1
|
Gil-Martins E, Barbosa DJ, Borges F, Remião F, Silva R. Toxicodynamic insights of 2C and NBOMe drugs - Is there abuse potential? Toxicol Rep 2025; 14:101890. [PMID: 39867514 PMCID: PMC11762925 DOI: 10.1016/j.toxrep.2025.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Drug use represents a prevalent and multifaceted societal problem, with profound implications for public health, social welfare, and economic stability. To circumvent strict international drug control regulations, there is a growing trend in the development and market introduction of novel psychoactive substances (NPS), encompassing a wide range of compounds with psychoactive properties. This includes, among other classes of drugs, the phenethylamines. Originally derived from natural sources, these drugs have garnered particular attention due to their psychedelic effects. They comprise a broad spectrum of compounds, including 2,5-dimethoxyphenylethylamine (2C) drugs and their corresponding N-(2,5-dimethoxybenzyl)phenethylamine (NBOMe). Psychedelics are conventionally perceived as having low addiction potential, although recent reports have raised concerns regarding this topic. These substances primarily interact with serotonin receptors, particularly the 5-HT2A subtype, resulting in alterations in sensory perception, mood, and introspective experiences. In addition to their psychedelic properties, 2C and NBOMe drugs have been associated with a multitude of adverse effects, such as cardiovascular complications and neurotoxicity. This manuscript provides a comprehensive review of the psychedelic pathways underlying 2C and NBOMe designer drugs, focusing on their interactions with serotonergic and other neurotransmitter systems, shedding light on their potential for abuse.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Bysiek A, Wojtas A, Szpręgiel I, Wawrzczak-Bargieła A, Maćkowiak M, Gołembiowska K. The effect of low-dose psilocybin on brain neurotransmission and rat behavior. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111347. [PMID: 40157708 DOI: 10.1016/j.pnpbp.2025.111347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Psilocybin has various therapeutic effects in mental and psychological disorders, including depression and mood disorders, obsessive-compulsive disorders, substance addiction and anxiety. Pharmacodynamic properties of psilocybin depend on doses used and time after administration. The psilocybin dose range varies depending on whether it is used therapeutically or for recreational purposes in humans, but most animal studies require larger doses to induce an effect on brain neurotransmission and animal behavior. The aim of this study was to investigate the effect of psilocybin on the release of cortical neurotransmitters and rat behavior when it was administered subcutaneously at doses of 0.1, 0.3 and 0.6 mg/kg. Psilocybin affected the release of dopamine, noradrenaline, serotonin and acetylcholine in the frontal cortex as measured by microdialysis in freely moving rats. Psilocybin increased the release of aminergic transmitters in a non-linear manner with the dose of 0.3 mg/kg being the weakest. Psilocybin also increased the release of γ-aminobutyric acid, but glutamate release was enhanced only for the first 2 h after drug injection and was followed by a decrease for the rest of the experimental period. In contrast to 25I-NBOMe, an agonist of 5-HT2A receptors, psilocybin did not produce hallucinogenic activity expressed as wet dog shakes and did not disrupt sensorimotor gating in the acoustic startle response test. Furthermore, psilocybin showed anxiolytic effect in the light dark box test 1 h after administration. It also modulated the hypothalamic-pituitary-adrenal axis activity as it transiently increased serum corticosterone level, decreased serotonin, but increased dopamine turnover rates in the hypothalamus and inhibited the content of noradrenaline and adrenaline in the adrenal glands. The changes in the neurotransmitter release seem to play a role in psilocybin behavioral effects. The lack of hallucinogenic activity and disruptive effect on sensorimotor gating by psilocybin lower doses indicates that psychotomimetic effects did not occur. Psilocybin in contrast to 25I-NBOMe, ketamine and MDMA did not produce oxidative damage of DNA in the frontal cortex and hippocampus. Thus, the single low doses of psilocybin may have some beneficial properties and fewer harmful effects.
Collapse
Affiliation(s)
- Agnieszka Bysiek
- Unit II, Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Adam Wojtas
- Unit II, Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Izabela Szpręgiel
- Unit II, Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Marzena Maćkowiak
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland.
| |
Collapse
|
3
|
Gil-Martins E, Barbosa DJ, Cagide F, Remião F, Borges F, Silva R. Sublethal Concentrations of 2C-I and 25I-NBOMe Designer Drugs Impact Caenorhabditis elegans Development and Reproductive Behavior. Int J Mol Sci 2025; 26:3039. [PMID: 40243676 PMCID: PMC11988394 DOI: 10.3390/ijms26073039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Designer drugs like 2C-I and 25I-NBOMe have emerged as potent psychoactive substances, with several reports linking their consumption to severe poisoning and fatalities. However, there is limited information on their toxicity, particularly in in vivo models. In this manuscript, we evaluate the survival, developmental, and reproductive impact of these designer drugs on the model organism Caenorhabditis elegans (C. elegans). For this purpose, adult worms synchronized at the L1 stage were exposed to growing concentrations of 2C-I and 25I-NBOMe. The animal survival rate and the putative effects of the drugs on C. elegans development and reproductive behavior were assessed after 24 h of exposure. A concentration-dependent decrease in animal survival was observed. 25I-NBOMe was approximately six times more toxic than 2C-I (LC50 values-1.368 mM for 2C-I and 0.236 mM for 25I-NBOMe). Furthermore, sublethal concentrations of both drugs delayed animal development and reduced the total progeny but not its survival. Overall, these findings underscore the developmental and reproductive risks associated with exposure to 2C-I and 25I-NBOMe, even at sublethal concentrations.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116 Gandra, Portugal;
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (E.G.-M.); (F.R.)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Bilel S, Miliano C, Corli G, Bassi M, Trusel M, Tonini R, De Luca MA, Marti M. Acute Effects of the Psychedelic Phenethylamine 25I-NBOMe in C57BL/6J Male Mice. Int J Mol Sci 2025; 26:2815. [PMID: 40141457 PMCID: PMC11943083 DOI: 10.3390/ijms26062815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
25I-NBOMe (4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl) phenethylamine) is a synthetic psychedelic compound abused for its ambiguous legal state as a counterfeit lysergic acid diethylamide (LSD). 25I-NBOMe acts as a selective agonist of 5HT2A receptors leading to hallucinations, intoxications, and fatalities. Here, we assessed the rewarding properties of 25I-NBOMe and its behavioral and neurotoxic acute effects on the central nervous system of C57BL/6J mice. We evaluated the dopamine (DA) levels using in vivo microdialysis in the nucleus accumbens (NAc) shell after 25I-NBOMe (0.1-1 mg/kg i.p.) injection. We also investigated the effects of 25I-NBOMe (0.1-1 mg/kg i.p.) on locomotor activity, reaction time, and prepulse inhibition. Moreover, we assessed the acute 25I-NBOMe (1 µM) effects on synaptic transmission and plasticity in the medial prefrontal cortex (mPFC) by using ex vivo electrophysiology. Our findings suggest that 25I-NBOMe affects the DA transmission in NAc shell at the highest dose tested, increases the reaction time within 30 min after the administration, and disrupts the PPI. In slices, it prevents long-term synaptic potentiation (LTP) in the mPFC, an effect that could not be reverted by the co-administration of the selective 5HT2A antagonist (MDL100907). Overall, these findings provide valuable new insights into the effects of 25I-NBOMe and the associated risks of its use.
