1
|
Xiao ZK, Wang B, Liu JH, Yang YB, Jie N, Mao XY, Gong XY, Liu AH, Duan YH. Risk Factors for the Development of Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. World Neurosurg 2025; 193:427-446. [PMID: 39343384 DOI: 10.1016/j.wneu.2024.09.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is a common neurosurgical disorder with high morbidity and poor prognosis, and the associated delayed cerebral ischemia (DCI) is a key factor contributing to poor prognosis. Despite extensive research on the risk factors associated with DCI development, the evidence remains conflicting. Therefore, this meta-analysis of case-control studies aimed to investigate the risk factors for DCI occurrence during hospitalization in patients with aSAH. METHODS We systematically searched PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials for eligible studies published before November 20, 2023. Two independent reviewers extracted relevant data from the included studies using a pre-established data extraction form. The primary outcome was DCI occurrence during hospitalization in patients with aSAH. RESULTS A total of 42 studies involving 21,726 patients with aSAH were included. The pooled meta-analysis showed that female sex; Hunt-Hess, modified Fisher, and World Federation of Neurosurgical Societies scale scores of 4-5, 3-4, and 4-5, respectively; vasospasm; combined intraventricular hemorrhage; pre-existing hypertension; hydrocephalus; intracranial infections; and high white blood cell count on admission were independent risk factors for the development of postoperative DCIs in patients with aSAH. CONCLUSIONS Patients with aSAH who have a Hunt-Hess scale score ≥4, a modified Fisher scale score ≥3, a WFNS scale score ≥4, intraventricular hemorrhage, pre-existing hypertension, cerebral vasospasm, a high white blood cell count on admission, intracranial infection, and female sex are at high risk of DCI and hence should be carefully monitored in the intensive care unit.
Collapse
Affiliation(s)
- Zhen Kun Xiao
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Bing Wang
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jian Hua Liu
- Medical Teaching Experiment Center, Medical school, ShenZhen University, ShenZhen, GuangDong, China
| | - Yi Bo Yang
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Niu Jie
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xing Yu Mao
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xin Yuan Gong
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ai Hua Liu
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China
| | - Yong Hong Duan
- Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
2
|
Yang S, Hu Y, Wang X, Deng M, Ma J, Hao Y, Ran Z, Luo T, Han G, Xiang X, Liu J, Shi H, Tan Y. Machine learning and deep learning to identifying subarachnoid haemorrhage macrophage-associated biomarkers by bulk and single-cell sequencing. J Cell Mol Med 2024; 28:e18296. [PMID: 38702954 PMCID: PMC11069052 DOI: 10.1111/jcmm.18296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.
Collapse
Affiliation(s)
- Sha Yang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
- Guizhou University Medical CollegeGuiyangChina
| | - Yunjia Hu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xiang Wang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Mei Deng
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Jun Ma
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yin Hao
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Zhongying Ran
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Tao Luo
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Xin Xiang
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jian Liu
- Department of NeurosurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangChina
- Guizhou University Medical CollegeGuiyangChina
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Hui Shi
- Department of NeurosurgeryYongchuan Hospital affiliated to Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
3
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
4
|
Wu Y, Zhao Z, Kang S, Zhang L, Lv F. Potential application of peripheral blood biomarkers in intracranial aneurysms. Front Neurol 2023; 14:1273341. [PMID: 37928138 PMCID: PMC10620808 DOI: 10.3389/fneur.2023.1273341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Intracranial aneurysm (IA) counts are increasing yearly, with a high mortality and disability after rupture. Current diagnosis and treatment rely on costly equipment, lacking effective indicators for progression prediction and specific drugs for treatment. Recently, peripheral blood biomarkers, as common clinical test samples, reflecting the immune and inflammatory state of the body in real-time, have shown promise in providing additional information for risk stratification and treatment in IA patients, which may improve their outcomes after aneurysm rupture through anti-inflammatory therapy. Therefore, this paper reviewed the progress of potential biomarkers of IAs, including inflammatory blood indicators, cytokines, and blood lipids, aiming to aid individual management and therapy of aneurysms in clinical practices.
