1
|
Gil-Martins E, Cagide F, Borer A, Barbosa DJ, Fernandes C, Chavarria D, Remião F, Borges F, Silva R. The role of mitochondrial dysfunction and calcium dysregulation in 2C-I and 25I-NBOMe-induced neurotoxicity. Chem Biol Interact 2025; 411:111425. [PMID: 39956257 DOI: 10.1016/j.cbi.2025.111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
New psychoactive substances (NPS) are designed to evade legal regulation while mimicking the effects of classic illicit drugs such as 3,4-methylenedioxymethamphetamine (MDMA). This category includes phenethylamine derivatives, such as the psychedelic 2C and NBOMe drugs. Given the lack of data regarding the toxicological profile of these substances, the goal of this study was to evaluate the neurotoxicity of 2C-I and 25I-NBOMe and explore their neurotoxic pathways. Lower EC50 values, in both NR uptake and MTT reduction assays in differentiated SH-SY5Y cells and primary rat cortical cultures, revealed that 25I-NBOMe is significantly more cytotoxic than 2C-I, likely due to its higher lipophilicity. Both drugs triggered severe mitochondrial dysfunction, characterized by decreased intracellular ATP levels and mitochondrial membrane depolarization, although no significant changes in intracellular ROS/RNS levels were observed. Additionally, 25I-NBOMe increased the intracellular Ca2⁺ levels. Apoptosis was an observed mechanism of cell death for both drugs, as demonstrated by a significant increase in the number of cells undergoing early apoptosis (AnV+/PI-) and late apoptosis/necrosis (AnV+/PI+). However, only 2C-I induced autophagy and strongly triggered caspase-3 activation. This suggests that 2C-I induces caspase-3-dependent apoptosis, whereas 25I-NBOMe may also induce apoptosis through a caspase-3-independent pathway, possibly involving increased intracellular Ca2⁺ levels and direct mitochondrial damage. These findings underscore the complex interplay between mitochondrial dysfunction, calcium dysregulation, and cell death pathways, highlighting the central role of mitochondria in the cytotoxicity of 2C-I and 25I-NBOMe.
Collapse
Affiliation(s)
- Eva Gil-Martins
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.
| | - Ana Borer
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, 4585-116, Gandra, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU, 4585-116, Gandra, Portugal; i3S-Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Carlos Fernandes
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
2
|
Ilyin NP, Nabiullin AD, Kozlova AD, Kupriyanova OV, Shevyrin VA, Gloriozova T, Filimonov D, Lagunin A, Galstyan DS, Kolesnikova TO, Mor MS, Efimova EV, Poroikov V, Yenkoyan KB, de Abreu MS, Demin KA, Kalueff AV. Chronic Behavioral and Neurochemical Effects of Four Novel N-Benzyl-2-phenylethylamine Derivatives Recently Identified as "Psychoactive" in Adult Zebrafish Screens. ACS Chem Neurosci 2024; 15:2006-2017. [PMID: 38683969 DOI: 10.1021/acschemneuro.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Potently affecting human and animal brain and behavior, hallucinogenic drugs have recently emerged as potentially promising agents in psychopharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful model organism for screening neuroactive drugs, including hallucinogens. Here, we tested four novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -F, -Cl, and -OCF3 substitutions in the ortho position of the phenyl ring of the N-benzyl moiety (34H-NBF, 34H-NBCl, 24H-NBOMe(F), and 34H-NBOMe(F)), assessing their behavioral and neurochemical effects following chronic 14 day treatment in adult zebrafish. While the novel tank test behavioral data indicate anxiolytic-like effects of 24H-NBOMe(F) and 34H-NBOMe(F), neurochemical analyses reveal reduced brain norepinephrine by all four drugs, and (except 34H-NBCl) - reduced dopamine and serotonin levels. We also found reduced turnover rates for all three brain monoamines but unaltered levels of their respective metabolites. Collectively, these findings further our understanding of complex central behavioral and neurochemical effects of chronically administered novel NBPEAs and highlight the potential of zebrafish as a model for preclinical screening of small psychoactive molecules.