Collapse
Affiliation(s)
- Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, 09042 Cagliari, Italy;
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
| | - Massimo Trusel
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy (R.T.)
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, 16163 Genova, Italy (R.T.)
| | | | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.); (M.B.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Roma, Italy
| |
Collapse
|
5
|
Butler JJ, Ricci D, Aman C, Beyeler A, De Deurwaerdère P. Classical psychedelics' action on brain monoaminergic systems. Int J Biochem Cell Biol 2024; 176:106669. [PMID: 39332625 DOI: 10.1016/j.biocel.2024.106669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
The study of the mechanism of action of classical psychedelics has gained significant interest due to their clinical potential in the treatment of several psychiatric conditions, including major depressive and anxiety disorders. These drugs bind 5-hydroxytryptamine receptors (5-HTR) including 5-HT1AR, 5-HT2AR, 5-HT2BR, and/or 5-HT2CR, as well as other targets. 5-HTRs regulate the activity of ascending monoaminergic neurons, a mechanism primarily involved in the action of classical antidepressant drugs, antipsychotics, and drugs of abuse. Sparse neurochemical data have been produced on the control of monoaminergic neuron activity in response to classical psychedelics. Here we review the available data in order to determine whether classical psychedelics have specific neurochemical effects on serotonergic, dopaminergic, and noradrenergic neurons. The data show that these drugs have disparate effects on each monoaminergic system, demonstrating a complex response with state-dependent and region-specific effects. For instance, several psychedelics inhibit the firing of serotonergic neurons, although this is not necessarily associated with a decrease in serotonin release in all regions. Noradrenergic neuron spontaneous activity also appears to be inhibited by psychedelics, also not necessarily associated with a decrease in noradrenaline release in all regions. Psychedelics influence on dopaminergic systems is also complex as the above-mentioned 5-HTRs may have opposing effects on dopaminergic neuron activity, in a state-dependent manner. There is an apparent lack of clear neuronal signature induced by psychedelics on monoaminergic neuron activity despite specific recurrent mechanisms. This review provides a current summary of the action of psychedelics on monoamine neuromodulators serotonin, dopamine and noradrenaline, compiling reoccurring and contradictory findings demonstrating that a monoamine signature of psychedelics, if applicable, would be state- and region-dependant.
Collapse
Affiliation(s)
- Jasmine Jade Butler
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Daria Ricci
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France
| | - Chloé Aman
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France
| | - Anna Beyeler
- University of Bordeaux, France; Institut National pour la Santé et la Recherche Médicale (INSERM), unit 1215, Neurocentre Magendie, Bordeaux, France.
| | - Philippe De Deurwaerdère
- University of Bordeaux, France; Centre National de la Recherche Scientifique (CNRS), unit 5287, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine (INCIA), Bordeaux, France.
| |
Collapse
|
6
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
7
|
Hatzipantelis CJ, Olson DE. The Effects of Psychedelics on Neuronal Physiology. Annu Rev Physiol 2024; 86:27-47. [PMID: 37931171 PMCID: PMC10922499 DOI: 10.1146/annurev-physiol-042022-020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Psychedelics are quite unique among drugs that impact the central nervous system, as a single administration of a psychedelic can both rapidly alter subjective experience in profound ways and produce sustained effects on circuits relevant to mood, fear, reward, and cognitive flexibility. These remarkable properties are a direct result of psychedelics interacting with several key neuroreceptors distributed across the brain. Stimulation of these receptors activates a variety of signaling cascades that ultimately culminate in changes in neuronal structure and function. Here, we describe the effects of psychedelics on neuronal physiology, highlighting their acute effects on serotonergic and glutamatergic neurotransmission as well as their long-lasting effects on structural and functional neuroplasticity in the cortex. We propose that the neurobiological changes leading to the acute and sustained effects of psychedelics might be distinct, which could provide opportunities for engineering compounds with optimized safety and efficacy profiles.
Collapse
Affiliation(s)
- Cassandra J Hatzipantelis
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
| | - David E Olson
- Institute for Psychedelics and Neurotherapeutics, University of California, Davis, Davis, California, USA;
- Department of Chemistry, University of California, Davis, Davis, California, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California, USA
- Center for Neuroscience, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Wojtas A, Gołembiowska K. Molecular and Medical Aspects of Psychedelics. Int J Mol Sci 2023; 25:241. [PMID: 38203411 PMCID: PMC10778977 DOI: 10.3390/ijms25010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to their therapeutic applications in the treatment of major depressive disorder, substance use disorder, end-of-life anxiety,= and anxiety symptoms, and obsessive-compulsive disorder. In this review, the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral impact of psychedelics is summarized. The effect of selective 5-HT2A receptor agonists, 25I- and 25B-NBOMe, after acute and repeated administration is characterized and compared with the effects of a less selective drug, psilocybin. The data show a significant effect of NBOMes on glutamatergic, dopaminergic, serotonergic, and cholinergic neurotransmission in the frontal cortex, striatum, and nucleus accumbens. The increases in extracellular levels of neurotransmitters were not dose-dependent, which most likely resulted from the stimulation of the 5-HT2A receptor and subsequent activation of the 5-HT2C receptors. This effect was also observed in the wet dog shake test and locomotor activity. Chronic administration of NBOMes elicited rapid development of tolerance, genotoxicity, and activation of microglia. Acute treatment with psilocybin affected monoaminergic and aminoacidic neurotransmitters in the frontal cortex, nucleus accumbens, and hippocampus but not in the amygdala. Psilocybin exhibited anxiolytic properties resulting from intensification of GABAergic neurotransmission. The data indicate that NBOMes as selective 5-HT2A agonists exert a significant effect on neurotransmission and behavior of rats while also inducing oxidative DNA damage. In contrast to NBOMes, the effects induced by psilocybin suggest a broader therapeutic index of this drug.
