1
|
Maity D, Kaundal RK. Exploring dysregulated miRNAs in ALS: implications for disease pathogenesis and early diagnosis. Neurol Sci 2025; 46:1661-1686. [PMID: 39570437 DOI: 10.1007/s10072-024-07840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease marked by motor neuron degeneration, leading to muscle weakness and paralysis, with no effective treatments available. Early diagnosis could slow disease progression and optimize treatment. MicroRNAs (miRNAs) are being investigated as potential biomarkers due to their regulatory roles in cellular processes and stability in biofluids. However, variability across studies complicates their diagnostic utility in ALS. This study aims to identify significantly dysregulated miRNAs in ALS through meta-analysis to elucidate disease mechanisms and improve diagnostic strategies. METHODS We systematically searched PubMed, Google Scholar, and the Cochrane Library, following predefined inclusion and exclusion criteria. The primary effect measure was the standardized mean difference (SMD) with a 95% confidence interval, analyzed using a random-effects model. Additionally, we used network pharmacology to examine the targets of dysregulated miRNAs and their roles in ALS pathology. RESULTS Analysing 34 studies, we found significant upregulation of hsa-miR-206, hsa-miR-133b, hsa-miR-23a, and hsa-miR-338-3p, and significant downregulation of hsa-miR-218, hsa-miR-21-5p, and hsa-let-7b-5p in ALS patients. These miRNAs are involved in ALS pathophysiology, including stress granule formation, nuclear pore complex, SMCR8 and Sig1R dysfunction, histone methyltransferase complex alterations, and MAPK signaling perturbation, highlighting their critical role in ALS progression. CONCLUSION This study identifies several dysregulated miRNAs in ALS patients, offering insights into their role in the disease and potential as diagnostic biomarkers. These findings enhance our understanding of ALS mechanisms and may inform future diagnostic strategies. Validating these results and exploring miRNA-based interventions are crucial for improving ALS diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
2
|
Sun J, Zhang Y. Microbiome and micronutrient in ALS: From novel mechanisms to new treatments. Neurotherapeutics 2024; 21:e00441. [PMID: 39218769 PMCID: PMC11585885 DOI: 10.1016/j.neurot.2024.e00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disorder. Despite extensive studies, it remains challenging to treat ALS. Recent ALS studies have shown dysbiosis (e.g., loss of microbial diversity and beneficial function in the gut microbiota) is correlated with intestinal inflammation and change of intestinal integrity in ALS. The novel concepts and the roles of microbiome and microbial metabolites through the gut-microbiome-neuron axis in ALS pathogenesis have been slowly recognized by the neurology research field. Here, we will discuss the recent progress of microbiome, including bacteria, fungi, and viruses, in the ALS research. We will discuss our understanding of microbial metabolites in ALS. Micronutrition refers to the intake of essential vitamins, minerals, and other micronutrients. We will summarize the literation related to micronutrition and ALS. Furthermore, we will consider the mutual interactions of microbiome and micronutrition in the ALS progression and treatment. We further propose that the mechanistic and translational studies that shift from suspension of disbelief to cogent ingenuity, and from bench study to bed-side application, should allow new strategies of diagnosis and treatment for ALS.