Collapse
Affiliation(s)
- Nikita P Ilyin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Arslan D Nabiullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna D Kozlova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Kazan State Medical University, Kazan 420012, Russia
| | - Vadim A Shevyrin
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Str. ,Ekaterinburg 620002, Russia
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Dmitry Filimonov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Alexey Lagunin
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - David S Galstyan
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Tatiana O Kolesnikova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Mikael S Mor
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Evgeniya V Efimova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Vladimir Poroikov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bldg. 8 ,Moscow 119121, Russia
| | - Konstantin B Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
- Biochemistry Department, Yerevan State Medical University after Mkhitar Heratsi, Yerevan 0025, Armenia
| | - Murilo S de Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre 900050, Brazil
| | - Konstantin A Demin
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Allan V Kalueff
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi 354340, Russia
- Suzhou Key Laboratory of Neurobiology and Cell Signalling, Department of Biological Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
3
|
Wojtas A, Gołembiowska K. Molecular and Medical Aspects of Psychedelics. Int J Mol Sci 2023; 25:241. [PMID: 38203411 PMCID: PMC10778977 DOI: 10.3390/ijms25010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/17/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Psychedelics belong to the oldest psychoactive drugs. They arouse recent interest due to their therapeutic applications in the treatment of major depressive disorder, substance use disorder, end-of-life anxiety,= and anxiety symptoms, and obsessive-compulsive disorder. In this review, the current state of preclinical research on the mechanism of action, neurotoxicity, and behavioral impact of psychedelics is summarized. The effect of selective 5-HT2A receptor agonists, 25I- and 25B-NBOMe, after acute and repeated administration is characterized and compared with the effects of a less selective drug, psilocybin. The data show a significant effect of NBOMes on glutamatergic, dopaminergic, serotonergic, and cholinergic neurotransmission in the frontal cortex, striatum, and nucleus accumbens. The increases in extracellular levels of neurotransmitters were not dose-dependent, which most likely resulted from the stimulation of the 5-HT2A receptor and subsequent activation of the 5-HT2C receptors. This effect was also observed in the wet dog shake test and locomotor activity. Chronic administration of NBOMes elicited rapid development of tolerance, genotoxicity, and activation of microglia. Acute treatment with psilocybin affected monoaminergic and aminoacidic neurotransmitters in the frontal cortex, nucleus accumbens, and hippocampus but not in the amygdala. Psilocybin exhibited anxiolytic properties resulting from intensification of GABAergic neurotransmission. The data indicate that NBOMes as selective 5-HT2A agonists exert a significant effect on neurotransmission and behavior of rats while also inducing oxidative DNA damage. In contrast to NBOMes, the effects induced by psilocybin suggest a broader therapeutic index of this drug.
Collapse
Affiliation(s)
| | - Krystyna Gołembiowska
- Unit II, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| |
Collapse
|
4
|
Wojtas A, Herian M, Maćkowiak M, Solarz A, Wawrzczak-Bargiela A, Bysiek A, Noworyta K, Gołembiowska K. Hallucinogenic activity, neurotransmitters release, anxiolytic and neurotoxic effects in Rat's brain following repeated administration of novel psychoactive compound 25B-NBOMe. Neuropharmacology 2023; 240:109713. [PMID: 37689261 DOI: 10.1016/j.neuropharm.2023.109713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
2-(4-Bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)etanoamine (25B-NBOMe) is a highly selective 5-HT2A receptor agonist, exhibiting a potent hallucinogenic activity. In the present study, we investigated the effect of a 7-day treatment with 25B-NBOMe in a dose of 0.3 mg/kg on the following: the neurotransmitter release in vivo using microdialysis in freely moving animals, hallucinogenic activity measured in the Wet Dog Shake (WDS) test, anxiety level as measured in the light/dark box (LDB) and locomotor activity in the open field (OF) test, DNA damage with the comet assay, and on a number of neuronal and glial cells with immunohistochemistry. Repeated administration of 25B-NBOMe decreased the response to a challenge dose (0.3 mg/kg) on DA, 5-HT and glutamatergic neurons in the rats' frontal cortex, striatum, and nucleus accumbens. The WDS response dropped drastically after the second day of treatment, suggesting a rapid development of tolerance. LDB and OF tests showed that the effect of 25B-NBOMe on anxiety depends on the treatment and environmental settings. Results obtained with the comet assay indicate a genotoxic properties in the frontal cortex and hippocampus. An increase in immunopositive glial but not neuronal cells was observed in the cortical regions but not in the hippocampus. In conclusion, our study showed that a chronic administration of 25B-NBOMe produces the development of tolerance observed in the neurotransmitters release and hallucinogenic activity. The oxidative damage of cortical and hippocampal DNA implies the generation of free radicals by the drug, resulting in genotoxicity but rather not in neurotoxic tissue damage. Behavioral tests show that 25B-NBOMe exerts anxiogenic effect after single and repeated treatment.