Collapse
Affiliation(s)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| |
Collapse
|
9
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
10
|
Cassiano LMG, Oliveira MDS, de Barros WA, de Fátima Â, Coimbra RS. Neurotoxic effects of hallucinogenic drugs 25H-NBOMe and 25H-NBOH in organotypic hippocampal cultures. Heliyon 2023; 9:e17720. [PMID: 37449113 PMCID: PMC10336585 DOI: 10.1016/j.heliyon.2023.e17720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction NBOMes and NBOHs are psychoactive drugs derived from phenethylamines and have hallucinogenic effects due to their strong agonism to serotonin 5-HT2A receptors. Although cases of toxicity associated with the recreational use of substituted phenethylamines are frequently reported, there is a lack of information on the possible neurotoxic effects of NBOMe and NBOH in the brain hippocampus, a major neurogenesis region. Objectives This study aimed at assessing the phenotypic and molecular effects of prolonged exposure of the hippocampus to the drugs 25H-NBOMe and 25H-NBOH. Methods The ex vivo organotypic culture model of hippocampal slices (OHC) was used to investigate, by immunofluorescence and confocal microscopy, and transcriptome analyses, the mechanisms associated with the neurotoxicity of 25H-NBOMe and 25H-NBOH. Results Reduction in the density of mature neurons in the OHCs occurred after two and seven days of exposure to 25H-NBOMe and 25H-NBOH, respectively. After the withdrawal of 25H-NBOMe, the density of mature neurons in the OHCs stabilized. In contrast, up to seven days after 25H-NBOH removal from the culture medium, progressive neuron loss was still observed in the OHCs. Interestingly, the exposure to 25H-NBOH induced progenitor cell differentiation, increasing the density of post-mitotic neurons in the OHCs. Corroborating these findings, the functional enrichment analysis of differentially expressed genes in the OHCs exposed to 25H-NBOH revealed the activation of WNT/Beta-catenin pathway components associated with neurogenesis. During and after the exposure to 25H-NBOMe or 25H-NBOH, gene expression patterns related to the activation of synaptic transmission and excitability of neurons were identified. Furthermore, activation of signaling pathways and biological processes related to addiction and oxidative stress and inhibition of the inflammatory response were observed after the period of drug exposure. Conclusion 25H-NBOMe and 25H-NBOH disrupt the balance between neurogenesis and neuronal death in the hippocampus and, although chemically similar, have distinct neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Larissa Marcely Gomes Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina da Silva Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Roney Santos Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| |
Collapse
|
11
|
Schifano F, Vento A, Scherbaum N, Guirguis A. Stimulant and hallucinogenic novel psychoactive substances; an update. Expert Rev Clin Pharmacol 2023; 16:1109-1123. [PMID: 37968919 DOI: 10.1080/17512433.2023.2279192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION The renewed interest in considering a range of stimulants, psychedelics and dissociatives as therapeutics emphasizes the need to draft an updated overview of these drugs' clinical and pharmacological issues. AREAS COVERED The focus here was on: stimulants (e.g. amphetamines, methamphetamine, and pseudoephedrine; phenethylamines; synthetic cathinones; benzofurans; piperazines; aminoindanes; aminorex derivatives; phenmetrazine derivatives; phenidates); classical (e.g. ergolines; tryptamines; psychedelic phenethylamines), and atypical (e.g. PCP/ketamine-like dissociatives) psychedelics.Stimulant and psychedelics are associated with: a) increased central DA levels (psychedelic phenethylamines, synthetic cathinones and stimulants); b) 5-HT receptor subtypes' activation (psychedelic phenethylamines; recent tryptamine and lysergamide derivatives); and c) antagonist activity at NMDA receptors, (phencyclidine-like dissociatives). EXPERT OPINION Clinicians should be regularly informed about the range of NPS and their medical, psychobiological and psychopathological risks both in the acute and long term. Future research should focus on an integrative model in which pro-drug websites' analyses are combined with advanced research approaches, including computational chemistry studies so that in vitro and in vivo preclinical studies of index novel psychoactives can be organized. The future of psychedelic research should focus on identifying robust study designs to convincingly assess the potential therapeutic benefits of psychedelics, molecules likely to present with limited dependence liability levels.
Collapse
Affiliation(s)
- F Schifano
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
| | - A Vento
- Mental Health Department, Addiction Observatory (Osservatorio sulle dipendenze)- NonProfit Association - Rome, Rome, Italy
| | - N Scherbaum
- LVR-University Hospital, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - A Guirguis
- Psychopharmacology Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Herts (UK)
- Pharmacy, Swansea University Medical School, Faculty of Medicine, Health and Life Science, Swansea University, Wales, UK
| |
Collapse
|
12
|
Rodrigues CHP, Mariotto LS, Castro JS, Peruquetti PH, Silva-Junior NC, Bruni AT. Acute, chronic, and post-mortem toxicity: a review focused on three different classes of new psychoactive substances. Forensic Toxicol 2023; 41:187-212. [PMID: 36604359 DOI: 10.1007/s11419-022-00657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE New psychoactive substances (NPS) are not controlled under the Single Convention on Narcotic Drugs of 1961 or the 1971 Convention, but they may pose a public health threat. Knowledge of the main properties and toxicological effects of these substances is lacking. According to the current Drugs Law (Law n. 11.343/2006), the Brazilian Surveillance Agency issues directives for forbidden substances in Brazil, and structural classes of synthetic cannabinoids, cathinones, and phenylethylamines are considered illicit drugs. Considering that data on these controlled substances are scattered, the main objective of this work was to collect and organize data to generate relevant information on the toxicological properties of NPS. METHODS We carried out a literature review collecting information on the acute, chronic, and post-mortem toxicity of these classes of NSP. We searched info in five scientific databases considering works from 2017 to 2021 and performed a statistical evaluation of the data. RESULTS Results have shown a general lack of studies in this field given that many NPS have not had their toxicity evaluated. We observed a significant difference in the volume of data concerning acute and chronic/post-mortem toxicity. Moreover, studies on the adverse effects of polydrug use are scarce. CONCLUSIONS More in-depth information about the main threats involving NPS use are needed.
