1
|
Wang J, Ran Y, Li Z, Zhao T, Zhang F, Wang J, Liu Z, Chen X. Salsolinol as an RNA m6A methylation inducer mediates dopaminergic neuronal death by regulating YAP1 and autophagy. Neural Regen Res 2025; 20:887-899. [PMID: 38886960 PMCID: PMC11433901 DOI: 10.4103/nrr.nrr-d-23-01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/18/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00032/figure1/v/2024-06-17T092413Z/r/image-tiff Salsolinol (1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, Sal) is a catechol isoquinoline that causes neurotoxicity and shares structural similarity with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an environmental toxin that causes Parkinson's disease. However, the mechanism by which Sal mediates dopaminergic neuronal death remains unclear. In this study, we found that Sal significantly enhanced the global level of N6-methyladenosine (m6A) RNA methylation in PC12 cells, mainly by inducing the downregulation of the expression of m6A demethylases fat mass and obesity-associated protein (FTO) and alkB homolog 5 (ALKBH5). RNA sequencing analysis showed that Sal downregulated the Hippo signaling pathway. The m6A reader YTH domain-containing family protein 2 (YTHDF2) promoted the degradation of m6A-containing Yes-associated protein 1 (YAP1) mRNA, which is a downstream key effector in the Hippo signaling pathway. Additionally, downregulation of YAP1 promoted autophagy, indicating that the mutual regulation between YAP1 and autophagy can lead to neurotoxicity. These findings reveal the role of Sal on m6A RNA methylation and suggest that Sal may act as an RNA methylation inducer mediating dopaminergic neuronal death through YAP1 and autophagy. Our results provide greater insights into the neurotoxic effects of catechol isoquinolines compared with other studies and may be a reference for assessing the involvement of RNA methylation in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Jianan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Yuanyuan Ran
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zihan Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Tianyuan Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Fangfang Zhang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Juan Wang
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuechai Chen
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, College of Chemistry and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Abiuzi MB, de Andrade BA, Ramos FF, Totini CH, Christodoulides M, Kant R, Lago JHG, Tempone AG. The Marine Microbial Alkaloid (R)-Salsolinol is Effective Against Trypanosoma cruzi. Chem Biodivers 2025:e202403109. [PMID: 40013743 DOI: 10.1002/cbdv.202403109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Chagas disease is a parasitic disease with approximately 8 million people infected worldwide, presenting a limited and toxic treatment. Comprising a vast chemodiversity, microbial metabolites are among the most important sources of FDA-approved anti-infectives. In this work, the bioactivity-guided fractionation from an extract obtained from the bacterium Bacillus altitudinis, isolated from a red seaweed, afforded an antitrypanosomal alkaloid which was characterized as (R)-salsolinol by 1H NMR and HR-ESIMS analysis. (R)-Salsolinol showed a trypanocidal effect against the trypomastigotes (EC50 = 14 µg/mL) and a selective activity against the intracellular amastigotes (EC50 = 19 µg/mL), with no mammalian cytotoxicity in human monocytic cells THP-1 (CC50 > 36 µg/mL). In silico studies predicted a high permeability into cell membranes, as well as a high gastrointestinal absorption, with acceptable parameters in pharmaceutical filters, as well as cruzipain as a possible target protein, suggesting that (R)-salsolinol can be used as a prototype for drug design studies in Chagas disease.