Collapse
Affiliation(s)
- Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Ishino F, Itoh J, Irie M, Matsuzawa A, Naruse M, Suzuki T, Hiraoka Y, Kaneko-Ishino T. Retrovirus-Derived RTL9 Plays an Important Role in Innate Antifungal Immunity in the Eutherian Brain. Int J Mol Sci 2023; 24:14884. [PMID: 37834332 PMCID: PMC10573853 DOI: 10.3390/ijms241914884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Retrotransposon Gag-like (RTL) genes play a variety of essential and important roles in the eutherian placenta and brain. It has recently been demonstrated that RTL5 and RTL6 (also known as sushi-ichi retrotransposon homolog 8 (SIRH8) and SIRH3) are microglial genes that play important roles in the brain's innate immunity against viruses and bacteria through their removal of double-stranded RNA and lipopolysaccharide, respectively. In this work, we addressed the function of RTL9 (also known as SIRH10). Using knock-in mice that produce RTL9-mCherry fusion protein, we examined RTL9 expression in the brain and its reaction to fungal zymosan. Here, we demonstrate that RTL9 plays an important role, degrading zymosan in the brain. The RTL9 protein is localized in the microglial lysosomes where incorporated zymosan is digested. Furthermore, in Rtl9 knockout mice expressing RTL9ΔC protein lacking the C-terminus retroviral GAG-like region, the zymosan degrading activity was lost. Thus, RTL9 is essentially engaged in this reaction, presumably via its GAG-like region. Together with our previous study, this result highlights the importance of three retrovirus-derived microglial RTL genes as eutherian-specific constituents of the current brain innate immune system: RTL9, RTL5 and RTL6, responding to fungi, viruses and bacteria, respectively.
Collapse
Affiliation(s)
- Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Johbu Itoh
- Department of Pathology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | - Masahito Irie
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Department of Genomic Function and Diversity, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mie Naruse
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Toru Suzuki
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| |
Collapse
|
4
|
Goutman SA, Savelieff MG, Jang DG, Hur J, Feldman EL. The amyotrophic lateral sclerosis exposome: recent advances and future directions. Nat Rev Neurol 2023; 19:617-634. [PMID: 37709948 PMCID: PMC11027963 DOI: 10.1038/s41582-023-00867-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease of motor neuron degeneration with typical survival of only 2-5 years from diagnosis. The causes of ALS are multifactorial: known genetic mutations account for only around 70% of cases of familial ALS and 15% of sporadic cases, and heritability estimates range from 8% to 61%, indicating additional causes beyond genetics. Consequently, interest has grown in environmental contributions to ALS risk and progression. The gene-time-environment hypothesis posits that ALS onset occurs through an interaction of genes with environmental exposures during ageing. An alternative hypothesis, the multistep model of ALS, suggests that several hits, at least some of which could be environmental, are required to trigger disease onset, even in the presence of highly penetrant ALS-associated mutations. Studies have sought to characterize the ALS exposome - the lifetime accumulation of environmental exposures that increase disease risk and affect progression. Identifying the full scope of environmental toxicants that enhance ALS risk raises the prospect of preventing disease by eliminating or mitigating exposures. In this Review, we summarize the evidence for an ALS exposome, discussing the strengths and limitations of epidemiological studies that have identified contributions from various sources. We also consider potential mechanisms of exposure-mediated toxicity and suggest future directions for ALS exposome research.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Dae-Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Harding CF, Liao D, Persaud R, DeStefano RA, Page KG, Stalbow LL, Roa T, Ford JC, Goman KD, Pytte CL. Differential effects of exposure to toxic or nontoxic mold spores on brain inflammation and Morris water maze performance. Behav Brain Res 2023; 442:114294. [PMID: 36638914 PMCID: PMC10460635 DOI: 10.1016/j.bbr.2023.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
People who live or work in moldy buildings often complain of "brain fog" that interferes with cognitive performance. Until recently, there was no published research on the effects of controlled exposure to mold stimuli on cognitive function or an obvious mechanism of action, fueling controversy over these claims. The constellation of health problems reported by mold-exposed individuals (respiratory issues, fatigue, pain, anxiety, depression, and cognitive deficits) correspond to those caused by innate immune activation following exposure to bacterial or viral stimuli. To determine if mold-induced innate immune activation might cause cognitive issues, we quantified the effects of both toxic and nontoxic mold on brain immune activation and spatial memory in the Morris water maze. We intranasally administered either 1) intact, toxic Stachybotrys chartarum spores; 2) ethanol-extracted, nontoxic Stachybotrys chartarum spores; or 3) control saline vehicle to mice. Inhalation of nontoxic spores caused significant deficits in the test of long-term memory of platform location, while not affecting short-term memory. Inhalation of toxic spores increased motivation to reach the platform. Interestingly, in both groups of mold-exposed males, numbers of interleukin-1β-immunoreactive cells in many areas of the hippocampus significantly correlated with latency to find the platform, path length, and swimming speed during training, but not during testing for long-term memory. These data add to our prior evidence that mold inhalation can interfere with cognitive processing in different ways depending on the task, and that brain inflammation is significantly correlated with changes in behavior.