Collapse
Affiliation(s)
- Caio H P Rodrigues
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Lívia S Mariotto
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Jade S Castro
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Paulo H Peruquetti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Newton C Silva-Junior
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil
| | - Aline T Bruni
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
- INCT Forense - Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
13
|
Herian M, Świt P. 25X-NBOMe compounds - chemistry, pharmacology and toxicology. A comprehensive review. Crit Rev Toxicol 2023; 53:15-33. [PMID: 37115704 DOI: 10.1080/10408444.2023.2194907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Katowice, Poland
| |
Collapse
|
14
|
The high frequency oscillation in orbitofrontal cortex is susceptible to phenethylamine psychedelic 25C-NBOMe in male rats. Neuropharmacology 2023; 227:109452. [PMID: 36724866 DOI: 10.1016/j.neuropharm.2023.109452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Serotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects. In present study, we investigated the effects of substituted phenethylamine psychedelic 25C-NBOMe on neural oscillations in the intra-prefrontal and hippocampal-prefrontal network. The effective dose of 25C-NBOMe (0.1 mg/kg) disrupting sensorimotor gating in male Sprague-Dawley rats was used to observe its effects on neural oscillations in the prelimbic cortex, anterior cingulate cortex, orbitofrontal cortex (OFC) and hippocampus CA1. The power of high frequency oscillation (HFO, 120-150 Hz) was potentiated by 25C-NBOMe selectively in the OFC, with peaking at 20-30 min after treatment. 25C-NBOMe strengthened HFO coherence within the intra-prefrontal, rather than hippocampal-prefrontal network. Potentiated HFO in the OFC had a strong positive correlation with the strengthened inter-prefrontal HFO coherence by 25C-NBOMe. The 25C-NBOMe-induced alterations of rhythmic patterns were prevented by pre-treatment with selective serotonin 2A receptor antagonist MDL100,907. These results demonstrate that OFC rhythmic activity in HFO is relatively susceptible to substituted phenethylamine and potentially drives drug-induced rhythmic coherence within intra-prefrontal regions. Our findings provide additional insight into the neuropathophysiology of the psychoactive effects of psychedelics and indicate that the altered HFO might be applied as a potential biological marker of psychedelic effect.
Collapse
|
15
|
Oh HA, Yoo JH, Kim YJ, Han KS, Woo DH. 4-EA-NBOMe, an amphetamine derivative, alters glutamatergic synaptic transmission through 5-HT 1A receptors on cortical neurons from SpragueDawley rat and pyramidal neurons from C57BL/6 mouse. Neurotoxicology 2023; 95:144-154. [PMID: 36738894 DOI: 10.1016/j.neuro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
New psychoactive substances (NPSs) are compounds designed to mimic illegal recreational drugs. In particular, there are difficulties in legal restrictions because there is no fast NPS detection method to suppress the initial spread of NPS with criminal records; thus, they expose the public to serious health threats, including toxicity and dependence. However, the effects of NPSs on the brain and the related cellular mechanisms are well unknown. One of the recently emerging drugs is 4-ethylamphetamine-NBOMe (4-EA-NBOMe), a member of the 2 C phenylalanine family with a similar structure to methamphetamine (methA). In this study, we tested the effect of methA analogs on the glutamatergic synaptic transmission on primary cultured cortical neurons of SpragueDawley (SD) rats and C57BL/6 mice, and also layer 2/3 pyramidal neurons of the medial prefrontal cortex (mPFC) of C57BL/6 mice. We found that acute treatment with 4-EA-NBOMe inhibits spontaneous excitatory postsynaptic currents (EPSCs) and that withdrawal after chronic inhibition by 4-EA-NBOMe augments glutamatergic synaptic transmission. These modifications of synaptic responses are mediated by 5-HT1A receptors. These findings suggest that 4-EA-NBOMe directly affects the central nervous system by changing the efficacy of glutamatergic synaptic transmission.
Collapse
Affiliation(s)
- Hyun-A Oh
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea
| | - Ye-Ji Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon 34134 South Korea.
| | - Dong Ho Woo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, South Korea.
| |
Collapse
|
16
|
Effect of Psilocybin and Ketamine on Brain Neurotransmitters, Glutamate Receptors, DNA and Rat Behavior. Int J Mol Sci 2022; 23:ijms23126713. [PMID: 35743159 PMCID: PMC9224489 DOI: 10.3390/ijms23126713] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Clinical studies provide evidence that ketamine and psilocybin could be used as fast-acting antidepressants, though their mechanisms and toxicity are still not fully understood. To address this issue, we have examined the effect of a single administration of ketamine and psilocybin on the extracellular levels of neurotransmitters in the rat frontal cortex and reticular nucleus of the thalamus using microdialysis. The genotoxic effect and density of glutamate receptor proteins was measured with comet assay and Western blot, respectively. An open field test, light–dark box test and forced swim test were conducted to examine rat behavior 24 h after drug administration. Ketamine (10 mg/kg) and psilocybin (2 and 10 mg/kg) increased dopamine, serotonin, glutamate and GABA extracellular levels in the frontal cortex, while psilocybin also increased GABA in the reticular nucleus of the thalamus. Oxidative DNA damage due to psilocybin was observed in the frontal cortex and from both drugs in the hippocampus. NR2A subunit levels were increased after psilocybin (10 mg/kg). Behavioral tests showed no antidepressant or anxiolytic effects, and only ketamine suppressed rat locomotor activity. The observed changes in neurotransmission might lead to genotoxicity and increased NR2A levels, while not markedly affecting animal behavior.
Collapse
|
17
|
Demin KA, Kupriyanova OV, Shevyrin VA, Derzhavina KA, Krotova NA, Ilyin NP, Kolesnikova TO, Galstyan DS, Kositsyn YM, Khaybaev AAS, Seredinskaya MV, Dubrovskii Y, Sadykova RG, Nerush MO, Mor MS, Petersen EV, Strekalova T, Efimova EV, Kuvarzin SR, Yenkoyan KB, Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Kalueff AV. Acute behavioral and Neurochemical Effects of Novel N-Benzyl-2-Phenylethylamine Derivatives in Adult Zebrafish. ACS Chem Neurosci 2022; 13:1902-1922. [PMID: 35671176 DOI: 10.1021/acschemneuro.2c00123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.