Collapse
Affiliation(s)
- Mariana B Abiuzi
- Pathophysiology Laboratory, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-graduação da Coordenadoria de Controle de Doenças, São Paulo, Brazil
| | | | - Fernanda F Ramos
- Pathophysiology Laboratory, Instituto Butantan, São Paulo, Brazil
| | - Carlos H Totini
- Centre of Natural Sciences and Humanities, Federal University of ABC, Sao Paulo, Brazil
| | - Myron Christodoulides
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Ravi Kant
- Neisseria Research Laboratory, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - João Henrique G Lago
- Centre of Natural Sciences and Humanities, Federal University of ABC, Sao Paulo, Brazil
| | - Andre G Tempone
- Pathophysiology Laboratory, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
3
|
Esposito L, Perillo M, Di Mattia CD, Scroccarello A, Della Pelle F, Compagnone D, Sacchetti G, Mastrocola D, Martuscelli M. A Survey on Potentially Beneficial and Hazardous Bioactive Compounds in Cocoa Powder Samples Sourced from the European Market. Foods 2024; 13:2457. [PMID: 39123648 PMCID: PMC11311273 DOI: 10.3390/foods13152457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Cocoa (Theobroma cacao, L.) represents an important market that gained relevance and became an esteemed commodity thanks to cocoa powder, chocolate, and other related products. This work analyzed 59 cocoa powder samples from the European market. Three distinct subgroups were identified: organic or conventional, alkalized or not alkalized, and raw or roasted processing. The impact of the technological process on their pH, color, and compositional traits, as well as their content of biogenic amines and salsolinol, was evaluated. The phenolic fraction was also investigated through both common and emerging methods. The results depict that the influence of the agronomical practices (organic/conventional) did not significantly (p < 0.05) affect the composition of the cocoa powders; similarly, the roasting process was not a determinant of the compounds traced. On the other hand, the alkalinization process greatly impacted color and pH, no matter the cocoa's provenience or obtention or other processes, also resulting in reducing the phenolic fraction of the treated samples. Principal component analysis confirmed that the alkali process acts on pH, color, and phenolic composition but not on the content of other bioactive molecules (biogenic amines and salsolinol). All the samples were safe, while the alkalized powders saw a great reduction in beneficial biocompounds. A novel strategy could be to emphasize on the label whether cocoa powder is non-alkalized to meet the demand for more beneficial products.
Collapse
Affiliation(s)
- Luigi Esposito
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Matteo Perillo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Carla Daniela Di Mattia
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Annalisa Scroccarello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Flavio Della Pelle
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Dario Compagnone
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Giampiero Sacchetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Dino Mastrocola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (L.E.); (C.D.D.M.); (A.S.); (F.D.P.); (D.C.); (G.S.); (D.M.)
| |
Collapse
|
4
|
Magwaza SN, Erukainure OL, Olofinsan K, Meriga B, Islam MS. Evaluation of the antidiabetic, antiobesity and antioxidant potential of Anthophycus longifolius ((Turner) Kützing). SCIENTIFIC AFRICAN 2024; 23:e02051. [DOI: 10.1016/j.sciaf.2023.e02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
|
5
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Savitri D, Wahyuni S, Bukhari A, Djawad K, Hatta M, Riyanto P, Bahar B, Wahab S, Hamid F, Rifai Y. Anti-inflammatory effects of banana ( Musa balbisiana) peel extract on acne vulgaris: In vivo and in silico study. J Taibah Univ Med Sci 2023; 18:1586-1598. [PMID: 37693819 PMCID: PMC10492217 DOI: 10.1016/j.jtumed.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Acne vulgaris (AV) is a common problem with a relatively high incidence rate among Asian people. The potential antimicrobial and anti-inflammatory properties of banana peels have been demonstrated in previous studies but have not been studied in cases of AV. Therefore, this study was aimed at investigating the protective effects of banana (Musa balbisiana) peel extract (MBPE) against AV. METHODS Thirty rats were divided into five groups (n = 6 rats per group): an AV group, AV group treated with 0.15% MBPE, AV group administered 0.30% MBPE, AV group administered 0.60% MBPE, and AV group administered clindamycin (the standard drug treatment). We assessed nodule size, bacterial count, histopathology, and cytokine levels (IL-1α, IFN-γ, tumor necrosis factor (TNF)-α, and IL-8). Enzyme linked immunoassays were used to measure the cytokine levels. In addition, we performed molecular docking studies to determine the interactions between phytochemicals (trigonelline, vanillin, ferulic acid, isovanillic acid, rutin, and salsolinol) via the Toll-like receptor 2 (TLR2) and nuclear factor-kappa B (NF-κB) pathways. RESULTS All MBPE treatment groups, compared with the AV group, showed suppression of both bacterial growth and proinflammatory cytokine production, as well as resolved tissue inflammation. The nodule size was significantly suppressed in the groups receiving the two highest doses of MBPE, compared with the AV group. However, the pharmacological action of MBPE remained inferior to that of clindamycin. Docking studies demonstrated that rutin was the phytocompound with the most negative interaction energy with TLR2 or NF-κB. CONCLUSIONS Our results indicated that MBPE has anti-inflammatory effects against AV, by suppressing nodule formation, inhibiting bacterial growth, and decreasing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Dwiana Savitri