Collapse
Affiliation(s)
- Yangying Wu
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ziya Zhao
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shaolei Kang
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
- The Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lijuan Zhang
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Xuan W, Xie W, Li F, Huang D, Zhu Z, Lin Y, Lu B, Yu W, Li Y, Li P. Dualistic roles and mechanistic insights of macrophage migration inhibitory factor in brain injury and neurodegenerative diseases. J Cereb Blood Flow Metab 2023; 43:341-356. [PMID: 36369735 PMCID: PMC9941868 DOI: 10.1177/0271678x221138412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is involved in various immune-mediated pathologies and regulates both innate and adaptive immune reactions, thus being related to several acute and chronic inflammatory diseases such as rheumatoid arthritis, septic shock, and atherosclerosis. Its role in acute and chronic brain pathologies, such as stroke and neurodegenerative diseases, has attracted increasing attention in recent years. In response to stimuli like hypoxia, inflammation or infection, different cell types can rapidly release MIF, including immune cells, endothelial cells, and neuron cells. Notably, clinical data from past decades also suggested a possible link between serum MIF levels and the severity of stroke and the evolving of neurodegenerative diseases. In this review, we summarize the major and recent findings focusing on the mechanisms of MIF modulating functions in brain injury and neurodegenerative diseases, which may provide important therapeutic targets meriting further investigation.
Collapse
Affiliation(s)
- Wei Xuan
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Wanqing Xie
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Fengshi Li
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong
University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Ziyu Zhu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yuxuan Lin
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Binwei Lu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Weifeng Yu
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Yan Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| | - Peiying Li
- Department of Anesthesiology, Clinical Research Center, Renji
Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
| |
Collapse
|
6
|
Messina R, de Gennaro L, De Robertis M, Pop R, Chibbaro S, Severac F, Blagia M, Balducci MT, Bozzi MT, Signorelli F. Cerebrospinal Fluid Lactate and Glucose Levels as Predictors of Symptomatic Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2023; 170:e596-e602. [PMID: 36403937 DOI: 10.1016/j.wneu.2022.11.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (aSAH) is a complex neurovascular syndrome with profound systemic effects associated with high rates of disability and mortality. Delayed cerebral ischemia (DCI), which encompasses all neurobiological events occurring in the subacute-late stage after aSAH, has a complex pathogenesis and can occur in the absence of instrumental vasospasm. Our aim was to assess the correlation between cerebrospinal fluid (CSF) lactate and glucose levels measured on the second or third day after aSAH with clinical deterioration caused by DCI and with 3-month functional outcome. METHODS This prospective study included all aSAH patients admitted between January 2020 and December 2021 who underwent external ventricular drain placement and CSF lactate and glucose measurement. RESULTS Among 133 aSAH patients, 48 had an external ventricular drain placed and early CSF lactate and glucose assessment. Independent predictors of symptomatic DCI were World Federation of Neurosurgical Societies grade IV-V (adjusted odds ratio [aOR] 25.8, 95% confidence interval [CI] 2.9-649.2, P = 0.012), elevated CSF glucose (aOR 28.8, 95% CI 3.3-775.2, P = 0.010), and elevated CSF lactate (aOR 14.7, 95% CI 1.9-205.7, P = 0.018). The only independent predictor of 3-month functional outcome was occurrence of symptomatic DCI (aOR 0.02, 95% CI 0.0-0.2, P = 0.01). CONCLUSIONS Elevated CSF lactate and glucose levels in the first 3 days following aSAH were independent predictors of subsequent DCI-related neurological impairment; the presence of instrumental vasospasm was not significantly correlated with DCI after multivariate adjustment. CSF lactate and glucose monitoring may represent a point-of-care test, which could potentially improve prediction of subacute neurological worsening and guide therapeutic choices. Further research with larger prospective cohorts is warranted.
Collapse
Affiliation(s)
- Raffaella Messina
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy
| | - Luigi de Gennaro
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy
| | - Mario De Robertis
- Department of Neurosurgery, Humanitas University and Research Hospital, Milan, Italy
| | - Raoul Pop
- Interventional Neuroradiology Department, Strasbourg University Hospitals, Strasbourg, France; Institut de Chirurgie Minime Invasive Guidée par l'Image, Strasbourg, France
| | - Salvatore Chibbaro
- Neurosurgery Department, Strasbourg University Hospitals, Strasbourg, France
| | - François Severac
- Public Healthcare Department, Strasbourg University Hospitals, Strasbourg, France
| | - Maria Blagia
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy
| | | | - Maria Teresa Bozzi
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Translational Biomedicine and Neurosciences (DiBraiN), University "Aldo Moro" of Bari, Bari, Italy.