Collapse
Affiliation(s)
- Cheryl F Harding
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA.
| | - David Liao
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA
| | - Ramona Persaud
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA; Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Richard A DeStefano
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Chemistry Department, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Kimberly G Page
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA
| | - Lauren L Stalbow
- Macaulay Honors College, CUNY, 35 West 67th Street, New York, NY 10023, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| | - Tina Roa
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Jordan C Ford
- Biological Sciences, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Ksenia D Goman
- Department of Psychology, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA
| | - Carolyn L Pytte
- Behavioral and Cognitive Neuroscience Doctoral Program, The Graduate Center, CUNY, 365 Fifth Avenue, New York, NY 10016, USA; Psychology Department, Queens College, CUNY, 65-30 Kissena Boulevard, Flushing 11367, NY, USA
| |
Collapse
|
6
|
Spencer PS, Palmer VS, Kisby GE, Lagrange E, Horowitz BZ, Valdes Angues R, Reis J, Vernoux JP, Raoul C, Camu W. Early-onset, conjugal, twin-discordant, and clusters of sporadic ALS: Pathway to discovery of etiology via lifetime exposome research. Front Neurosci 2023; 17:1005096. [PMID: 36860617 PMCID: PMC9969898 DOI: 10.3389/fnins.2023.1005096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023] Open
Abstract
The identity and role of environmental factors in the etiology of sporadic amyotrophic lateral sclerosis (sALS) is poorly understood outside of three former high-incidence foci of Western Pacific ALS and a hotspot of sALS in the French Alps. In both instances, there is a strong association with exposure to DNA-damaging (genotoxic) chemicals years or decades prior to clinical onset of motor neuron disease. In light of this recent understanding, we discuss published geographic clusters of ALS, conjugal cases, single-affected twins, and young-onset cases in relation to their demographic, geographic and environmental associations but also whether, in theory, there was the possibility of exposure to genotoxic chemicals of natural or synthetic origin. Special opportunities to test for such exposures in sALS exist in southeast France, northwest Italy, Finland, the U.S. East North Central States, and in the U.S. Air Force and Space Force. Given the degree and timing of exposure to an environmental trigger of ALS may be related to the age at which the disease is expressed, research should focus on the lifetime exposome (from conception to clinical onset) of young sALS cases. Multidisciplinary research of this type may lead to the identification of ALS causation, mechanism, and primary prevention, as well as to early detection of impending ALS and pre-clinical treatment to slow development of this fatal neurological disease.