Collapse
Affiliation(s)
- Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Volga Region Federal University, Kazan 420008, Russia.,Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemistry and Technology, Ural Federal University, 19 Mira Str., Ekaterinburg 620002, Russia
| | - Ksenia A Derzhavina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nataliya A Krotova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia
| | - Yurii M Kositsyn
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | | | - Maria V Seredinskaya
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Yaroslav Dubrovskii
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg State Chemical Pharmaceutical University, St. Petersburg 197022, Russia
| | | | - Maria O Nerush
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Elena V Petersen
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | | | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Savelii R Kuvarzin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, COBRAIN Center, M. Heratsi Yerevan State Medical University, Yerevan AM 0025, Armenia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia
| | | | | | | | | | | | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia.,Almazov National Medical Research Centre, St. Petersburg 197341, Russia.,Ural Federal University, Ekaterinburg 620075, Russia.,Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny 197758, Russia.,Moscow Institute of Physics and Technology, Moscow 141701, Russia.,COBRAIN Scientific Educational Center for Fundamental Brain Research, Yerevan AM 0025, Armenia.,Scientific Research Institute of Neuroscience and Medicine, Novosibirsk, 630117, Russia
| |
Collapse
|
18
|
Spatiotemporal Mapping of Online Interest in Cannabis and Popular Psychedelics before and during the COVID-19 Pandemic in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116619. [PMID: 35682204 PMCID: PMC9180639 DOI: 10.3390/ijerph19116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
Background: Psychedelics represent a unique subset of psychoactive substances that can induce an aberrant state of consciousness principally via the neuronal 5-HT2A receptor. There is limited knowledge concerning the interest in these chemicals in Poland and how they changed during the pandemic. Nonetheless, these interests can be surveyed indirectly via the web. Objectives: We aim to conduct a spatial-temporal mapping of online information-seeking behavior concerning cannabis and the most popular psychedelics before and during the pandemic. Methods: We retrieved online information search data via Google Trends concerning twenty of the most popular psychedelics from 1 January 2017 to 1 January 2022 in Poland. We conducted Holt–Winters exponential smoothing for time series analysis to infer potential seasonality. We utilized hierarchical clustering analysis based on Ward’s method to find similarities of psychedelics’ interest within Poland’s voivodships before and during the pandemic. Results: Twelve (60%) psychedelics had significant seasonality; we proved that psilocybin and ayahuasca had annual seasonality (p-value = 0.0120 and p = 0.0003, respectively), and four substances—LSD, AL-LAD, DXM, and DOB—exhibited a half-yearly seasonality, while six psychedelics had a quarterly seasonal pattern, including cannabis, dronabinol, ergine, NBOMe, phencyclidine, and salvinorin A. Further, the pandemic influenced a significant positive change in the trends for three substances, including psilocybin, ergine, and DXM. Conclusions: Different seasonal patterns exist for psychedelics, and some might correlate with school breaks or holidays in Poland. The pandemic induced some changes in the temporal and spatial trends. The spatial-temporal trends could be valuable information to health authorities and policymakers responsible for monitoring and preventing addictions.
Collapse
|
19
|
Herian M, Wojtas A, Maćkowiak M, Wawrzczak-Bargiela A, Solarz A, Bysiek A, Madej K, Gołembiowska K. Neurotoxicological profile of the hallucinogenic compound 25I-NBOMe. Sci Rep 2022; 12:2939. [PMID: 35190675 PMCID: PMC8861095 DOI: 10.1038/s41598-022-07069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats’ behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans. There is no data about 25I-NBOMe in vivo toxicity towards the brain tissue. In this article 25I-NBOMe-crossing through the blood–brain barrier (BBB), the impact on DNA damage, apoptosis induction, and changes in the number of cortical and hippocampal cells were studied. The presence of 25I-NBOMe in several brain regions shortly after the drug administration and its accumulation after multiple injections was found. The DNA damage was detected 72 h after the chronic treatment. On the contrary, at the same time point apoptotic signal was not identified. A decrease in the number of glial but not in neural cells in the frontal (FC) and medial prefrontal cortex (mPFC) was observed. The obtained data indicate that 25I-NBOMe passes easily across the BBB and accumulates in the brain tissue. Observed oxidative DNA damage may lead to the glial cells’ death.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Anna Solarz
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Katarzyna Madej
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa, 30-387, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
20
|
Effects of β-Phenylethylamine on Psychomotor, Rewarding, and Reinforcing Behaviors and Affective State: The Role of Dopamine D1 Receptors. Int J Mol Sci 2021; 22:ijms22179485. [PMID: 34502393 PMCID: PMC8430604 DOI: 10.3390/ijms22179485] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/28/2023] Open
Abstract
Beta-phenylethylamine (β-PEA) is a well-known and widespread endogenous neuroactive trace amine found throughout the central nervous system in humans. In this study, we demonstrated the effects of β-PEA on psychomotor, rewarding, and reinforcing behaviors and affective state using the open-field test, conditioned place preference (CPP), self-administration, and ultrasonic vocalizations (USVs) paradigms. We also investigated the role of the dopamine (DA) D1 receptor in the behavioral effects of β-PEA in rodents. Using enzyme-linked immunosorbent assay (ELISA) and Western immunoblotting, we also determined the DA concentration and the DA-related protein levels in the dorsal striatum of mice administered with acute β-PEA. The results showed that acute β-PEA increased stereotypic behaviors such as circling and head-twitching responses in mice. In the CPP experiment, β-PEA increased place preference in mice. In the self-administration test, β-PEA significantly enhanced self-administration during a 2 h session under fixed ratio (FR) schedules (FR1 and FR3) and produced a higher breakpoint during a 6 h session under progressive ratio schedules of reinforcement in rats. In addition, acute β-PEA increased 50-kHz USV calls in rats. Furthermore, acute β-PEA administration increased DA concentration and p-DAT and TH expression in the dorsal striatum of mice. Finally, pretreatment with SCH23390, a DA D1 receptor antagonist, attenuated β-PEA-induced circling behavior and β-PEA-taking behavior in rodents. Taken together, these findings suggest that β-PEA has rewarding and reinforcing effects and psychoactive properties, which induce psychomotor behaviors and a positive affective state by activating the DA D1 receptor in the dorsal striatum.