| |
Collapse
|
7
|
Alsbrook DL, Di Napoli M, Bhatia K, Desai M, Hinduja A, Rubinos CA, Mansueto G, Singh P, Domeniconi GG, Ikram A, Sabbagh SY, Divani AA. Pathophysiology of Early Brain Injury and Its Association with Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Review of Current Literature. J Clin Med 2023; 12:jcm12031015. [PMID: 36769660 PMCID: PMC9918117 DOI: 10.3390/jcm12031015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Background: Delayed cerebral ischemia (DCI) is a common and serious complication of aneurysmal subarachnoid hemorrhage (aSAH). Though many clinical trials have looked at therapies for DCI and vasospasm in aSAH, along with reducing rebleeding risks, none have led to improving outcomes in this patient population. We present an up-to-date review of the pathophysiology of DCI and its association with early brain injury (EBI). Recent Findings: Recent studies have demonstrated that EBI, as opposed to delayed brain injury, is the main contributor to downstream pathophysiological mechanisms that play a role in the development of DCI. New predictive models, including advanced monitoring and neuroimaging techniques, can help detect EBI and improve the clinical management of aSAH patients. Summary: EBI, the severity of subarachnoid hemorrhage, and physiological/imaging markers can serve as indicators for potential early therapeutics in aSAH. The microcellular milieu and hemodynamic pathomechanisms should remain a focus of researchers and clinicians. With the advancement in understanding the pathophysiology of DCI, we are hopeful that we will make strides toward better outcomes for this unique patient population.
Collapse
Affiliation(s)
- Diana L Alsbrook
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, 67039 L'Aquila, Italy
| | - Kunal Bhatia
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Masoom Desai
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Archana Hinduja
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Clio A Rubinos
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences, University of Campania, 80138 Naples, Italy
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India
| | - Gustavo G Domeniconi
- Unidad de Cuidados Intensivos, Sanatorio de la Trinidad San Isidro, Buenos Aires 1640, Argentina
| | - Asad Ikram
- Stroke Division, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sara Y Sabbagh
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Neumaier F, Stoppe C, Stoykova A, Weiss M, Veldeman M, Höllig A, Hamou HA, Temel Y, Conzen C, Schmidt TP, Dogan R, Wiesmann M, Clusmann H, Schubert GA, Haeren RHL, Albanna W. Elevated concentrations of macrophage migration inhibitory factor in serum and cerebral microdialysate are associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Front Neurol 2023; 13:1066724. [PMID: 36712451 PMCID: PMC9880331 DOI: 10.3389/fneur.2022.1066724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Inflammation is increasingly recognized to be involved in the pathophysiology of aneurysmal subarachnoid hemorrhage (aSAH) and may increase the susceptibility to delayed cerebral ischemia (DCI). Macrophage migration inhibitory factor (MIF) has been shown to be elevated in serum and cerebrospinal fluid (CSF) after aSAH. Here, we determined MIF levels in serum, CSF and cerebral microdialysate (MD) at different time-points after aSAH and evaluated their clinical implications. Methods MIF levels were measured in serum, CSF and MD obtained from 30 aSAH patients during early (EPd1-4), critical (CPd5-15) and late (LPd16-21) phase after hemorrhage. For subgroup analyses, patients were stratified based on demographic and clinical data. Results MIF levels in serum increased during CPd5-15 and decreased again during LPd16-21, while CSF levels showed little changes over time. MD levels peaked during EPd1-4, decreased during CPd5-15 and increased again during LPd16-21. Subgroup analyses revealed significantly higher serum levels in patients with aneurysms located in the anterior vs. posterior circulation during CPd5-15 (17.3 [15.1-21.1] vs. 10.0 [8.4-11.5] ng/ml, p = 0.009) and in patients with DCI vs. no DCI during CPd5-15 (17.9 [15.1-22.7] vs. 11.9 [8.9-15.9] ng/ml, p = 0.026) and LPd16-21 (17.4 [11.7-27.9] vs. 11.3 [9.2-12.2] ng/ml, p = 0.021). In addition, MIF levels in MD during CPd5-15 were significantly higher in patients with DCI vs. no DCI (3.6 [1.8-10.7] vs. 0.2 [0.1-0.7] ng/ml, p = 0.026), while CSF levels during the whole observation period were similar in all subgroups. Conclusion Our findings in a small cohort of aSAH patients provide preliminary data on systemic, global cerebral and local cerebral MIF levels after aSAH and their clinical implications. Clinical trial registration ClinicalTrials.gov, identifier: NCT02142166.