- Doctoral Program in Medical Science, Faculty of Medicine Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Khairuddin Djawad
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Mochammad Hatta
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Puguh Riyanto
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Burhanuddin Bahar
- Department of Health Administration and Policy Studies, Faculty of Public Health, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Siswanto Wahab
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Firdaus Hamid
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Yusnita Rifai
- Departement of Pharmacy, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
7
|
Kurnik-Łucka M, Latacz G, Bucki A, Rivera-Meza M, Khan N, Konwar J, Skowron K, Kołaczkowski M, Gil K. Neuroprotective Activity of Enantiomers of Salsolinol and N-Methyl-( R)-salsolinol: In Vitro and In Silico Studies. ACS OMEGA 2023; 8:38566-38576. [PMID: 37867702 PMCID: PMC10586258 DOI: 10.1021/acsomega.3c05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Salsolinol (1-methyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol) is a close structural analogue of dopamine with an asymmetric center at the C1 position, and its presence in vivo, both in humans and rodents, has already been proven. Yet, given the fact that salsolinol colocalizes with dopamine-rich regions and was first detected in the urine of Parkinson's disease patients, its direct role in the process of neurodegeneration has been proposed. Here, we report that R and S enantiomers of salsolinol, which we purified from commercially available racemic mixture by means of high-performance liquid chromatography, exhibited neuroprotective properties (at the concentration of 50 μM) toward the human dopaminergic SH-SY5Y neuroblastoma cell line. Furthermore, within the study, we observed no toxic effect of N-methyl-(R)-salsolinol on SH-SY5Y neuroblastoma cells up to the concentration of 750 μM, either. Additionally, our molecular docking analysis showed that enantiomers of salsolinol should exhibit a distinct ability to interact with dopamine D2 receptors. Thus, we postulate that our results highlight the need to acknowledge salsolinol as an active dopamine metabolite and to further explore the neuroregulatory role of enantiomers of salsolinol.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Adam Bucki
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Mario Rivera-Meza
- Laboratory
of Experimental Pharmacology, Faculty of Chemical Sciences and Pharmaceutical
Sciences, University of Chile, 8380494 Santiago, Chile
| | - Nadia Khan
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Jahnobi Konwar
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Kamil Skowron
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Marcin Kołaczkowski
- Department
of Medicinal Chemistry, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| | - Krzysztof Gil
- Department
of Pathophysiology, Jagiellonian University
Medical College, 31-008 Krakow, Poland
| |
Collapse
|
8
|
Du QY, He M, Gao X, Yu X, Zhang JN, Shi J, Zhang F, Lu YY, Wang HQ, Yu YJ, Zhang X. Geographical discrimination of Flos Trollii by GC-MS and UHPLC-HRMS-based untargeted metabolomics combined with chemometrics. J Pharm Biomed Anal 2023; 234:115550. [PMID: 37429118 DOI: 10.1016/j.jpba.2023.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
For centuries, Flos Trollii has been consumed as functional tea and a folk medicine in China's north and northwest zones. The quality of Flos Trollii highly depends on the producing zones. Unfortunately, few studies have been reported on the geographical discrimination of Flos Trollii. This work comprehensively investigated Flos Trollii compounds with an integration strategy combining gas chromatography-mass spectrometry (GC-MS) and ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) with chemometrics to explore the differences between Flos Trollii obtained from various origins of China. About 71 volatile and 22 involatile markers were identified with GC-MS and UHPLC-HRMS, respectively. Geographical discrimination models were synthetically investigated based on the identified markers. The results indicated that the UHPLC-HRMS coupled with the fisher discrimination model provided the best prediction capability (>97%). This study provides a new solution for Flos Trollii discrimination.
Collapse
Affiliation(s)
- Qing-Yu Du
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Min He
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xin Gao
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jia-Ni Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jie Shi
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - You-Yuan Lu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan, China
| | - Han-Qing Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan, China
| | - Yong-Jie Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan, China.