Collapse
Affiliation(s)
- Adam Wojtas
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Monika Herian
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Marzena Maćkowiak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Anna Solarz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, Laboratory of Pharmacology and Brain Biostructure, 31-343, Kraków, 12 Smętna, Poland
| | - Agnieszka Bysiek
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Karolina Noworyta
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland
| | - Krystyna Gołembiowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pharmacology, 31-343, Kraków, 12 Smętna, Poland.
| |
Collapse
|
5
|
Cassiano LMG, Oliveira MDS, de Barros WA, de Fátima Â, Coimbra RS. Neurotoxic effects of hallucinogenic drugs 25H-NBOMe and 25H-NBOH in organotypic hippocampal cultures. Heliyon 2023; 9:e17720. [PMID: 37449113 PMCID: PMC10336585 DOI: 10.1016/j.heliyon.2023.e17720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction NBOMes and NBOHs are psychoactive drugs derived from phenethylamines and have hallucinogenic effects due to their strong agonism to serotonin 5-HT2A receptors. Although cases of toxicity associated with the recreational use of substituted phenethylamines are frequently reported, there is a lack of information on the possible neurotoxic effects of NBOMe and NBOH in the brain hippocampus, a major neurogenesis region. Objectives This study aimed at assessing the phenotypic and molecular effects of prolonged exposure of the hippocampus to the drugs 25H-NBOMe and 25H-NBOH. Methods The ex vivo organotypic culture model of hippocampal slices (OHC) was used to investigate, by immunofluorescence and confocal microscopy, and transcriptome analyses, the mechanisms associated with the neurotoxicity of 25H-NBOMe and 25H-NBOH. Results Reduction in the density of mature neurons in the OHCs occurred after two and seven days of exposure to 25H-NBOMe and 25H-NBOH, respectively. After the withdrawal of 25H-NBOMe, the density of mature neurons in the OHCs stabilized. In contrast, up to seven days after 25H-NBOH removal from the culture medium, progressive neuron loss was still observed in the OHCs. Interestingly, the exposure to 25H-NBOH induced progenitor cell differentiation, increasing the density of post-mitotic neurons in the OHCs. Corroborating these findings, the functional enrichment analysis of differentially expressed genes in the OHCs exposed to 25H-NBOH revealed the activation of WNT/Beta-catenin pathway components associated with neurogenesis. During and after the exposure to 25H-NBOMe or 25H-NBOH, gene expression patterns related to the activation of synaptic transmission and excitability of neurons were identified. Furthermore, activation of signaling pathways and biological processes related to addiction and oxidative stress and inhibition of the inflammatory response were observed after the period of drug exposure. Conclusion 25H-NBOMe and 25H-NBOH disrupt the balance between neurogenesis and neuronal death in the hippocampus and, although chemically similar, have distinct neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Larissa Marcely Gomes Cassiano
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
- Programa de Pós-Graduação em Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Marina da Silva Oliveira
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Wellington Alves de Barros
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Roney Santos Coimbra
- Neurogenômica, Imunopatologia, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| |
Collapse