Collapse
Affiliation(s)
- Felix Neumaier
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany,Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Stoppe
- Departments of Cardiac Anesthesiology and Intensive Care Medicine Charité, Berlin, Germany,Department of Intensive Care and Intermediate Care, RWTH Aachen University, Aachen, Germany,Department of Anesthesiology and Intensive Care Medicine, Würzburg University, Würzburg, Germany
| | - Anzhela Stoykova
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Hussam Aldin Hamou
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Catharina Conzen
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Rabia Dogan
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Martin Wiesmann
- Department of Diagnostic and Interventional Neuroradiology, RWTH Aachen University, Aachen, Germany
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany,*Correspondence: Walid Albanna ✉
| |
Collapse
|
9
|
Zhang R, Liu Z, Zhang Y, Pei Y, He Y, Yu J, You C, Ma L, Fang F. Improving the models for prognosis of aneurysmal subarachnoid hemorrhage with the neutrophil-to-albumin ratio. Front Neurol 2023; 14:1078926. [PMID: 37034067 PMCID: PMC10079994 DOI: 10.3389/fneur.2023.1078926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Many peripheral inflammatory markers were reported to be associated with the prognosis of aneurysmal subarachnoid hemorrhage (aSAH). We aimed to identify the most promising inflammatory factor that can improve existing predictive models. Methods The study was based on data from a 10 year retrospective cohort study at Sichuan University West China Hospital. We selected the well-known SAFIRE and Subarachnoid Hemorrhage International Trialists' (SAHIT) models as the basic models. We compared the performance of the models after including the inflammatory markers and that of the original models. The developed models were internally and temporally validated. Results A total of 3,173 patients were included in this study, divided into the derivation cohort (n = 2,525) and the validation cohort (n = 648). Most inflammatory markers could improve the SAH model for mortality prediction in patients with aSAH, and the neutrophil-to-albumin ratio (NAR) performed best among all the included inflammatory markers. By incorporating NAR, the modified SAFIRE and SAHIT models improved the area under the receiver operator characteristics curve (SAFIRE+NAR vs. SAFIRE: 0.794 vs. 0.778, p = 0.012; SAHIT+NAR vs. SAHIT: 0.831 vs. 0.819, p = 0.016) and categorical net reclassification improvement (SAFIRE+NAR: 0.0727, p = 0.002; SAHIT+NAR: 0.0810, p < 0.001). Conclusion This study illustrated that among the inflammatory markers associated with aSAH prognosis, NAR could improve the SAFIRE and SAHIT models for 3 month mortality of aSAH.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zheran Liu
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yu Zhang
- Center for Evidence-Based Medical and Clinical Research, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yiyan Pei
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan He
- Department of Biotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiayi Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Lu Ma,
| | - Fang Fang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Fang Fang,
| |
Collapse
|
10
|
Cai YY, Zhuang YK, Wang WJ, Jiang F, Hu JM, Zhang XL, Zhang LX, Lou XH. Potential role of serum hypoxia-inducible factor 1alpha as a biomarker of delayed cerebral ischemia and poor clinical outcome after human aneurysmal subarachnoid hemorrhage: A prospective, longitudinal, multicenter, and observational study. Front Neurol 2022; 13:1072351. [PMID: 36570456 PMCID: PMC9772017 DOI: 10.3389/fneur.2022.1072351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Hypoxia-inducible factor 1alpha (HIF-1α) functions as a crucial transcriptional mediator in hypoxic and ischemic brain response. We endeavored to assess the prognostic significance of serum HIF-1α in human aneurysmal subarachnoid hemorrhage (aSAH). Methods In this prospective, longitudinal, multicenter, and observational study of 257 patients with aSAH and 100 healthy controls, serum HIF-1α levels were quantified. Univariate analyses, followed by multivariate analyses, were performed to discern the relationship between serum HIF-1α levels and severity and delayed cerebral ischemia (DCI) plus poststroke 6-month poor outcome [extended Glasgow outcome scale (GOSE) scores of 1-4]. Predictive efficiency was determined under the receiver operating characteristic (ROC) curve. Results There were significantly increased serum HIF-lα levels after aSAH, in comparison to controls (median, 288.0 vs. 102.6 pg/ml; P < 0.001). Serum HIF-lα levels