| | - Xia Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
9
|
Coimbra PPS, da Silva-e-Silva ACAG, Antonio ADS, Pereira HMG, da Veiga-Junior VF, Felzenszwalb I, Araujo-Lima CF, Teodoro AJ. Antioxidant Capacity, Antitumor Activity and Metabolomic Profile of a Beetroot Peel Flour. Metabolites 2023; 13:metabo13020277. [PMID: 36837895 PMCID: PMC9961284 DOI: 10.3390/metabo13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 02/17/2023] Open
Abstract
In this study, a beetroot peel flour was made, and its in vitro antioxidant activity was determined in aqueous (BPFw) and ethanolic (BPFe) extracts. The influence of BPFw on breast cancer cell viability was also determined. A targeted betalain profile was obtained using high-resolution Q-Extractive Plus Orbitrap mass spectrometry (Obrtitrap-HRMS) alongside untargeted chemical profiling of BPFw using Ultra-High-Performance Liquid Chromatography with High-Resolution Mass Spectrometry (UHPLC-HRMS). BPFw and BPFe presented satisfactory antioxidant activities, with emphasis on the total phenolic compounds and ORAC results for BPFw (301.64 ± 0.20 mg GAE/100 g and 3032.78 ± 55.00 µmol T/100 g, respectively). The MCF-7 and MDA-MB-231 breast cancer cells presented reductions in viability when treated with BPFw, showing dose-dependent behavior, with MDA-MB-231 also showing time-dependent behavior. The chemical profiling of BPFw led to the identification of 9 betalains and 59 other compounds distributed amongst 28 chemical classes, with flavonoids and their derivates and coumarins being the most abundant. Three forms of betalain generated via thermal degradation were identified. However, regardless of thermal processing, the BPF still presented satisfactory antioxidant and anticancer activities, possibly due to synergism with other identified molecules with reported anticancer activities via different metabolic pathways.
Collapse
Affiliation(s)
- Pedro Paulo Saldanha Coimbra
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | | | - Ananda da Silva Antonio
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Henrique Marcelo Gualberto Pereira
- Laboratory for the Support of Technological Development, Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Carlos Fernando Araujo-Lima
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
- Department of Genetics and Molecular Biology, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Correspondence: (C.F.A.-L.); (A.J.T.)
| | - Anderson Junger Teodoro
- Food and Nutrition Graduate Program, Federal University of Rio de Janeiro State, Rio de Janeiro 21941-901, Brazil
- Department of Nutrition and Dietetics, Faculty of Nutrition, Fluminense Federal University, Rio de Janeiro 24020-141, Brazil
- Correspondence: (C.F.A.-L.); (A.J.T.)
| |
Collapse
|
10
|
Starek-Świechowicz B, Budziszewska B, Starek A. Alcohol and breast cancer. Pharmacol Rep 2023; 75:69-84. [PMID: 36310188 PMCID: PMC9889462 DOI: 10.1007/s43440-022-00426-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of the main causes of death in women worldwide. In women, breast cancer includes over half of all tumours caused by alcohol. This paper discusses both ethanol metabolism and the mechanisms of mammary tumourigenesis caused by alcohol. Numerous signalling pathways in neoplastic transformation following alcohol consumption in women have been presented. In addition, primary and secondary prevention, phytochemicals, synthetic chemicals, specific inhibitors of enzymes and selective receptor modulators have been described.
Collapse
Affiliation(s)
- Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Andrzej Starek
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
11
|
Godyń J, Zaręba P, Stary D, Kaleta M, Kuder KJ, Latacz G, Mogilski S, Reiner-Link D, Frank A, Doroz-Płonka A, Olejarz-Maciej A, Sudoł-Tałaj S, Nolte T, Handzlik J, Stark H, Więckowska A, Malawska B, Kieć-Kononowicz K, Łażewska D, Bajda M. Benzophenone Derivatives with Histamine H 3 Receptor Affinity and Cholinesterase Inhibitory Potency as Multitarget-Directed Ligands for Possible Therapy of Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010238. [PMID: 36615435 PMCID: PMC9822066 DOI: 10.3390/molecules28010238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
The multitarget-directed ligands demonstrating affinity to histamine H3 receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound 6 with a high affinity for H3R (Ki = 8 nM) and significant inhibitory activity toward BuChE (IC50 = 172 nM and 1.16 µM for eqBuChE and hBuChE, respectively). Further in vitro studies revealed that compound 6 (4-fluorophenyl) (4-((5-(piperidin-1-yl)pentyl)oxy)phenyl)methanone) displays moderate metabolic stability in mouse liver microsomes, good permeability with a permeability coefficient value (Pe) of 6.3 × 10-6 cm/s, and its safety was confirmed in terms of hepatotoxicity in the HepG2 cell line. Therefore, we investigated the in vivo activity of compound 6 in the Passive Avoidance Test and the Formalin Test. While compound 6 did not show a statistically significant influence on memory and learning, it showed analgesic properties in both acute (ED50 = 20.9 mg/kg) and inflammatory (ED50 = 17.5 mg/kg) pain.
