask group, n = 7) and the other was ventilated with the Biphasic Cuirass Ventilation device (Cuirass group, n = 7). Clinical signs and physiological parameters were monitored during the first hour, and mortality up to 24 h post exposure was recorded. Results No mortality was observed in the Cuirass group following OP poisoning, while mortality in the Control and in the Mask groups was high (67% and 71%, respectively). Mouth excretions of the cuirass-ventilated animals were frothy white as in deep suctioning, as opposed to the clear saliva-like appearance of secretions in the other two groups. No further group differences were recorded. Conclusions The noninvasive, easy-to-operate Biphasic Cuirass Ventilation device was effective in reducing OP-induced mortality and might be advantageous in an organophosphate mass casualty event. This finding should be validated in further investigations.
Collapse
Affiliation(s)
- Ilan Gur
- Bikur Holim Hospital, Jerusalem, Israel
| | - Shlomo Shapira
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahaf Katalan
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Amir Rosner
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shlomo Baranes
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ettie Grauer
- Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | - Arik Eisenkraft
- IDF Medical Corps, Ramat Gan, Israel.,NBC Protection Division, IMOD, Tel-Aviv, Israel.,The Institute for Research in Military Medicine (IRMM), The Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
22
|
Bar-Klein G, Swissa E, Kamintsky L, Shekh-Ahmad T, Saar-Ashkenazy R, Hubary Y, Shrot S, Stetlander L, Eisenkraft A, Friedman A, Bialer M. sec-Butyl-propylacetamide (SPD) and two of its stereoisomers rapidly terminate paraoxon-induced status epilepticus in rats. Epilepsia 2014; 55:1953-8. [DOI: 10.1111/epi.12838] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2014] [Indexed: 01/03/2023]
Affiliation(s)
- Guy Bar-Klein
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences; The Zlotowski Center for Neuroscience; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Evyatar Swissa
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences; The Zlotowski Center for Neuroscience; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Lyn Kamintsky
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences; The Zlotowski Center for Neuroscience; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Tawfeeq Shekh-Ahmad
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; Hebrew University; Ein Karem Jerusalem Israel
| | - Rotem Saar-Ashkenazy
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences; The Zlotowski Center for Neuroscience; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | | | - Shai Shrot
- Medical Corps Headquarters; IDF; Tel Aviv Israel
| | | | - Arik Eisenkraft
- NBC Protection Division; IMOD; Tel Aviv Israel
- Medical Corps Headquarters; IDF; Tel Aviv Israel
- Faculty of Medicine; The Institute for Research in Military Medicine; Hebrew University; Jerusalem Israel
| | - Alon Friedman
- Departments of Physiology & Cell Biology, Cognitive and Brain Sciences; The Zlotowski Center for Neuroscience; Ben-Gurion University of the Negev; Beer-Sheva Israel
| | - Meir Bialer
- Faculty of Medicine; Institute for Drug Research; School of Pharmacy; Hebrew University; Ein Karem Jerusalem Israel
| |
Collapse
|
23
|
Caramiphen edisylate: an optimal antidote against organophosphate poisoning. Toxicology 2014; 325:115-24. [PMID: 25201353 DOI: 10.1016/j.tox.2014.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/21/2014] [Accepted: 09/04/2014] [Indexed: 11/30/2022]
Abstract
Potent cholinesterase inhibitors such as sarin, induce an array of harmful effects including hypersecretion, convulsions and ultimately death. Surviving subjects demonstrate damage in specific brain regions that lead to cognitive and neurological dysfunctions. An early accumulation of acetylcholine in the synaptic clefts was suggested as the trigger of a sequence of neurochemical events such as an excessive outpour of glutamate and activation of its receptors. Indeed, alterations in NMDA and AMPA central receptors' densities were detected in brains of poisoned animals. Attempts to improve the current cholinergic-based treatment by adding potent anticonvulsants or antiglutamatergic drugs produced unsatisfactory results. In light of recent events in Syria and the probability of various scenarios of military or terrorist attacks involving organophosphate (OP) nerve agent, research should focus on finding markedly improved countermeasures. Caramiphen, an antimuscarinic drug with antiglutamatergic and GABAergic facilitating properties, was evaluated in a wide range of animals and experimental protocols against OP poisoning. Its remarkable efficacy against OP exposure was established both in prophylactic and post-exposure therapies in both small and large animals. The present review will highlight the outstanding neuroprotective effect of caramiphen as the optimal candidate for the treatment of OP-exposed subjects.
Collapse
|
24
|
Eisenkraft A, Gilburd D, Kassirer M, Kreiss Y. What can we learn on medical preparedness from the use of chemical agents against civilians in Syria? Am J Emerg Med 2014; 32:186. [DOI: 10.1016/j.ajem.2013.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 01/04/2023] Open
|
25
|
Perinatal exposure to insecticide methamidophos suppressed production of proinflammatory cytokines responding to virus infection in lung tissues in mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:151807. [PMID: 24369005 PMCID: PMC3866880 DOI: 10.1155/2013/151807] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/07/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022]
Abstract
Methamidophos, a representative organophosphate insecticide, is regulated because of its severe neurotoxicity, but it is suspected of contaminating agricultural foods in many countries due to illicit use. To reveal unknown effects of methamidophos on human health, we evaluated the developmental immunotoxicity of methamidophos using a respiratory syncytial virus (RSV) infection mouse model. Pregnant mice were exposed to methamidophos (10 or 20 ppm) in their drinking water from gestation day 10 to weaning on postnatal day 21. Offsprings born to these dams were intranasally infected with RSV. The levels of interleukin-6 (IL-6) and interferon-gamma in the bronchoalveolar lavage fluids after infection were significantly decreased in offspring mice exposed to methamidophos. Treatment with methamidophos did not affect the pulmonary viral titers but suppressed moderately the inflammation of lung tissues of RSV-infected offspring, histopathologically. DNA microarray analysis revealed that gene expression of the cytokines in the lungs of offspring mice exposed to 20 ppm of methamidophos was apparently suppressed compared with the control. Methamidophos did not suppress IL-6 production in RSV-infected J774.1 cell cultures. Thus, exposure of the mother to methamidophos during pregnancy and nursing was suggested to cause an irregular immune response in the lung tissues in the offspring mice.
Collapse
|