|
6
|
Herian M, Świt P. 25X-NBOMe compounds - chemistry, pharmacology and toxicology. A comprehensive review. Crit Rev Toxicol 2023; 53:15-33. [PMID: 37115704 DOI: 10.1080/10408444.2023.2194907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Recently, a growing number of reports have indicated a positive effect of hallucinogenic-based therapies in different neuropsychiatric disorders. However, hallucinogens belonging to the group of new psychoactive substances (NPS) may produce high toxicity. NPS, due to their multi-receptors affinity, are extremely dangerous for the human body and mental health. An example of hallucinogens that have been lately responsible for many severe intoxications and deaths are 25X-NBOMes - N-(2-methoxybenzyl)-2,5-dimethoxy-4-substituted phenethylamines, synthetic compounds with strong hallucinogenic properties. 25X-NBOMes exhibit a high binding affinity to serotonin receptors but also to dopamine, adrenergic and histamine receptors. Apart from their influence on perception, many case reports point out systemic and neurological poisoning with these compounds. In humans, the most frequent side effects are tachycardia, anxiety, hypertension and seizures. Moreover, preclinical studies confirm that 25X-NBOMes cause developmental impairments, cytotoxicity, cardiovascular toxicity and changes in behavior of animals. Metabolism of NBOMes seems to be very complex and involves many metabolic pathways. This fact may explain the observed high toxicity. In addition, many analytical methods have been applied in order to identify these compounds and their metabolites. The presented review summarized the current knowledge about 25X-NBOMes, especially in the context of toxicity.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Paweł Świt
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Katowice, Poland
| |
Collapse
|
7
|
The high frequency oscillation in orbitofrontal cortex is susceptible to phenethylamine psychedelic 25C-NBOMe in male rats. Neuropharmacology 2023; 227:109452. [PMID: 36724866 DOI: 10.1016/j.neuropharm.2023.109452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Serotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects. In present study, we investigated the effects of substituted phenethylamine psychedelic 25C-NBOMe on neural oscillations in the intra-prefrontal and hippocampal-prefrontal network. The effective dose of 25C-NBOMe (0.1 mg/kg) disrupting sensorimotor gating in male Sprague-Dawley rats was used to observe its effects on neural oscillations in the prelimbic cortex, anterior cingulate cortex, orbitofrontal cortex (OFC) and hippocampus CA1. The power of high frequency oscillation (HFO, 120-150 Hz) was potentiated by 25C-NBOMe selectively in the OFC, with peaking at 20-30 min after treatment. 25C-NBOMe strengthened HFO coherence within the intra-prefrontal, rather than hippocampal-prefrontal network. Potentiated HFO in the OFC had a strong positive correlation with the strengthened inter-prefrontal HFO coherence by 25C-NBOMe. The 25C-NBOMe-induced alterations of rhythmic patterns were prevented by pre-treatment with selective serotonin 2A receptor antagonist MDL100,907. These results demonstrate that OFC rhythmic activity in HFO is relatively susceptible to substituted phenethylamine and potentially drives drug-induced rhythmic coherence within intra-prefrontal regions. Our findings provide additional insight into the neuropathophysiology of the psychoactive effects of psychedelics and indicate that the altered HFO might be applied as a potential biological marker of psychedelic effect.
