1
|
Zhu J, Zhang HN, Wu JK, Li FF, Liu YQ, Ning EJ, Yu LQ, Liang S. A low n-6/n-3 PUFA ratio and high level of dietary ɑ-linolenic acid improves sleep behavior in mice with insomnia. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2377-2387. [PMID: 39431184 PMCID: PMC11486881 DOI: 10.1007/s13197-024-06004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 10/22/2024]
Abstract
Camelina sativa oil (CSO) and Semen Ziziphi Spinosae oil (SZSO) are functional oils that have beneficial effects on brain health. This study evaluated the sedative and hypnotic effects of vegetable oils with various n - 6/n - 3 polyunsaturated fatty acids (PUFA) ratios and ɑ-linolenic acid (ALA) contents to mice. The n - 6/n - 3 PUFA ratios of CSO (CSO:SZSO = 1:0, 1.8 g/kg), SZSO (CSO:SZSO = 0:1, 1.8 g/kg), CSO-SZSO-L (CSO:SZSO = 1:1, 1.8 g/kg), and CSO-SZSO-H (CSO:SZSO = 1:1, 3.6 g/kg) were 0.51, 140, 1.69, and 1.69, respectively. The doses of ALA administered to mice with p-chlorophenylalanine-induced insomnia were approximately 0.64, 50 × 10-4, 0.32, and 0.64 g/kg, respectively. The mice were administered CSO, SZSO, and a low-dose combination of CSO and SZSO for seven days with no obvious hypnotic effects. However, the administration of a high-dose combination of CSO and SZSO significantly prolonged sleep duration in mice with induced insomnia and inhibited the serum levels of corticotropin-releasing hormone, adrenocorticotropic hormone, and cortisol. Interestingly, there were no significant effects on the structure and function of the hippocampal tissue. The results indicated that the anti-insomnia effects of these vegetable oils were positively correlated with a low n - 6/n - 3 PUFA ratio and the absolute amount of ALA. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06004-1.
Collapse
Affiliation(s)
- Jie Zhu
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Hua-nan Zhang
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
| | - Jia-kai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450000 Henan China
| | - Fei-fei Li
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Yu-qing Liu
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Er-juan Ning
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
| | - Li-qin Yu
- Henan Napu Biotechnology Co., Ltd, Zhengzhou, 450000 Henan China
- Henan Academy of Sciences, Zhengzhou, 450002 Henan China
| | - Shen Liang
- Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan China
| |
Collapse
|
2
|
Bassi M, Bilel S, Tirri M, Corli G, Di Rosa F, Gregori A, Alkilany AM, Rachid O, Roda E, De Luca F, Papa P, Buscaglia E, Zauli G, Locatelli CA, Marti M. The synthetic cathinones MDPHP and MDPV: Comparison of the acute effects in mice, in silico ADMET profiles and clinical reports. Neurotoxicology 2024; 103:230-255. [PMID: 38955288 DOI: 10.1016/j.neuro.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The 3,4-methylenedioxy-alpha-pyrrolidinohexanophenone (MDPHP) is a synthetic cathinone closely related to 3,4-methylenedioxypyrovalerone (MDPV), one of the most common synthetic cathinones present in the "bath salts". MDPHP has recently gained attention due to increasing seizures and involvement in human intoxications which occurred in Europe and Italy in the last years, but currently there is a lack of information about its pharmaco-toxicological effects. With the aim at filling this gap, the present study is endeavoured to (i) evaluate the effects of acute administration of MDPHP (0.01-20 mg/kg; i.p.) on behaviour, cardiorespiratory and cardiovascular parameters in CD-1 male mice, comparing them to those observed after administration of MDPV; (ii) predict the ADMET profile of the two analogues using the Plus ADMET Predictor®; (iii) present clinical data related to MDPHP and MDPV-induced intoxications recorded between 2011 and 2023 by the Pavia Poison Control Centre (PCC) - National Toxicology Information Centre (Istituti Clinici Scientifici Maugeri, IRCCS Pavia, Italy). Our results substantiated that MDPHP and MDPV similarly affect sensorimotor and behavioural responses in mice, importantly increased locomotion and induced aggressive behaviour, and, at higher dosage, increased heart rate and blood pressure. These findings are in line with those observed in humans, revealing severe toxidromes typically characterized by Central Nervous System (CNS) alterations (behavioural/neuropsychiatric symptoms), including psychomotor agitation and aggressiveness, cardiovascular and respiratory disorders (e.g. tachycardia, hypertension, dyspnoea), and other peripheral symptoms (e.g. hyperthermia, acidosis, rhabdomyolysis).