Collapse
|
21
|
Herian M, Skawski M, Wojtas A, Sobocińska MK, Noworyta K, Gołembiowska K. Tolerance to neurochemical and behavioral effects of the hallucinogen 25I-NBOMe. Psychopharmacology (Berl) 2021; 238:2349-2364. [PMID: 34032876 PMCID: PMC8292280 DOI: 10.1007/s00213-021-05860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
RATIONALE 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin 5-HT2A/2C receptor agonist with hallucinogenic activity. There is no data on the 25I-NBOMe effect on brain neurotransmission and animal performance after chronic administration. OBJECTIVES We examined the effect of a 7-day treatment with 25I-NBOMe (0.3 mg/kg/day) on neurotransmitters' release and rats' behavior in comparison to acute dose. METHODS Changes in dopamine (DA), serotonin (5-HT), acetylcholine (ACh), and glutamate release were studied using microdialysis in freely moving rats. The hallucinogenic activity was measured in the wet dog shake (WDS) test. The animal locomotion was examined in the open field (OF) test, short-term memory in the novel object recognition (NOR) test. The anxiogenic/anxiolytic properties of the drug were tested using the light/dark box (LDB) test. RESULTS Repeated administration of 25I-NBOMe decreased the response to a challenge dose of DA, 5-HT, and glutamatergic neurons in the frontal cortex as well as weakened the hallucinogenic activity in comparison to acute dose. In contrast, striatal and accumbal DA and 5-HT release and accumbal but not striatal glutamate release in response to the challenge dose of 25I-NBOMe was increased in comparison to acute treatment. The ACh release was increased in all brain regions. Behavioral tests showed a motor activity reduction and memory deficiency in comparison to a single dose and induction of anxiety after the drug's chronic and acute administration. CONCLUSIONS Our findings suggest that multiple injections of 25I-NBOMe induce tolerance to hallucinogenic activity and produce alterations in neurotransmission. 25I-NBOMe effect on short-term memory, locomotor function, and anxiety seems to be the result of complex interactions between neurotransmitter pathways.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Mateusz Skawski
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Małgorzata K Sobocińska
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Karolina Noworyta
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
22
|
Sogos V, Caria P, Porcedda C, Mostallino R, Piras F, Miliano C, De Luca MA, Castelli MP. Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. Int J Mol Sci 2021; 22:ijms22136785. [PMID: 34202634 PMCID: PMC8268582 DOI: 10.3390/ijms22136785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.
Collapse
Affiliation(s)
- Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Clara Porcedda
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
- Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070-6754065
| |
Collapse
|
23
|
Wojtas A, Herian M, Skawski M, Sobocińska M, González-Marín A, Noworyta-Sokołowska K, Gołembiowska K. Neurochemical and Behavioral Effects of a New Hallucinogenic Compound 25B-NBOMe in Rats. Neurotox Res 2021; 39:305-326. [PMID: 33337517 PMCID: PMC7936972 DOI: 10.1007/s12640-020-00297-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022]
Abstract
4-Bromo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25B-NBOMe) is a hallucinogen exhibiting high binding affinity for 5-HT2A/C serotonin receptors. In the present work, we investigated its effect on dopamine (DA), serotonin (5-HT), acetylcholine (ACh), and glutamate release in the rat frontal cortex, striatum, and nucleus accumbens. Hallucinogenic activity, impact on cognitive and motor functions, and anxiogenic/anxiolytic properties of this compound were also tested. The release of DA, 5-HT, ACh, and glutamate was studied using microdialysis in freely moving animals. Hallucinogenic activity was investigated using head and body twitch response (WDS), cognitive functions were examined with the novel object recognition test (NOR), locomotor activity was studied in the open field (OF), while anxiogenic/anxiolytic effect was tested using the light/dark box (LDB). Neurotoxicity was evaluated with the comet assay. 25B-NBOMe increased DA, 5-HT, and glutamate release in all studied brain regions, induced hallucinogenic activity, and lowered the recognition index (Ri) vs. control in the NOR test. It also decreased locomotor activity of rats in the OF test. The effect of 25B-NBOMe in the NOR test was inhibited by scopolamine. In the LDB test, the time spent in the dark zone was longer in comparison to control and was dose-dependent. In contrast to MDMA, 25B-NBOMe showed subtle genotoxic effect observed in the comet assay.Our findings indicate that 25B-NBOMe shows hallucinogenic activity in the wide range of doses. The changes in neurotransmitter levels may be related to 25B-NBOMe affinity for 5-HT2A receptor. Alterations in the NOR, OF, and LDB indicate that 25B-NBOMe impacts short-term memory, locomotion, and may be anxiogenic.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Mateusz Skawski
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Małgorzata Sobocińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Alejandro González-Marín
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Karolina Noworyta-Sokołowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
24
|
Kamińska K, Świt P, Malek K. 2-(4-Iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOME): A Harmful Hallucinogen Review. J Anal Toxicol 2021; 44:947-956. [PMID: 32128596 DOI: 10.1093/jat/bkaa022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NBOMes are N-benzylmethoxy derivatives of the 2C family compounds with N-2-methoxybenzyl moiety substituted by the methoxy group at the 2- and 5-position and the halogen group at the 4-position of the phenyl ring. These substances are a new class of potent serotonin 5-HT2A receptor agonist hallucinogens with potential harmful effects. The substitution with halogen of the already psychoactive phenethylamine produces a derivative (2C-I) with increased hallucinogenic effects. This class of hallucinogens has chemical structures very similar to natural hallucinogenic alkaloid mescaline and these are sold mainly via internet as a 'legal' alternative to other hallucinogenic drug-lysergic acid diethylamide (LSD). 25I-NBOMe is the first synthesized and one of the most common compound from NBOMes. Knowledge of pharmacological properties of 25I-NBOMe is very limited so far. There are only a few in vivo and in vitro so far published studies. The behavioral experiments are mainly related with the hallucinogenic effect of 25I-NBOMe while the in vitro studies concerning mainly the affinity for 5-HT2A receptors. The 25I-NBOMe Critical Review 2016 reported 51 non-fatal intoxications and 21 deaths associated with 25I-NBOMe across Europe. Case reports describe various toxic effects of 25I-NBOMe usage including tachycardia, hypertension, hallucinations, rhabdomyolysis, acute kidney injury and death. The growing number of fatal and non-fatal intoxication cases indicates that 25I-NBOMe should be considered as a serious danger to public health. This review aims to present the current state of knowledge on pharmacological effects and chemical properties of 25I-NBOMe and to describe reported clinical cases and analytical methods available for identification of this agent in biological material.
Collapse
Affiliation(s)
- Katarzyna Kamińska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Paweł Świt
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Bobrzynskiego 14, Krakow 30-348, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Gronostajowa 2, Krakow 30-387, Poland
| |
Collapse
|
25
|
Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. Novel Psychoactive Phenethylamines: Impact on Genetic Material. Int J Mol Sci 2020; 21:ijms21249616. [PMID: 33348640 PMCID: PMC7766159 DOI: 10.3390/ijms21249616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 12/16/2022] Open
Abstract
Psychedelic and stimulating phenethylamines belong to the family of new psychoactive substances (NPS). The acute toxicity framework has begun to be investigated, while studies showing genotoxic potential are very limited or not available. Therefore, in order to fill this gap, the aim of the present work was to evaluate the genotoxicity by treating TK6 cells with 2C-H, 2C-I, 2C-B, 25B-NBOMe, and the popular 3,4-Methylenedioxymethylamphetamine (MDMA). On the basis of cytotoxicity and cytostasis results, we selected the concentrations (6.25–35 µM) to be used in genotoxicity analysis. We used the micronucleus (MN) as indicator of genetic damage and analyzed the MNi frequency fold increase by an automated flow cytometric protocol. All substances, except MDMA, resulted genotoxic; therefore, we evaluated reactive oxygen species (ROS) induction as a possible mechanism at the basis of the demonstrated genotoxicity. The obtained results showed a statistically significant increase in ROS levels for all genotoxic phenethylamines confirming this hypothesis. Our results highlight the importance of genotoxicity evaluation for a complete assessment of the risk associated also with NPS exposure. Indeed, the subjects who do not have hazardous behaviors or require hospitalization by using active but still “safe” doses could run into genotoxicity and in the well-known long-term effects associated.