Collapse
|
8
|
Xu P, Li H, Qiu Q, Xiao X, Qiu Y, Li X, Wang Y, Zhou W, Shen H, Cui W. N-isopropylbenzylamine, a methamphetamine mimics, produces toxicity via increasing nitric oxide in vitro. Toxicology 2022; 480:153337. [PMID: 36162621 DOI: 10.1016/j.tox.2022.153337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
N-isopropylbenzylamine, an isomer of methamphetamine, has been used to adulterate methamphetamine, and distributed as fake "Ice" methamphetamine by illicit manufacturers, leading to a world problem of N-isopropylbenzylamine exposure. Though it is unclear whether N-isopropylbenzylamine has addictive potential like methamphetamine, N-isopropylbenzylamine users reported side effects such as headaches and confusion. However, the pharmacological targets and cytotoxicity of this chemical remained unknown. In this study, in vitro toxicity of N-isopropylbenzylamine and its toxicity-related targets were investigated in SN4741, SH-SY5Y or PC12 cell lines that model neurons. The cell viability was analyzed by using MTT assay after incubation with N-isopropylbenzylamine for 24 h in cells. N-isopropylbenzylamine caused cell death with IC50 values at around 1-3 mM in these cell lines. N-isopropylbenzylamine time- and concentration-dependently facilitated the expression of neuronal nitric oxide synthase (nNOS), and increased intracellular nitric oxide (NO) in SN4741 cells. Furthermore, 7-nitroindazole, a specific inhibitor of nNOS, significantly prevented N-isopropylbenzylamine-induced toxicity in vitro. These results suggested that N-isopropylbenzylamine-induced toxicity is at least partially related to the increased intracellular NO levels and the activated nNOS. Considering the circumstances that N-isopropylbenzylamine was used to adulterate and mimic methamphetamine, and the side effects associated with N-isopropylbenzylamine in abusers, our findings sounded an alarm for abuser and warn the dangerousness of N-isopropylbenzylamine for public health.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Haijie Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Qiyang Qiu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiao Xiao
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Yi Qiu
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xiangyu Li
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, Beijing, China
| | - Wenhua Zhou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China; Ningbo Addiction Research and Treatment Centre, Ningbo, China; Ningbo Kangning Hospital, Ningbo, China
| | - Haowei Shen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.
| |
Collapse
|
9
|
Mallaroni P, Mason NL, Vinckenbosch FRJ, Ramaekers JG. The use patterns of novel psychedelics: experiential fingerprints of substituted phenethylamines, tryptamines and lysergamides. Psychopharmacology (Berl) 2022; 239:1783-1796. [PMID: 35487983 PMCID: PMC9166850 DOI: 10.1007/s00213-022-06142-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Novel psychedelics (NPs) are an expanding set of compounds, presenting new challenges for drug policy and opportunities for clinical research. Unlike their classical derivatives, little is known regarding their use profiles or their subjective effects. AIMS The purpose of this study was to compile usage patterns and adverse event rates for individual NPs belonging to each of three main psychedelic structural families. Targeting the most widely used representatives for each class, we expanded on their phenomenological distinctions. METHODS A two-part survey was employed. We investigated the prevalence of novel phenethylamines, tryptamine and lysergamides in NP users (N = 1180), contrasting the type and incidence of adverse events (AEs) using a set of logistic regressions. Honing in on 2-4-Bromo-2,5-dimethoxyphenyl)ethanamine (2C-B) (48.6%), 1-propionyl-lysergic acid diethylamide (1P-LSD) (34.2%) and 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT) (23.1%), we examined their phenomenological separability using a gradient boosting (XGBoost) supervised classifier. RESULTS Novel phenethylamines had the highest prevalence of use (61.5%) seconded by tryptamines (43.8%) and lysergamides (42.9%). Usage patterns were identified for 32 different compounds, demonstrating variable dosages, durations and a common oral route of administration. Compared to phenethylamines, the odds for tryptamines and lysergamides users were significantly less for overall physical AEs. No significant differences in overall psychological AEs were found. Overall model area under the curve (AUC) stood at 0.79 with sensitivity (50.0%) and specificity (60.0%) for 2C-B ranking lowest. CONCLUSION NP classes may hold distinct AE rates and phenomenology, the latter potentially clouded by the subjective nature of these experiences. Further targeted research is warranted.
Collapse
Affiliation(s)
- P Mallaroni
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| | - N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - F R J Vinckenbosch
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
10
|
Herian M, Wojtas A, Maćkowiak M, Wawrzczak-Bargiela A, Solarz A, Bysiek A, Madej K, Gołembiowska K. Neurotoxicological profile of the hallucinogenic compound 25I-NBOMe. Sci Rep 2022; 12:2939. [PMID: 35190675 PMCID: PMC8861095 DOI: 10.1038/s41598-022-07069-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats’ behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans. There is no data about 25I-NBOMe in vivo toxicity towards the brain tissue. In this article 25I-NBOMe-crossing through the blood–brain barrier (BBB), the impact on DNA damage, apoptosis induction, and changes in the number of cortical and hippocampal cells were studied. The presence of 25I-NBOMe in several brain regions shortly after the drug administration and its accumulation after multiple injections was found. The DNA damage was detected 72 h after the chronic treatment. On the contrary, at the same time point apoptotic signal was not identified. A decrease in the number of glial but not in neural cells in the frontal (FC) and medial prefrontal cortex (mPFC) was observed. The obtained data indicate that 25I-NBOMe passes easily across the BBB and accumulates in the brain tissue. Observed oxidative DNA damage may lead to the glial cells’ death.