Collapse
Affiliation(s)
- Marta Bassi
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabiana Di Rosa
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Adolfo Gregori
- Department of Scientific Investigation (RIS), Carabinieri, Rome 00191, Italy
| | - Alaaldin M Alkilany
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Ousama Rachid
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Qatar
| | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Pietro Papa
- Laboratory of Analytical Toxicology-Clinical Chemistry, IRCCS Fondazione Policlinico S. Matteo, Pavia, Italy
| | - Eleonora Buscaglia
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh, Saudi Arabia
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Department of Anti-Drug Policies, Collaborative Center for the Italian National Early Warning System, Presidency of the Council of Ministers, Ferrara, Italy.
| |
Collapse
|
3
|
Shaw HE, Patel DR, Gannon BM, Fitzgerald LR, Carbonaro TM, Johnson CR, Fantegrossi WE. Phencyclidine-Like Abuse Liability and Psychosis-Like Neurocognitive Effects of Novel Arylcyclohexylamine Drugs of Abuse in Rodents. J Pharmacol Exp Ther 2024; 390:14-28. [PMID: 38272671 PMCID: PMC11192579 DOI: 10.1124/jpet.123.001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.
Collapse
Affiliation(s)
- Hannah E Shaw
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Dylan R Patel
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Theresa M Carbonaro
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Chad R Johnson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| |
Collapse
|
4
|
Jurowski K, Niżnik Ł. Toxicity of the New Psychoactive Substance (NPS) Clephedrone (4-Chloromethcathinone, 4-CMC): Prediction of Toxicity Using In Silico Methods for Clinical and Forensic Purposes. Int J Mol Sci 2024; 25:5867. [PMID: 38892053 PMCID: PMC11173054 DOI: 10.3390/ijms25115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study reports the first application of in silico methods to assess the toxicity of 4-chloromethcathinone (4-CMC), a novel psychoactive substance (NPS). Employing advanced toxicology in silico tools, it was possible to predict crucial aspects of the toxicological profile of 4-CMC, including acute toxicity (LD50), genotoxicity, cardiotoxicity, and its potential for endocrine disruption. The obtained results indicate significant acute toxicity with species-specific variability, moderate genotoxic potential suggesting the risk of DNA damage, and a notable cardiotoxicity risk associated with hERG channel inhibition. Endocrine disruption assessment revealed a low probability of 4-CMC interacting with estrogen receptor alpha (ER-α), suggesting minimal estrogenic activity. These insights, derived from in silico studies, are critical in advancing the understanding of 4-CMC properties in forensic and clinical toxicology. These initial toxicological findings provide a foundation for future research and aid in the formulation of risk assessment and management strategies in the context of the use and abuse of NPSs.
Collapse
Affiliation(s)
- Kamil Jurowski
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Sciences, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland;
| | - Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland;
| |
Collapse
|
5
|
Groenewegen KL, Gresnigt FMJ, Lonkhuyzen JJNV, den Haan C, Franssen EJF, Riezebos RK, Ohana D, de Lange DW. Cardiotoxicity After Synthetic Cathinone Use; Two Cases, A Case Series and Scoping Review. Cardiovasc Toxicol 2024; 24:209-224. [PMID: 38411851 PMCID: PMC10937789 DOI: 10.1007/s12012-024-09832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
The cardiotoxic effects of synthetic cathinones remain largely unknown. In this study, we present two cases, a case series and a scoping review, to explore synthetic cathinone associated cardiotoxicity. Case 1 involved a 28-year-old male with non-ST-elevation myocardial infarction after ingesting a substance containing 4-methylmethcathinone (4-MMC), 3-methylmethcathinon (3-MMC), and methcathinone. Case 2 involved a 49-year-old male with ventricular fibrillation after 4-methylmethcathinone ingestion, who was diagnosed with severe three-vessel disease. A retrospective analysis was performed on self-reported synthetic cathinone poisonings reported to the Dutch Poisons Information Centre from 2012 to 2022. A total of 222 mono-intoxications with cardiotoxicity were included, mostly involving 3-methylmethcathinon (63%). Often tachycardia, hypertension, palpitations, and chest pain were reported. A comprehensive literature search was performed on PubMed to identify the studies reporting cardiac arrest, myocardial infarction, cardiac inflammation, cardiomyopathy, and life-threatening arrhythmias following synthetic cathinone use. A total of 30 articles reporting 40 cases were included. The reported complications included cardiac arrest (n = 28), ventricular tachycardia (n = 4), supraventricular tachycardia (n = 1), ST-elevation myocardial infarction (n = 2), non-ST-elevation myocardial infarction (n = 2), cardiomyopathy (n = 1), and myocarditis (n = 2). A total of ten different associated synthetic cathinones were identified. Cardiac arrest, myocardial infarction, and ventricular arrhythmias have been reported following the use of synthetic cathinones, underscoring the importance of obtaining a detailed recreational drug use history from patients presenting with syncope, chest pain, or palpitations.