Collapse
Affiliation(s)
- Justyna Godyń
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Dorota Stary
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 St., 31-530 Krakow, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Kamil J. Kuder
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Szczepan Mogilski
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Sylwia Sudoł-Tałaj
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 St., 31-530 Krakow, Poland
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Tobias Nolte
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
- Correspondence:
| |
Collapse
|
12
|
Bauer EE, Reed CH, Lyte M, Clark PJ. An evaluation of the rat intestinal monoamine biogeography days following exposure to acute stress. Front Physiol 2022; 13:1021985. [PMID: 36582358 PMCID: PMC9792511 DOI: 10.3389/fphys.2022.1021985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Stress-induced abnormalities in gut monoamine levels (e.g., serotonin, dopamine, norepinephrine) have been linked to gastrointestinal (GI) dysfunction, as well as the worsening of symptoms in GI disorders. However, the influence of stress on changes across the entire intestinal monoamine biogeography has not been well-characterized, especially in the days following stress exposure. Therefore, the aim of this study was to comprehensively assess changes to monoamine neurochemical signatures across the entire rat intestinal tract days after exposure to an acute stressor. To the end, adult male F344 rats were subjected to an episode of unpredictable tail shocks (acute stress) or left undisturbed. Forty-eight hours later rats were euthanized either following a 12 h period of fasting or 30 min of food access to evaluate neurochemical profiles during the peri- and early postprandial periods. Monoamine-related neurochemicals were measured via UHPLC in regions of the small intestine (duodenum, jejunum, ileum), large intestine (cecum, proximal colon, distal colon), cecal contents, fecal contents, and liver. The results suggest a relatively wide-spread increase in measures of serotonin activity across intestinal regions can be observed 48 h after exposure to acute stress, however some evidence was found supporting localized differences in serotonin metabolization. Moreover, acute stress exposure reduced catecholamine-related neurochemical concentrations most notably in the ileum, and to a lesser extent in the cecal contents. Next, stress-related fecal serotonin concentrations were consistent with intestinal profiles. However, fecal dopamine was elevated in association with stress, which did not parallel findings in any other intestinal area. Finally, stress exposure and the food access period together only had minor effects on intestinal monoamine profiles. Taken together, these data suggest nuanced differences in monoaminergic profiles exist across intestinal regions the days following exposure to an acute stressor, highlighting the importance of assessments that consider the entire intestinal tract biogeography when investigating stress-related biological outcomes that may be relevant to GI pathophysiology.
Collapse
Affiliation(s)
- Ella E. Bauer
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Carter H. Reed
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
- Department of Kinesiology, Iowa State University, Ames, IA, United States
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Peter J. Clark
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
13
|
Kurnik-Łucka M, Latacz G, Goryl J, Aleksandrovych V, Gil K. Salsolinol Protects SH-SY5Y Cells Against MPP + Damage and Increases Enteric S100-Immunoreactivity in Wistar Rats. Neurochem Res 2022; 48:1347-1359. [PMID: 36449199 PMCID: PMC10066146 DOI: 10.1007/s11064-022-03835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
A dopamine derivative, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, known as salsolinol (SAL), has increasingly gained attention since its first detection in the urine of Parkinson's disease patients treated with levodopa, and has been proposed as a possible neurotoxic contributor to the disease. Yet, so far, the neurobiological role of SAL remains unclear. Thus, the main aims of our study were to compare the neurotoxic potential of SAL with MPP+ (1-methyl-4-phenylpyridinium ion) in vitro, and to examine intestinal and metabolic alterations following intraperitoneal SAL administration in vivo. In vitro, SH-SY5Y neuroblastoma cell line was monitored following MPP+ and SAL treatment. In vivo, Wistar rats were subjected to SAL administration by either osmotic intraperitoneal mini-pumps or a single intraperitoneal injection, and after two weeks, biochemical and morphological parameters were assessed. SH-SY5Y cells treated with MPP+ (1000 μM) and SAL (50 µM) showed increase in cell viability and fluorescence intensity in comparison with the cells treated with MPP+ alone. In vivo, we predominantly observed decreased collagen content in the submucosal layer, decreased neuronal density with comparable ganglionic area in the jejunal myenteric plexus, and increased glial S100 expression in both enteric plexuses, yet with no obvious signs of inflammation. Besides, glucose and triglycerides levels were lower after single SAL-treatment (200 mg/kg), and low- to high-density lipoprotein (LDL/HDL) ratio and aspartate to alanine aminotransferases (AST/ALT) ratio levels were higher after continuous SAL-treatment (200 mg/kg in total over 2 weeks). Low doses of SAL were non-toxic and exhibited pronounced neuroprotective properties against MPP+ in SH-SY5Y cell line, which supports the use of SAL as a reference compound for in vitro studies. In vivo results give insight into our understanding of gastrointestinal remodeling following intraperitoneal SAL administration, and might represent morphological correlates of a microglial-related enteric neurodegeneration and dopaminergic dysregulation.