Collapse
Affiliation(s)
- Monika Herian
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Adam Wojtas
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Wawrzczak-Bargiela
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Anna Solarz
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland
| | - Katarzyna Madej
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa, 30-387, Kraków, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna, 31-343, Kraków, Poland.
| |
Collapse
|
11
|
Nykodemová J, Šuláková A, Palivec P, Češková H, Rimpelová S, Šíchová K, Leonhardt T, Jurásek B, Hájková K, Páleníček T, Kuchař M. 2C-B-Fly-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C. elegans: Confirmation with Synthesized Analytical Standards. Metabolites 2021; 11:metabo11110775. [PMID: 34822433 PMCID: PMC8624686 DOI: 10.3390/metabo11110775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran ("Fly") moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono- and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.
Collapse
Affiliation(s)
- Jitka Nykodemová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Anna Šuláková
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Petr Palivec
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Hedvika Češková
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
- Correspondence: (S.R.); (M.K.); Tel.: +420-220-444-431 (M.K.)
| | - Klára Šíchová
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Tereza Leonhardt
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Bronislav Jurásek
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Kateřina Hájková
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.N.); (P.P.); (H.Č.); (B.J.); (K.H.)
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; (A.Š.); (K.Š.); (T.P.)
- Correspondence: (S.R.); (M.K.); Tel.: +420-220-444-431 (M.K.)
| |
Collapse
|
12
|
Sogos V, Caria P, Porcedda C, Mostallino R, Piras F, Miliano C, De Luca MA, Castelli MP. Human Neuronal Cell Lines as An In Vitro Toxicological Tool for the Evaluation of Novel Psychoactive Substances. Int J Mol Sci 2021; 22:ijms22136785. [PMID: 34202634 PMCID: PMC8268582 DOI: 10.3390/ijms22136785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4′-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.
Collapse
Affiliation(s)
- Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Paola Caria
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Clara Porcedda
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Franca Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
| | - M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy; (V.S.); (P.C.); (C.P.); (R.M.); (F.P.); (M.A.D.L.)
- Guy Everett Laboratory, University of Cagliari, 09042 Monserrato, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, 09042 Monserrato, Italy
- Correspondence: ; Tel.: +39-070-6754065
| |
Collapse
|
13
|
Rudin D, Liechti ME, Luethi D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp Neurol 2021; 343:113778. [PMID: 34090893 DOI: 10.1016/j.expneurol.2021.113778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Applied Physics, TU Wien, Vienna, Austria.
| |
Collapse
|
14
|
Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV. Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity. Toxicol Rep 2021; 8:315-323. [PMID: 33598409 PMCID: PMC7868744 DOI: 10.1016/j.toxrep.2021.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/15/2022] Open
Abstract
The NBOMe (N-2-methoxybenzyl-phenethylamines) family of compounds are synthetic hallucinogens derived from the 2C series. Although this family of compounds has been responsible for multiple cases of acute toxicity and several deaths around the world, to date there are few studies. These compounds act as potent 5-HT2A receptor agonists, including the hallucinogen 25C-NBOMe (2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine). In this study, we first evaluated the toxicity of 25C-NBOMe in two animal models: Artemia salina and zebrafish using the lethality test of Meyer et al. (1982) modified for Artemia salina and the Fish Embryo Toxicity test (FET) for zebrafish (Danio rerio). Subsequently, we determined the behavioral and morphological effects using different concentrations of the 25C-NBOMe. As a result, we found that this substance is highly toxic according to lethality tests in both animal models. We also observe that this hallucinogen induces alterations in swimming and motility patterns in Artemia salina. Similarly, there were alterations in the motor response to a stimulus, as well as abnormal development in the zebrafish. The developmental effects of zebrafish suggest a teratogenic potential for 25C-NBOMe. Therefore, these findings are correlated with side effects, such as motor response abnormalities and muscle deterioration, clinically reported for consumers of this recreational drug. Finally, although recent studies are addressing the neurotoxicity and cardiotoxicity of 25C-NBOMe in cell cultures, to the best of our knowledge, this is the first in vivo report for 25C-NBOMe related to toxicological parameters and their global effects on development. Therefore, it could represent an advance in the study of the substance that contributes to the understanding of the effects on behavior and development in humans.