Collapse
Affiliation(s)
- K L Groenewegen
- Resident Cardiology, Heartcenter, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - F M J Gresnigt
- Emergency Physician, Emergency Department, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
- Consultant Clinical Toxicology, Dutch Poisons Information Centre, UMC Utrecht, 3508 GA, Utrecht, The Netherlands.
| | | | - C den Haan
- Information Specialist, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - E J F Franssen
- Hospital Pharmacist-Clinical Pharmacologist and Toxicologist, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
| | - R K Riezebos
- Heartcenter, OLVG Amsterdam, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands
- Currently, Cardiologist, Heartcenter Isala Zwolle, Dokter Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
| | - D Ohana
- Center for Health Protection, National Institute for Public Health and Environment (RIVM), Antonie Van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, The Netherlands
| | - D W de Lange
- Toxicologist-Intensivist, Intensive Care and Dutch Poisons Information Centre, UMC Utrecht, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
6
|
Fitzgerald LR, Gannon BM, Walther D, Landavazo A, Hiranita T, Blough BE, Baumann MH, Fantegrossi WE. Structure-activity relationships for locomotor stimulant effects and monoamine transporter interactions of substituted amphetamines and cathinones. Neuropharmacology 2024; 245:109827. [PMID: 38154512 PMCID: PMC10842458 DOI: 10.1016/j.neuropharm.2023.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Substitutions to the phenethylamine structure give rise to numerous amphetamines and cathinones, contributing to an ever-growing number of abused novel psychoactive substances. Understanding how various substitutions affect the pharmacology of phenethylamines may help lawmakers and scientists predict the effects of newly emerging drugs. Here, we established structure-activity relationships for locomotor stimulant and monoamine transporter effects of 12 phenethylamines with combinations of para-chloro, β-keto, N-methyl, or N-ethyl additions. Automated photobeam analysis was used to evaluate effects of drugs on ambulatory activity in mice, whereas in vitro assays were used to determine activities at transporters for dopamine (DAT), norepinephrine (NET), and 5-HT (SERT) in rat brain synaptosomes. In mouse studies, all compounds stimulated locomotion, except for 4-chloro-N-ethylcathinone. Amphetamines were more potent stimulants than their β-keto counterparts, while para-chloro amphetamines tended to be more efficacious than unsubstituted amphetamines. Para-chloro compounds also produced lethality at doses on the ascending limbs of their locomotor dose-effect functions. The in vitro assays showed that all compounds inhibited uptake at DAT, NET, and SERT, with most compounds also acting as substrates (i.e., releasers) at these sites. Unsubstituted compounds displayed better potency at DAT and NET relative to SERT. Para-chloro substitution or increased N-alkyl chain length augmented relative potency at SERT, while combined para-chloro and N-ethyl substitutions reduced releasing effects at NET and DAT. These results demonstrate orderly SAR for locomotor stimulant effects, monoamine transporter activities, and lethality induced by phenethylamines. Importantly, 4-chloro compounds produce toxicity in mice that suggests serious risk to humans using these drugs in recreational contexts.