Collapse
Affiliation(s)
- Veronica Cocchi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Sofia Gasperini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
- Correspondence:
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy; (M.T.); (M.M.)
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 44121 Ferrara, Italy
| | - Monia Lenzi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy; (V.C.); (S.G.); (M.L.)
| |
Collapse
|
26
|
Herian M, Wojtas A, Sobocińska MK, Skawski M, González-Marín A, Gołembiowska K. Contribution of serotonin receptor subtypes to hallucinogenic activity of 25I-NBOMe and to its effect on neurotransmission. Pharmacol Rep 2020; 72:1593-1603. [PMID: 33174181 PMCID: PMC7704505 DOI: 10.1007/s43440-020-00181-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND 4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a potent serotonin (5-HT) receptor agonist with hallucinogenic properties. The aim of our research was to examine the role of the 5-HT2A, 5-HT2C and 5-HT1A serotonin receptor subtypes in 25I-NBOMe hallucinogenic activity and its effect on dopamine (DA), 5-HT and glutamate release in the rat frontal cortex. METHODS Hallucinogenic activity was investigated using the wet dog shake (WDS) test. The release of DA, 5-HT and glutamate in the rat frontal cortex was studied using a microdialysis in freely moving rats. Neurotransmitter levels were analyzed by HPLC with electrochemical detection. The selective antagonists of the 5-HT2A, 5-HT2C and 5-HT1A serotonin receptor subtypes: M100907, SB242084 and WAY100635, respectively were applied through a microdialysis probe. RESULTS The WDS response to 25I-NBOMe (1 and 3 mg/kg) was significantly reduced by local administration of M100907 and SB242084 (100 nM). The 25I-NBOMe-induced increase in glutamate, DA and 5-HT release was inhibited by M100907 and SB242084. WAY100635 had no effect on 25I-NBOMe-induced WDS and glutamate release, while it decreased DA and 5-HT release from cortical neuronal terminals. CONCLUSION The obtained results suggest that 5-HT2A and 5-HT2C receptors play a role in 25I-NBOMe-induced hallucinogenic activity and in glutamate, DA and 5-HT release in the rat frontal cortex as their respective antagonists attenuated the effect of this hallucinogen. The disinhibition of GABA cells by the 5-HT1A receptor antagonist seems to underlie the mechanism of decreased DA and 5-HT release from neuronal terminals in the frontal cortex.
Collapse
MESH Headings
- Animals
- Dimethoxyphenylethylamine/analogs & derivatives
- Dimethoxyphenylethylamine/pharmacology
- Dopamine/metabolism
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- Glutamic Acid/metabolism
- Hallucinogens/pharmacology
- Male
- Microdialysis
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2C/drug effects
- Receptor, Serotonin, 5-HT2C/metabolism
- Serotonin/metabolism
- Serotonin Receptor Agonists/pharmacology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | | | - Mateusz Skawski
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Alejandro González-Marín
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
27
|
Fattore L, Marti M, Mostallino R, Castelli MP. Sex and Gender Differences in the Effects of Novel Psychoactive Substances. Brain Sci 2020; 10:brainsci10090606. [PMID: 32899299 PMCID: PMC7564810 DOI: 10.3390/brainsci10090606] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Sex and gender deeply affect the subjective effects and pharmaco-toxicological responses to drugs. Men are more likely than women to use almost all types of illicit drugs and to present to emergency departments for serious or fatal intoxications. However, women are just as likely as men to develop substance use disorders, and may be more susceptible to craving and relapse. Clinical and preclinical studies have shown important differences between males and females after administration of “classic” drugs of abuse (e.g., Δ9-tetrahydrocannabinol (THC), morphine, cocaine). This scenario has become enormously complicated in the last decade with the overbearing appearance of the new psychoactive substances (NPS) that have emerged as alternatives to regulated drugs. To date, more than 900 NPS have been identified, and can be catalogued in different pharmacological categories including synthetic cannabinoids, synthetic stimulants (cathinones and amphetamine-like), hallucinogenic phenethylamines, synthetic opioids (fentanyls and non-fentanyls), new benzodiazepines and dissociative anesthetics (i.e., methoxetamine and phencyclidine-derivatives). This work collects the little knowledge reached so far on the effects of NPS in male and female animal and human subjects, highlighting how much sex and gender differences in the effects of NPS has yet to be studied and understood.
Collapse
Affiliation(s)
- Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
- Correspondence:
| | - Matteo Marti
- Department of Morphology, Surgery and Experimental Medicine, Section of Legal Medicine and LTTA Center, University of Ferrara, 44121 Ferrara, Italy;
- Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, 00187 Rome, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
| | - Maria Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; (R.M.); (M.P.C.)