Collapse
Affiliation(s)
- Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Valerie S. Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Glen E. Kisby
- College of Osteopathic Medicine of the Pacific Northwest, Western University of Health Sciences, Lebanon, OR, United States
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS Consultations, Grenoble University Hospital, Grenoble, France
| | - B. Zane Horowitz
- Department of Emergency Medicine, Oregon-Alaska Poison Center, Oregon Health and Science University, Portland, OR, United States
| | - Raquel Valdes Angues
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Jacques Reis
- University of Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Jean-Paul Vernoux
- Normandie Université, UNICAEN, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, Caen, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
| | - William Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
7
|
Wu C, Jiang ML, Jiang R, Pang T, Zhang CJ. The roles of fungus in CNS autoimmune and neurodegeneration disorders. Front Immunol 2023; 13:1077335. [PMID: 36776399 PMCID: PMC9910218 DOI: 10.3389/fimmu.2022.1077335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Fungal infection or proliferation in our body is capable of initiation of strong inflammation and immune responses that result in different consequences, including infection-trigged organ injury and inflammation-related remote organ dysfunction. Fungi associated infectious diseases have been well recognized in the clinic. However, whether fungi play an important role in non-infectious central nervous system disease is still to be elucidated. Recently, a growing amount of evidence point to a non-negligible role of peripheral fungus in triggering unique inflammation, immune response, and exacerbation of a range of non-infectious CNS disorders, including Multiple sclerosis, Neuromyelitis optica, Parkinson's disease, Alzheimer's disease, and Amyotrophic lateral sclerosis et al. In this review, we summarized the recent advances in recognizing patterns and inflammatory signaling of fungi in different subsets of immune cells, with a specific focus on its function in CNS autoimmune and neurodegeneration diseases. In conclusion, the fungus is capable of triggering unique inflammation by multiple mechanisms in the progression of a body of CNS non-infectious diseases, suggesting it serves as a key factor and critical novel target for the development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Chuyu Wu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China
| | - Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Runqui Jiang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tao Pang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| | - Cun-Jin Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University of Chinese Medicine, Nanjing University, Nanjing, Jiangsu, China,Institute of Brain Sciences, Institute of Brain Disorder Translational Medicine, Nanjing University, Nanjing, Jiangsu, China,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China,*Correspondence: Cun-Jin Zhang, ; Mei-Ling Jiang, ; Tao Pang,
| |
Collapse
|
8
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease for which there is currently no robust therapy. Recent progress in understanding ALS disease mechanisms and genetics in combination with innovations in gene modulation strategies creates promising new options for the development of ALS therapies. In recent years, six gene modulation therapies have been tested in ALS patients. These target gain-of-function pathology of the most common ALS genes, SOD1, C9ORF72, FUS, and ATXN2, using adeno-associated virus (AAV)-mediated microRNAs and antisense oligonucleotides (ASOs). Here, we review the latest clinical and preclinical advances in gene modulation approaches for ALS, including gene silencing, gene correction, and gene augmentation. These techniques have the potential to positively impact the direction of future research trials and transform ALS treatments for this grave disease.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
10
|
Zakharova MN, Bakulin IS, Abramova AA. Toxic Damage to Motor Neurons. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—Amyotrophic lateral sclerosis (ALS) is a multifactor disease in the development of which both genetic and environmental factors play a role. Specifically, the effects of organic and inorganic toxic substances can result in an increased risk of ALS development and the acceleration of disease progression. It was described that some toxins can induce potentially curable ALS-like syndromes. In this case, the specific treatment for the prevention of the effects of the toxic factor may result in positive clinical dynamics. In this article, we review the main types of toxins that can damage motor neurons in the brain and spinal cord leading to the development of the clinical manifestation of ALS, briefly present historical data on studies on the role of toxic substances, and describe the main mechanisms of the pathogenesis of motor neuron disease associated with their action.
Collapse
|
11
|
Mold, Mycotoxins and a Dysregulated Immune System: A Combination of Concern? Int J Mol Sci 2021; 22:ijms222212269. [PMID: 34830149 PMCID: PMC8619365 DOI: 10.3390/ijms222212269] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth. The interplay between mold exposure and the host immune system is still not fully elucidated. Literature research focusing on up-to-date publications is providing a heterogenous picture of evidence and opinions regarding the role of mold and mycotoxins in the development of immune diseases. While the induction of allergic immune responses by molds is generally acknowledged, other direct health effects like the toxic mold syndrome are controversially discussed. However, recent observations indicate a particular importance of mold/mycotoxin exposure in individuals with pre-existing dysregulation of the immune system, due to exacerbation of underlying pathophysiology including allergic and non-allergic chronic inflammatory diseases, autoimmune disorders, and even human immunodeficiency virus (HIV) disease progression. In this review, we focus on the impact of mycotoxins regarding their impact on disease progression in pre-existing immune dysregulation. This is complemented by experimental in vivo and in vitro findings to present cellular and molecular modes of action. Furthermore, we discuss hypothetical mechanisms of action, where evidence is missing since much remains to be discovered.