Collapse
Affiliation(s)
- Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Donna Walther
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Antonio Landavazo
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Takato Hiranita
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC, 27709, USA
| | - Michael H Baumann
- Designer Drug Research Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, 21224, USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
7
|
Chojnacki MR, Thorndike EB, Partilla JS, Rice KC, Schindler CW, Baumann MH. Neurochemical and Cardiovascular Effects of 4-Chloro Ring-Substituted Synthetic Cathinones in Rats. J Pharmacol Exp Ther 2023; 385:162-170. [PMID: 36669877 PMCID: PMC10201577 DOI: 10.1124/jpet.122.001478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Synthetic cathinones are a class of new psychoactive substances that display psychomotor stimulant properties, and novel cathinone analogs continue to emerge in illicit drug markets worldwide. The aim of the present study was to characterize the pharmacology of 4-chloro ring-substituted cathinones that are appearing in illicit drug markets compared with the effects of 4-methylmethcathinone (mephedrone). Synaptosomes were prepared from rat caudate for dopamine transporter (DAT) assays or from whole brain minus caudate and cerebellum for norepinephrine transporter (NET) and serotonin transporter (SERT) assays. Findings from transporter uptake inhibition and release assays showed that mephedrone and 4-chloromethcathinone (4-CMC) function as substrates at DAT, NET, and SERT, with similar potency at all three transporters. In contrast, 4-chloro-α-pyrrolidinopropiophenone (4-CαPPP) was an uptake inhibitor at DAT and NET, with similar potency at each site, but had little activity at SERT. 4-Chloroethcathinone (4-CEC) was a low-potency uptake inhibitor at DAT and NET but a substrate at SERT. In rats implanted with telemetry transmitters, mephedrone and 4-CMC increased blood pressure, heart rate, and locomotor activity to a similar extent. 4-CEC and 4-CαPPP were less potent at increasing blood pressure and had modest stimulatory effects on heart rate and activity. 4-CMC also transiently decreased temperature at the highest dose tested. All three 4-chloro ring-substituted cathinones are biologically active, but only 4-CMC has potency comparable to mephedrone. Collectively, our findings suggest that 4-CMC and other 4-chloro cathinones may have abuse potential and adverse effects in humans that are analogous to those associated with mephedrone. SIGNIFICANCE STATEMENT: The 4-chloro ring-substituted cathinones all produced significant cardiovascular stimulation, with 4-chloromethcathinone (4-CMC) showing potency similar to mephedrone. All of the drugs are likely to be abused given their effects at the dopamine transporter, particularly 4-CMC.
Collapse
Affiliation(s)
- Michael R Chojnacki
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| | - Eric B Thorndike
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| | - John S Partilla
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| | - Kenner C Rice
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| | - Charles W Schindler
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| | - Michael H Baumann
- Designer Drug Research Unit (M.R.C., J.S.P., C.W.S., M.H.B.) and Preclinical Pharmacology Section (E.B.T., C.W.S.), National Institute on Drug Abuse Intramural Research Program, Baltimore, Maryland; and Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism Intramural Research Programs, Rockville, Maryland (K.C.R.)
| |
Collapse
|
8
|
Daziani G, Lo Faro AF, Montana V, Goteri G, Pesaresi M, Bambagiotti G, Montanari E, Giorgetti R, Montana A. Synthetic Cathinones and Neurotoxicity Risks: A Systematic Review. Int J Mol Sci 2023; 24:ijms24076230. [PMID: 37047201 PMCID: PMC10093970 DOI: 10.3390/ijms24076230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
According to the EU Early Warning System (EWS), synthetic cathinones (SCs) are the second largest new psychoactive substances (NPS) class, with 162 synthetic cathinones monitored by the EU EWS. They have a similar structure to cathinone, principally found in Catha Edulis; they have a phenethylamine related structure but also exhibit amphetamine-like stimulant effects. Illegal laboratories regularly develop new substances and place them on the market. For this reason, during the last decade this class of substances has presented a great challenge for public health and forensic toxicologists. Acting on different systems and with various mechanisms of action, the spectrum of side effects caused by the intake of these drugs of abuse is very broad. To date, most studies have focused on the substances’ cardiac effects, and very few on their associated neurotoxicity. Specifically, synthetic cathinones appear to be involved in different neurological events, including increased alertness, mild agitation, severe psychosis, hyperthermia and death. A systematic literature search in PubMed and Scopus databases according to PRISMA guidelines was performed. A total of 515 studies published from 2005 to 2022 (350 articles from PubMed and 165 from Scopus) were initially screened for eligibility. The papers excluded, according to the criteria described in the Method Section (n = 401) and after full text analyses (n = 82), were 483 in total. The remaining 76 were included in the present review, as they met fully the inclusion criteria. The present work provides a comprehensive review on neurotoxic mechanisms of synthetic cathinones highlighting intoxication cases and fatalities in humans, as well as the toxic effects on animals (in particular rats, mice and zebrafish larvae). The reviewed studies showed brain-related adverse effects, including encephalopathy, coma and convulsions, and sympathomimetic and hallucinogenic toxidromes, together with the risk of developing excited/agitated delirium syndrome and serotonin syndrome.