Collapse
Affiliation(s)
- Natalie Álvarez-Alarcón
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Jhon Jairo Osorio-Méndez
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - Adis Ayala-Fajardo
- Grupo de Investigación de Bioquímica y Biología Molecular, Facultad de Ciencias y Educación, Licenciatura en Química, Universidad Distrital Francisco José de Caldas, Cra. 4 # 26B-54, 5th Floor, Bogotá D.C., Colombia
| | - William F. Garzón-Méndez
- Chemistry Group, Central-Level, Fiscalía General de la Nación, Diagonal 22B # 52-01, Building L, 3rd Floor, Bogotá D.C., Colombia
| | - Zayra V. Garavito-Aguilar
- Laboratory of Developmental Biology, Department of Biological Sciences, Universidad de los Andes, Cra. 1 # 18A-12, Bloque A, Oficina 308, Bogotá D.C, 111711, Colombia
| |
Collapse
|
15
|
Tanen JL, Lurie IS, Marginean I. Gas chromatography with dual cold electron ionization mass spectrometry and vacuum ultraviolet detection for the analysis of phenylethylamine analogues. Forensic Chem 2020. [DOI: 10.1016/j.forc.2020.100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Abstract
Abstract
Purpose
N-Methoxybenzyls, a group of toxic phenylethylamine derivatives of the 2C family compounds, are a new class of potent serotonin 5-HT2A receptor agonist hallucinogens with potential harmful effects. This study summarizes current state of knowledge of one of the most dangerous representative of this group—N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe). Due to hallucinogenic properties similar to those observe after lysergic acid diethylamide (LSD) usage (altered thoughts, feelings, and awareness of one’s surroundings), this compound is very attractive to hallucinogenic substances users.
Methods
An exhaustive literature search was carried out in PubMed, Google Scholar and other biomedical data bases without limiting period, to identify relevant articles.
Results
Despite frequent recreational use, knowledge about the 25C-NBOMe action and toxic and fatal consequences is still very limited. Most data on this drug come from clinical reports, from cases of acute fatal and non-fatal intoxications. Some animal and in vitro studies indicated a route of metabolism of the drug in the body. The drug and its metabolites were also detected in human blood and urine using combinations of chromatographic separation and mass spectrometry detection.
Conclusions
Overall, findings show that 25C-NBOMe is a powerful hallucinogen. Easy online availability, low prize and the lack of knowledge of 25C-NBOMe makes this substance potentially very dangerous to its users. Thus, further investigation on the mechanism of action, chemical, pharmacological and toxicological properties is needed to evaluate 25C-NBOMe potential harmful effects.