Collapse
|
12
|
Lotz SK, Blackhurst BM, Reagin KL, Funk KE. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:691136. [PMID: 34305533 PMCID: PMC8292681 DOI: 10.3389/fncel.2021.691136] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Kristen E. Funk
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States
| |
Collapse
|
13
|
Lagrange E, Vernoux JP, Reis J, Palmer V, Camu W, Spencer PS. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J Neurol Sci 2021; 427:117558. [PMID: 34216974 DOI: 10.1016/j.jns.2021.117558] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Between 1990 and 2018, 14 cases of amyotrophic lateral sclerosis (ALS) were diagnosed in residents of, and in visitors with second homes to, a mountainous hamlet in the French Alps. Systematic investigation revealed a socio-professional network that connected ALS cases. Genetic risk factors for ALS were excluded. Several known environmental factors were scrutinized and eliminated, notably lead and other chemical contaminants in soil, water or home-grown vegetation used for food, radon and electromagnetic fields. Some lifestyle-related behavioral risk factors were identified: Prior to clinical onset of motor neuron disease, some patients had a high degree of athleticism and smoked tobacco. Recent investigations on site, based on a new hypothesis, showed that all patients had ingested wild mushrooms, notably poisonous False Morels. Half of the ALS cohort reported acute illness following Gyromitra gigas mushroom consumption. This finding supports the hypothesis that genotoxins of fungal origin may induce motor neuron degeneration.
Collapse
Affiliation(s)
- E Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease and ALS consultations, Grenoble University Hospital, 38000 Grenoble, France
| | - J P Vernoux
- Normandie Univ, UNICAEN, ABTE, 14000 Caen, France
| | - J Reis
- Department of Neurology, University of Strasbourg, University Hospital of Strasbourg, Strasbourg, France; Association RISE, 3, rue du Loir, 67205 Oberhausbergen, France
| | - V Palmer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - W Camu
- ALS Reference Center, Montpellier University Hospital and University of Montpellier, Inserm UMR1051, 34000 Montpellier, France
| | - P S Spencer
- Department of Neurology, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA; Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR 97201, USA.
| |
Collapse
|
14
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
15
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
16
|
French PW, Ludowyke RI, Guillemin GJ. Fungal-contaminated grass and well water and sporadic amyotrophic lateral sclerosis. Neural Regen Res 2019; 14:1490-1493. [PMID: 31089037 PMCID: PMC6557101 DOI: 10.4103/1673-5374.255959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fungi are important infectious disease-causing agents, but are often overlooked as environmental factors in disease. We review several lines of evidence that point to a potential fungal origin of sporadic amyotrophic lateral sclerosis (ALS), the most common form of motor neurone disease. Approximately 90% cases of ALS are sporadic, and the aetiology of sporadic ALS is still unknown. We have previously postulated that grass or soil-associated fungal infections may be a leading cause of sporadic ALS. Herein we extend this proposal to water-associated fungi. A wide variety of fungi have been reported in drinking water including Acremonium, Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium and Trichoderma. Some of these are known to produce neurotoxic mycotoxins. Despite this, drinking water is not routinely monitored for fungal contamination. Fungal contamination could explain the close correlation between distribution of well water and cases of sporadic ALS in the United States. We propose several mechanisms by which an opportunistic fungal infection from environmental exposure (to water, soil or plants) can lead to long term neuronal degradation resulting in the hallmarks of ALS. If confirmed, the association between fungal infection and sporadic ALS could lead to novel treatment strategies for this progressive and fatal disease.
Collapse
Affiliation(s)
| | | | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biological Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|