Collapse
Affiliation(s)
- Gloria Daziani
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Vincenzo Montana
- Dipartimento di Anestesia, Rianimazione e Emergenza-Urgenza, Fondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Gaia Goteri
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Mauro Pesaresi
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Giulia Bambagiotti
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Eva Montanari
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Raffaele Giorgetti
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
| | - Angelo Montana
- Department of Excellence Biomedical Sciences and Public Health, Marche Polytechnic University, 60121 Ancona, Italy; (G.D.); (A.F.L.F.); (G.G.); (M.P.); (G.B.); (E.M.); (R.G.)
- Correspondence:
| |
Collapse
|
9
|
Corli G, Tirri M, Arfè R, Marchetti B, Bernardi T, Borsari M, Odoardi S, Mestria S, Strano-Rossi S, Neri M, Gaudio RM, Bilel S, Marti M. Pharmaco-Toxicological Effects of Atypical Synthetic Cathinone Mephtetramine (MTTA) in Mice: Possible Reasons for Its Brief Appearance over NPSs Scene. Brain Sci 2023; 13:brainsci13020161. [PMID: 36831704 PMCID: PMC9954072 DOI: 10.3390/brainsci13020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Over the last year, NPSs have been steadily on the rise in the illicit drug market. Among these, synthetic cathinones seem to become increasingly popular among young adults, mainly because of their ability to replicate the effects of traditional psychostimulant drugs, such as cocaine, MDMA and amphetamines. However, scarce data are available about the in vivo pharmaco-toxicology of these new substances. To this end, this study focused on evaluation of effects induced by repeated administration of mephtetramine (MTTA 0.1-30 mg/kg i.p.) in mice. This atypical cathinone highlighted a sensorial (inhibition of visual and acoustic reflexes) and transient physiological parameter (decrease in breath rate and temperature) change in mice. Regarding motor activity, both a dose-dependent increase (accelerod test) and biphasic effect (drag and mobility time test) have been shown. In addition, blood and urine samples have been analysed to enrich the experimental featuring of the present study with reference to evaluation of potential toxicity related to consumption of MTTA. The latter analysis has particularly revealed important changes in blood cells count and blood and urine physicochemical profile after repeated treatment with this atypical cathinone. Moreover, MTTA induced histological changes in heart, kidney and liver samples, emphasizing its potential toxicity.
Collapse
Affiliation(s)
- Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Tatiana Bernardi
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Martina Borsari
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sara Odoardi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Serena Mestria
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Sabina Strano-Rossi
- Forensic Toxicology Laboratory, Department of Health Surveillance and Bioethics, Università Cattolica del Sacro Cuore F. Policlinico Gemelli IRCCS, 00169 Rome, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Rosa Maria Gaudio
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine, LTTA Center and University Center of Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, 00186 Rome, Italy
- Correspondence:
| |
Collapse
|
10
|
Kuropka P, Zawadzki M, Szpot P. A review of synthetic cathinones emerging in recent years (2019-2022). Forensic Toxicol 2023; 41:25-46. [PMID: 36124107 PMCID: PMC9476408 DOI: 10.1007/s11419-022-00639-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/28/2022] [Indexed: 01/24/2023]
Abstract
Purpose The emergence of novel psychoactive substances (NPS) has been being a continuous and evolving problem for more than a decade. Every year, dozens of new, previously unknown drugs appear on the illegal market, posing a significant threat to the health and lives of their users. Synthetic cathinones are one of the most numerous and widespread groups among NPS. The purpose of this work was to identify and summarize available data on newly emerging cathinones in very recent years. Methods Various online databases such as PubMed, Google Scholar, but also databases of government agencies including those involved in early warning systems, were used in search of reports on the identification of newly emerging synthetic cathinones. In addition, threads on various forums created by users of these drugs were searched for reports on the effects of these new substances. Results We have identified 29 synthetic cathinones that have been detected for the first time from early 2019 to mid-2022. We described their structures, known intoxication symptoms, detected concentrations in biological material in poisoning cases, as well as the countries and dates of their first appearance. Due to the lack of studies on the properties of the novel compounds, we compared data on the pharmacological profiles of the better-known synthetic cathinones with available information on the newly emerged ones. Some of these new agents already posed a threat, as the first cases of poisonings, including fatal ones, have been reported. Conclusions Most of the newly developed synthetic cathinones can be seen as analogs and replacements for once-popular compounds that have been declining in popularity as a result of legislative efforts. Although it appears that some of the newly emerging cathinones are not widely used, they may become more popular in the future and could become a significant threat to health and life. Therefore, it is important to continue developing early warning systems and identifying new compounds so that their widespread can be prevented.