were independently correlated with Hunt-Hess scores [β, 78.376; 95% confidence interval (CI): 56.446-100.305; P = 0.001] and modified Fisher scores (β, 52.037; 95% CI: 23.461-80.614; P = 0.002). Serum HIF-lα levels displayed significant efficiency for discriminating DCI risk [area under ROC curve (AUC), 0.751; 95% CI: 0.687-0.815; P < 0.001] and poor outcome (AUC, 0.791; 95% CI: 0.736-0.846; P < 0.001). Using the Youden method, serum HIF-1α levels >229.3 pg/ml predicted the development of DCI with 92.3% sensitivity and 48.4% specificity and serum HIF-1α levels >384.0 pg/ml differentiated the risk of a poor prognosis with 71.4% sensitivity and 81.1% specificity. Serum HIF-1α levels >229.3 pg/ml were independently predictive of DCI [odds ratio (OR), 3.061; 95% CI: 1.045-8.965; P = 0.041] and serum HIF-1α levels >384.0 pg/ml were independently associated with a poor outcome (OR, 2.907; 95% CI: 1.403-6.024; P = 0.004). The DCI predictive ability of their combination was significantly superior to those of Hunt-Hess scores (AUC, 0.800; 95% CI: 0.745-0.855; P = 0.039) and modified Fisher scores (AUC, 0.784; 95% CI: 0.726-0.843; P = 0.004). The prognostic predictive ability of their combination substantially exceeded those of Hunt-Hess scores (AUC, 0.839; 95% CI: 0.791-0.886; P < 0.001) and modified Fisher scores (AUC, 0.844; 95% CI: 0.799-0.890; P < 0.001). Conclusion Elevated serum HIF-lα levels after aSAH, in independent correlation with stroke severity, were independently associated with DCI and 6-month poor outcome, substantializing serum HIF-lα as a potential prognostic biomarker of aSAH.
Collapse
Affiliation(s)
- Ye-Yan Cai
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian People's Hospital, Ruian, China
| | - Yao-Kun Zhuang
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian People's Hospital, Ruian, China
| | - Wen-Jian Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian People's Hospital, Ruian, China
| | - Feng Jiang
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, China
| | - Jie-Miao Hu
- Department of Neurosurgery, Ningbo Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Ningbo, China
| | - Xiao-Le Zhang
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Li-Xin Zhang
- Department of Neurosurgery, Hangzhou Ninth People's Hospital, Hangzhou, China
| | - Xiao-Hui Lou
- Department of Neurosurgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian People's Hospital, Ruian, China,*Correspondence: Xiao-Hui Lou
| |
Collapse
|
11
|
Devlin P, Ishrat T, Stanfill AG. A Systematic Review of Inflammatory Cytokine Changes Following Aneurysmal Subarachnoid Hemorrhage in Animal Models and Humans. Transl Stroke Res 2022; 13:881-897. [PMID: 35260989 DOI: 10.1007/s12975-022-01001-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe form of stroke that occurs following rupture of a cerebral aneurysm. Acute inflammation and secondary delayed inflammatory responses, both largely controlled by cytokines, work together to create high mortality and morbidity for this group. The trajectory and time course of cytokine change must be better understood in order to effectively manage unregulated inflammation and improve patient outcomes following aSAH. A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Three different search phrases ("cytokines and subarachnoid hemorrhage," "cytokine levels and subarachnoid hemorrhage," and "cytokine measurement and subarachnoid hemorrhage") were applied across three databases (PubMed, SCOPUS, and the Cochrane Library). Our procedures returned 856 papers. After application of inclusion/exclusion criteria, 95 preclinical animal studies and 41 clinical studies remained. Across studies, 22 different cytokines had been investigated, 5 different tissue types were analyzed, and 3 animal models were utilized. Three main pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) demonstrated reliable increases following aSAH across the included studies. While this is a promising area of research for potential therapeutics, there are gaps in the knowledge base that bar progress for clinical translation of this information. In particular, there is a need for investigations that explore the systemic inflammatory response following injury in a more diverse number of cytokines, the balance of specific pro-/anti- inflammatory cytokines, and how these biomarkers relate to patient outcomes and recovery over time.
Collapse
Affiliation(s)
- Patrick Devlin
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, 920 Madison Ave, Memphis, TN, 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN, 38163, USA
| | - Ansley Grimes Stanfill
- Neuroscience Institute, University of Tennessee Health Science Center, 875 Monroe Ave, Memphis, TN, 38163, USA.