Collapse
|
17
|
Zawilska JB, Kacela M, Adamowicz P. NBOMes-Highly Potent and Toxic Alternatives of LSD. Front Neurosci 2020; 14:78. [PMID: 32174803 PMCID: PMC7054380 DOI: 10.3389/fnins.2020.00078] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
Recently, a new class of psychedelic compounds named NBOMe (or 25X-NBOMe) has appeared on the illegal drug market. NBOMes are analogs of the 2C family of phenethylamine drugs, originally synthesized by Alexander Shulgin, that contain a N-(2-methoxy)benzyl substituent. The most frequently reported drugs from this group are 25I-NBOMe, 25B-NBOMe, and 25C-NBOMe. NBOMe compounds are ultrapotent and highly efficacious agonists of serotonin 5-HT2A and 5-HT2C receptors (Ki values in low nanomolar range) with more than 1000-fold selectivity for 5-HT2A compared with 5-HT1A. They display higher affinity for 5-HT2A receptors than their 2C counterparts and have markedly lower affinity, potency, and efficacy at the 5-HT2B receptor compared to 5-HT2A or 5-HT2C. The drugs are sold as blotter papers, or in powder, liquid, or tablet form, and they are administered sublingually/buccally, intravenously, via nasal insufflations, or by smoking. Since their introduction in the early 2010s, numerous reports have been published on clinical intoxications and fatalities resulting from the consumption of NBOMe compounds. Commonly observed adverse effects include visual and auditory hallucinations, confusion, anxiety, panic and fear, agitation, uncontrollable violent behavior, seizures, excited delirium, and sympathomimetic signs such mydriasis, tachycardia, hypertension, hyperthermia, and diaphoresis. Rhabdomyolysis, disseminated intravascular coagulation, hypoglycemia, metabolic acidosis, and multiorgan failure were also reported. This survey provides an updated overview of the pharmacological properties, pattern of use, metabolism, and desired effects associated with NBOMe use. Special emphasis is given to cases of non-fatal and lethal intoxication involving these compounds. As the analysis of NBOMes in biological materials can be challenging even for laboratories applying modern sensitive techniques, this paper also presents the analytical methods most commonly used for detection and identification of NBOMes and their metabolites.
Collapse
Affiliation(s)
- Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Monika Kacela
- Department of Pharmacodynamics, Medical University of Łódź, Łódź, Poland
| | - Piotr Adamowicz
- Department of Forensic Toxicology, Institute of Forensic Research, Kraków, Poland
| |
Collapse
|
18
|
Costa G, De Luca MA, Piras G, Marongiu J, Fattore L, Simola N. Neuronal and peripheral damages induced by synthetic psychoactive substances: an update of recent findings from human and animal studies. Neural Regen Res 2020; 15:802-816. [PMID: 31719240 PMCID: PMC6990793 DOI: 10.4103/1673-5374.268895] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preclinical and clinical studies indicate that synthetic psychoactive substances, in addition to having abuse potential, may elicit toxic effects of varying severity at the peripheral and central levels. Nowadays, toxicity induced by synthetic psychoactive substances poses a serious harm for health, since recreational use of these substances is on the rise among young and adult people. The present review summarizes recent findings on the peripheral and central toxicity elicited by “old” and “new” synthetic psychoactive substances in humans and experimental animals, focusing on amphetamine derivatives, hallucinogen and dissociative drugs and synthetic cannabinoids.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- National Research Council of Italy, Institute of Neuroscience, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL. DARK Classics in Chemical Neuroscience: NBOMes. ACS Chem Neurosci 2019; 11:3860-3869. [PMID: 31657895 PMCID: PMC9191638 DOI: 10.1021/acschemneuro.9b00528] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
N-Benzylphenethylamines, commonly known as NBOMes, are synthetic psychedelic compounds derived from the phenethylamine class of psychedelics (2C-X compounds), which originally have been derived from the naturally occurring alkaloid mescaline. Analogously to their parent compounds and other classical psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), NBOMes are believed to exert their main pharmacological effects through activation of serotonin 2A (5-HT2A) receptors. Since their introduction as New Psychoactive Substances (NPSs) in 2010, NBOMes have been widely used for recreational purposes; this has resulted in numerous cases of acute toxicity, sometimes with lethal outcomes, leading to the classification of several NBOMes as Schedule I substances in 2013. However, in addition to their recreational use, the NBOMe class has yielded several important biochemical tools, including [11C]Cimbi-36, which is now being used in positron emission tomography (PET) studies of the 5-HT2A and 5-HT2C receptors in the mammalian brain, and 25CN-NBOH, one of the most selective 5-HT2A receptor agonists developed to date. In this Review, the history, chemistry, structure-activity relationships, ADME (absorption, distribution, metabolism, and excretion) properties, and safety profiles of NBOMes will be outlined and discussed.
Collapse
|