Collapse
Affiliation(s)
- Patryk Kuropka
- Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Marcin Zawadzki
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| | - Paweł Szpot
- grid.4495.c0000 0001 1090 049XDepartment of Forensic Medicine, Wroclaw Medical University, 4 J. Mikulicza‑Radeckiego Street, 50345 Wroclaw, Poland ,Institute of Toxicology Research, 45 Kasztanowa Street, Lower Silesia Province, 55093 Borowa, Poland
| |
Collapse
|
11
|
Nadal-Gratacós N, Lleixà E, Gibert-Serramià M, Estrada-Tejedor R, Berzosa X, Batllori X, Pubill D, Camarasa J, Escubedo E, López-Arnau R. Neuropsychopharmacology of Emerging Drugs of Abuse: meta- and para-Halogen-Ring-Substituted α-PVP (“flakka”) Derivatives. Int J Mol Sci 2022; 23:ijms23042226. [PMID: 35216339 PMCID: PMC8876800 DOI: 10.3390/ijms23042226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
Changes in the molecular structure of synthetic cathinones has led to an increase in the number of novel emerging drugs in the illicit drug market at an unprecedented rate. Unfortunately, little is known about the neuropsychopharmacology of recently emerged halogen-substituted α-PVP derivatives. Thus, the aim of this study was to investigate the role of para- and meta-halogen (F-, Cl-, and Br-) substitutions on the in vitro, in silico, and in vivo effects of α-pyrrolidinopentiophenone (α-PVP) derivatives. HEK293 cells expressing the human dopamine or serotonin transporter (hDAT and hSERT) were used for the uptake inhibition and transporter affinity assays. Molecular docking was used to model the interaction mechanism against DAT. Swiss CD-1 mice were used for the horizontal locomotor activity, open field test, and conditioned place preference paradigm. All compounds demonstrated potent DA uptake inhibition and higher DAT selectivity than cocaine. Meta-substituted cathinones showed higher DAT/SERT ratios than their para- analogs, which correlates with an increased psychostimulant effect in vivo and with different meta- and para-in silico interactions at DAT. Moreover, all compounds induced rewarding and acute anxiogenic effects in mice. In conclusion, the present study demonstrates the role of meta- and para-halogen substitutions in the mechanism of action and provides the first evidence of the rewarding and anxiety-like properties of halogenated α-PVP derivatives.
Collapse
Affiliation(s)
- Núria Nadal-Gratacós
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Esther Lleixà
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Mónica Gibert-Serramià
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Roger Estrada-Tejedor
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Xavier Berzosa
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - Xavier Batllori
- Pharmaceutical Chemistry Group (GQF), IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain; (R.E.-T.); (X.B.); (X.B.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Correspondence: (E.E.); (R.L.-A.); Tel.: +34-9-3402-4531 (E.E.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Biomedicine (IBUB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (N.N.-G.); (E.L.); (M.G.-S.); (D.P.); (J.C.)
- Correspondence: (E.E.); (R.L.-A.); Tel.: +34-9-3402-4531 (E.E.)
| |
Collapse
|
12
|
Rudin D, Liechti ME, Luethi D. Molecular and clinical aspects of potential neurotoxicity induced by new psychoactive stimulants and psychedelics. Exp Neurol 2021; 343:113778. [PMID: 34090893 DOI: 10.1016/j.expneurol.2021.113778] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/20/2022]
Abstract
New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.