- National Institute of Neuroscience (INN), University of Cagliari, 09124 Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
28
|
Lum BJ, Brettell TA, Brophy JJ, Brynn Hibbert D. Identification of a new class of thermolabile psychoactive compounds, 4-substituted 2-(4-X-2, 5-dimethoxyphenyl)-N-[(2-hydroxyphenyl)methyl]ethanamine (25X-NBOH, X = Cl, Br, or I) by gas chromatography-mass spectrometry using chemical derivatization by heptafluorobutyric anhydride (HFBA). Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Luethi D, Liechti ME. Designer drugs: mechanism of action and adverse effects. Arch Toxicol 2020; 94:1085-1133. [PMID: 32249347 PMCID: PMC7225206 DOI: 10.1007/s00204-020-02693-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
Psychoactive substances with chemical structures or pharmacological profiles that are similar to traditional drugs of abuse continue to emerge on the recreational drug market. Internet vendors may at least temporarily sell these so-called designer drugs without adhering to legal statutes or facing legal consequences. Overall, the mechanism of action and adverse effects of designer drugs are similar to traditional drugs of abuse. Stimulants, such as amphetamines and cathinones, primarily interact with monoamine transporters and mostly induce sympathomimetic adverse effects. Agonism at μ-opioid receptors and γ-aminobutyric acid-A (GABAA) or GABAB receptors mediates the pharmacological effects of sedatives, which may induce cardiorespiratory depression. Dissociative designer drugs primarily act as N-methyl-D-aspartate receptor antagonists and pose similar health risks as the medically approved dissociative anesthetic ketamine. The cannabinoid type 1 (CB1) receptor is thought to drive the psychoactive effects of synthetic cannabinoids, which are associated with a less desirable effect profile and more severe adverse effects compared with cannabis. Serotonergic 5-hydroxytryptamine-2A (5-HT2A) receptors mediate alterations of perception and cognition that are induced by serotonergic psychedelics. Because of their novelty, designer drugs may remain undetected by routine drug screening, thus hampering evaluations of adverse effects. Intoxication reports suggest that several designer drugs are used concurrently, posing a high risk for severe adverse effects and even death.
Collapse
Affiliation(s)
- Dino Luethi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Währinger Strasse 13a, 1090, Vienna, Austria.
- Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria.
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Schanzenstrasse 55, 4056, Basel, Switzerland.
| |
Collapse
|
30
|
Santos‐Toscano R, Guirguis A, Davidson C. How preclinical studies have influenced novel psychoactive substance legislation in the UK and Europe. Br J Clin Pharmacol 2020; 86:452-481. [DOI: 10.1111/bcp.14224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Raquel Santos‐Toscano
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| | - Amira Guirguis
- Swansea University Medical School, Institute of Life Sciences 2, Swansea University Swansea UK
| | - Colin Davidson
- School of Pharmacy & Biomedical Sciences, Faculty of Clinical & Biomedical Sciences University of Central Lancashire UK
| |
Collapse
|
31
|
Zawilska JB, Kacela M, Adamowicz P. NBOMes-Highly Potent and Toxic Alternatives of LSD. Front Neurosci 2020; 14:78. [PMID: 32174803 PMCID: PMC7054380 DOI: 10.3389/fnins.2020.00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new class of psychedelic compounds named NBOMe (or 25X-NBOMe) has appeared on the illegal drug market. NBOMes are analogs of the 2C family of phenethylamine drugs, originally synthesized by Alexander Shulgin, that contain a N-(2-methoxy)benzyl substituent. The most frequently reported drugs from this group are 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe. NBOMe compounds are ultrapotent and highly efficacious agonists of serotonin 5-HT2A and 5-HT2C receptors (Ki values in low nanomolar range) with more than 1000-fold selectivity for 5-HT2A compared with 5-HT1A. They display higher affinity for 5-HT2A receptors than their 2C counterparts and have markedly lower affinity, potency, and efficacy at the 5-HT2B receptor compared to 5-HT2A or 5-HT2C. The drugs are sold as blotter papers, or in powder, liquid, or tablet form, and they are administered sublingually/buccally, intravenously, via nasal insufflations, or by smoking. Since their introduction in the early 2010s, numerous reports have been published on clinical intoxications and fatalities resulting from the consumption of NBOMe compounds. Commonly observed adverse effects include visual and auditory hallucinations, confusion, anxiety, panic and fear, agitation, uncontrollable violent behavior, seizures, excited delirium, and sympathomimetic signs such mydriasis, tachycardia, hypertension, hyperthermia, and diaphoresis. Rhabdomyolysis, disseminated intravascular coagulation, hypoglycemia, metabolic acidosis, and multiorgan failure were also reported. This survey provides an updated overview of the pharmacological properties, pattern of use, metabolism, and desired effects associated with NBOMe use. Special emphasis is given to cases of non-fatal and lethal intoxication involving these compounds. As the analysis of NBOMes in biological materials can be challenging even for laboratories applying modern sensitive techniques, this paper also presents the analytical methods most commonly used for detection and identification of NBOMes and their metabolites.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Monika Kacela
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
32
|
Miliano C, Marti M, Pintori N, Castelli MP, Tirri M, Arfè R, De Luca MA. Neurochemical and Behavioral Profiling in Male and Female Rats of the Psychedelic Agent 25I-NBOMe. Front Pharmacol 2019; 10:1406. [PMID: 31915427 PMCID: PMC6921684 DOI: 10.3389/fphar.2019.01406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 11/13/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe), commonly called “N-Bomb,” is a synthetic phenethylamine with psychedelic and entactogenic effects; it was available on the Internet both as a legal alternative to lysergic acid diethylamide (LSD) and as a surrogate of 3,4-methylenedioxy-methamphetamine (MDMA), but now it has been scheduled among controlled substances. 25I-NBOMe acts as full agonist on serotonergic 5-HT2A receptors. Users are often unaware of ingesting fake LSD, and several cases of intoxication and fatalities have been reported. In humans, overdoses of “N-Bomb” can cause tachycardia, hypertension, seizures, and agitation. Preclinical studies have not yet widely investigated the rewarding properties and behavioral effects of this compound in both sexes. Therefore, by in vivo microdialysis, we evaluated the effects of 25I-NBOMe on dopaminergic (DA) and serotonergic (5-HT) transmissions in the nucleus accumbens (NAc) shell and core, and the medial prefrontal cortex (mPFC) of male and female rats. Moreover, we investigated the effect of 25I-NBOMe on sensorimotor modifications as well as body temperature, nociception, and startle/prepulse inhibition (PPI). We showed that administration of 25I-NBOMe affects DA transmission in the NAc shell in both sexes, although showing different patterns; moreover, this compound causes impaired visual responses in both sexes, whereas core temperature is heavily affected in females, and the highest dose tested exerts an analgesic effect prominent in male rats. Indeed, this drug is able to impair the startle amplitude with the same extent in both sexes and inhibits the PPI in male and female rats. Our study fills the gap of knowledge on the behavioral effects of 25I-NBOMe and the risks associated with its ingestion; it focuses the attention on sex differences that might be useful to understand the trend of consumption as well as to recognize and treat intoxication and overdose symptoms.
Collapse
Affiliation(s)
- Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Matteo Marti
- National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy.,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy
| | - Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| | - Micaela Tirri
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy.,Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,National Institute of Neuroscience (INN), Universirty of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
A novel designer drug, 25N-NBOMe, exhibits abuse potential via the dopaminergic system in rodents. Brain Res Bull 2019; 152:19-26. [DOI: 10.1016/j.brainresbull.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022]
|