Collapse
Affiliation(s)
- Magdalena Kurnik-Łucka
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland.
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Joanna Goryl
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow, Poland
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| | - Krzysztof Gil
- Department of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Krakow, Poland
| |
Collapse
|
14
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
15
|
Phenylalanine-Based AMPA Receptor Antagonist as the Anticonvulsant Agent with Neuroprotective Activity-In Vitro and In Vivo Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030875. [PMID: 35164136 PMCID: PMC8840081 DOI: 10.3390/molecules27030875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.
Collapse
|
16
|
Cao Y, Li B, Ismail N, Smith K, Li T, Dai R, Deng Y. Neurotoxicity and Underlying Mechanisms of Endogenous Neurotoxins. Int J Mol Sci 2021; 22:12805. [PMID: 34884606 PMCID: PMC8657695 DOI: 10.3390/ijms222312805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Endogenous and exogenous neurotoxins are important factors leading to neurodegenerative diseases. In the 1980s, the discovery that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) contributes to Parkinson's disease (PD) symptoms led to new research investigations on neurotoxins. An abnormal metabolism of endogenous substances, such as condensation of bioamines with endogenous aldehydes, dopamine (DA) oxidation, and kynurenine pathway, can produce endogenous neurotoxins. Neurotoxins may damage the nervous system by inhibiting mitochondrial activity, increasing oxidative stress, increasing neuroinflammation, and up-regulating proteins related to cell death. This paper reviews the biological synthesis of various known endogenous neurotoxins and their toxic mechanisms.
Collapse
Affiliation(s)
- Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nafissa Ismail
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin Smith
- Neuroimmunology, Stress and Endocrinology (NISE) Lab, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (N.I.); (K.S.)
| | - Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (Y.C.); (T.L.); (Y.D.)
| |
Collapse
|
17
|
Łażewska D, Olejarz-Maciej A, Reiner D, Kaleta M, Latacz G, Zygmunt M, Doroz-Płonka A, Karcz T, Frank A, Stark H, Kieć-Kononowicz K. Dual Target Ligands with 4- tert-Butylphenoxy Scaffold as Histamine H 3 Receptor Antagonists and Monoamine Oxidase B Inhibitors. Int J Mol Sci 2020; 21:ijms21103411. [PMID: 32408504 PMCID: PMC7279487 DOI: 10.3390/ijms21103411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Abstract
Dual target ligands are a promising concept for the treatment of Parkinson's disease (PD). A combination of monoamine oxidase B (MAO B) inhibition with histamine H3 receptor (H3R) antagonism could have positive effects on dopamine regulation. Thus, a series of twenty-seven 4-tert-butylphenoxyalkoxyamines were designed as potential dual-target ligands for PD based on the structure of 1-(3-(4-tert-butylphenoxy)propyl)piperidine (DL76). Probed modifications included the introduction of different cyclic amines and elongation of the alkyl chain. Synthesized compounds were investigated for human H3R (hH3R) affinity and human MAO B (hMAO B) inhibitory activity. Most compounds showed good hH3R affinities with Ki values below 400 nM, and some of them showed potent inhibitory activity for hMAO B with IC50 values below 50 nM. However, the most balanced activity against both biological targets showed DL76 (hH3R: Ki = 38 nM and hMAO B: IC50 = 48 nM). Thus, DL76 was chosen for further studies, revealing the nontoxic nature of DL76 in HEK293 and neuroblastoma SH-SY5Ycells. However, no neuroprotective effect was observed for DL76 in hydrogen peroxide-treated neuroblastoma SH-SY5Y cells. Furthermore, in vivo studies showed antiparkinsonian activity of DL76 in haloperidol-induced catalepsy (Cross Leg Position Test) at a dose of 50 mg/kg body weight.
Collapse
Affiliation(s)
- Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - David Reiner
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 MedycznaStr, 30-688 Kraków, Poland;
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (D.R.); (A.F.); (H.S.)
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, 9 Medyczna Str, 30-688 Kraków, Poland; (A.O.-M.); (M.K.); (G.L.); (A.D.-P.); (T.K.)
- Correspondence: (D.Ł.); (K.K.-K.)
| |
Collapse
|