Collapse
Affiliation(s)
- Deborah Rudin
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Dino Luethi
- Division of Clinical Pharmacology and Toxicology, University Hospital Basel and University of Basel, Basel, Switzerland; Institute of Pharmacology, Medical University of Vienna, Vienna, Austria; Institute of Applied Physics, TU Wien, Vienna, Austria.
| |
Collapse
|
13
|
Molecular Mechanisms of Action of Novel Psychoactive Substances (NPS). A New Threat for Young Drug Users with Forensic-Toxicological Implications. Life (Basel) 2021; 11:life11050440. [PMID: 34068903 PMCID: PMC8156937 DOI: 10.3390/life11050440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022] Open
Abstract
Novel psychoactive substances (NPS) represent a severe health risk for drug users. Even though the phenomenon has been growing since the early 2000s, the mechanisms of action of NPS at the receptors and beyond them are still scarcely understood. The aim of the present study was to provide a systematic review of the updated knowledge regarding the molecular mechanisms underlying the toxicity of synthetic opioids, cannabinoids, cathinones, and stimulants. The study was conducted on the PubMed database. Study eligibility criteria included relevance to the topic, English language, and time of publication (2010–2020). A combined Mesh and free-text protocols search was performed. Study selection was performed on the title/abstract and, in doubtful cases, on the full texts of papers. Of the 580 records identified through PubMed searching and reference checking, 307 were excluded by title/abstract and 78 additional papers were excluded after full-text reading, leaving a total of 155 included papers. Molecular mechanisms of synthetic opioids, synthetic cannabinoids, stimulants, psychedelics, and hallucinogens were reviewed and mostly involved both a receptor-mediated and non-receptor mediated cellular modulation with multiple neurotransmitters interactions. The molecular mechanisms underlying the action of NPS are more complex than expected, with a wide range of overlap among activated receptors and neurotransmitter systems. The peculiar action profile of single compounds does not necessarily reflect that of the structural class to which they belong, accounting for possible unexpected toxic reactions.
Collapse
|
14
|
S-(+)-Pentedrone and R-(+)-methylone as the most oxidative and cytotoxic enantiomers to dopaminergic SH-SY5Y cells: Role of MRP1 and P-gp in cathinones enantioselectivity. Toxicol Appl Pharmacol 2021; 416:115442. [PMID: 33609514 DOI: 10.1016/j.taap.2021.115442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/23/2022]
Abstract
Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.
Collapse
|
15
|
Wojcieszak J, Kuczyńska K, Zawilska JB. Behavioral Effects of 4-CMC and 4-MeO-PVP in DBA/2J Mice After Acute and Intermittent Administration and Following Withdrawal from Intermittent 14-Day Treatment. Neurotox Res 2021; 39:575-587. [PMID: 33428180 PMCID: PMC8096775 DOI: 10.1007/s12640-021-00329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 01/06/2023]
Abstract
Synthetic cathinones appeared on the market in the 2000s as new psychoactive substances and gained significant prevalence among drug abusers. Cathinones produce psychostimulant and empathogenic effects by enhancing dopaminergic, noradrenergic, and serotoninergic neurotransmission in the brain, and those which potently and selectively enhance dopaminergic transmission are considered to have higher abuse potential. The present study examines the behavioral effects related to psychostimulant properties, abuse potential, and addiction in DBA/2J mice of two cathinones with different profile of action on monoamine system, 4-chloromethcathinone (4-CMC), and 4-methoxy-pyrrolidinopentiophenone (4-MeO-PVP). 4-CMC and 4-MeO-PVP increase spontaneous locomotor activity after acute treatment and produce behavioral sensitization after 7-day intermittent treatment, which is a common feature of drugs of abuse. 4-MeO-PVP, but not 4-CMC, produces conditioned place preference after 4 days, indicating its rewarding properties. Finally, the ability of 4-CMC and 4-MeO-PVP to induce withdrawal symptoms after discontinuation from 14-day treatment was assessed using a battery of tests for behavioral markers of depression in mice: a tail suspension test, a forced swim test, measuring despair, and a sucrose preference test, measuring anhedonia. None of the three tests revealed increased depressive symptoms. Moreover, neither spontaneous locomotor activity nor motor performance on a rotarod was impaired after 14-day treatment with the tested compounds. These results indicate that 14-day treatment of mice with 4-CMC or 4-MeO-PVP does not induce significant withdrawal symptoms after cessation, nor significant impairment of dopaminergic circuitry resulting in motor impairment. The current study shows that 4-CMC and 4-MeO-PVP produce abuse-related behavioral changes in mice, which are more pronounced after more dopamine-selective 4-MeO-PVP.
Collapse
Affiliation(s)
- Jakub Wojcieszak
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland.
| | - Katarzyna Kuczyńska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| | - Jolanta B Zawilska
- Department of Pharmacodynamics, Medical University of Lodz, 90-151, Lodz, Poland
| |
Collapse
|