- Department of Acute and Tertiary Care, College of Nursing, University of Tennessee Health Science Center, 874 Union Ave, Memphis, TN, 38163, USA.
| |
Collapse
|
12
|
Dai JX, Lin Q, Ba HJ, Ye LZ, Li ZW, Cai JY. Utility of serum macrophage migration inhibitory factor as a potential biomarker for detection of cerebrocardiac syndrome following severe traumatic brain injury. Clin Chim Acta 2020; 512:179-184. [PMID: 33181151 DOI: 10.1016/j.cca.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cerebrocardiac syndrome (CCS) is a common complication after severe traumatic brain injury (sTBI) and its occurrence obviously increases the risk of a poor outcome. Macrophage migration inhibitory factor (MIF) acts as an inflammatory cytokine and its circulating concentration are related to acute heart and brain injury. The aim of this study was to examine the association of serum concentration of MIF with posttraumatic CCS. METHODS From January 2016 to February 2019, 116 sTBI patients and 116 healthy controls with similar age and gender percentage were recruited. Relationship between serum MIF concentration and CCS was assessed using multivariate analysis. RESULTS Serum MIF concentration of patients were significantly higher than those among controls. Serum MIF concentration were intimately correlated with Glasgow coma scale scores (t = -5.553, P < 0.001) and serum C-reactive protein concentration (t = 5.320, P < 0.001) in a multivariate linear regression model. 61 patients (52.6%) displayed CCS. Under ROC curve analylsis, there was a strong discriminatory ability for CCS regarding serum MIF concentration (area under curve, 0.834; 95% confidence interval, 0.754-0.897). Serum MIF concentration were highly associated with CCS independent of other confounding factors (odds ratio, 5.608; 95% CI: 1.896-16.587). CONCLUSIONS Increased MIF in serum may be a useful biomarker for early detection of CCS after head trauma.
Collapse
Affiliation(s)
- Jun-Xia Dai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Qun Lin
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Hua-Jun Ba
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Liang-Zhi Ye
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Zhi-Wei Li
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China
| | - Jian-Yong Cai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, 32 Dajian Lane, Wenzhou 325000, China.
| |
Collapse
|
13
|
Lin Q, Ba HJ, Dai JX, Sun J, Lu C, Chen MH, Chen XD, Cai JY. Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 as a biomarker of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Brain Behav 2020; 10:e01517. [PMID: 31943892 PMCID: PMC7010573 DOI: 10.1002/brb3.1517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Delayed cerebral ischemia (DCI) greatly contributes to the high morbidity and mortality of aneurysmal subarachnoid hemorrhage (aSAH) patients. Expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) was substantially raised in the basilar arterial wall of SAH rabbits. We attempted to ascertain the relationship between serum soluble LOX-1 (sLOX-1) levels and the occurrence of DCI after aSAH. MATERIALS AND METHODS We enrolled 125 aSAH patients and 125 healthy controls. Serum sLOX-1 levels were quantified using commercial enzyme-linked immunosorbent assay kit. The relationship between sLOX-1 levels and DCI was analyzed utilizing the multivariate logistic regression analysis. RESULTS Serum sLOX-1 levels were significantly higher in stroke patients than in controls (median: 1,450.2 vs. 445.7 pg/ml, p < .001). Serum sLOX-1 levels were highly correlated with World Federation of Neurological Surgeons (WFNS) scores, Hunt-Hess scores, and modified Fisher scores (r = .574, .625, and .569, respectively). Forty-two patients (33.6%) experienced DCI. Serum sLOX-1 > 1,450.2 pg/ml, WFNS scores and modified Fisher scores were the independent predictors of DCI. Under receiver operating characteristic curve, serum sLOX-1 levels exhibited a significant discriminatory capability (area under curve 0.825, 95% confidence interval 0.747-0.887). The predictive power of serum sLOX-1 levels was similar to those of WFNS scores and modified Fisher grade (both p > .05). Moreover, serum sLOX-1 levels significantly improved their predictive capability (both p < .05). CONCLUSIONS Serum soluble LOX-1, in positive association with hemorrhagic severity, appears to have the potential to become a promising predictor of DCI after aSAH.
Collapse
Affiliation(s)
- Qun Lin
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Hua-Jun Ba
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Jun-Xia Dai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Jun Sun
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Chuan Lu
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Mao-Hua Chen
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Xian-Dong Chen
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| | - Jian-Yong Cai
- Department of Neurosurgery, The Central Hospital of Wenzhou City, Wenzhou, China
| |
Collapse
|