1
|
Maciulis V, Lučiūnaitė A, Usvaltas M, Juciute S, Ramanaviciene A, Plikusiene I. The second life for unused COVID-19 vaccines: Towards biosensing application. Talanta 2025; 287:127647. [PMID: 39884124 DOI: 10.1016/j.talanta.2025.127647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/12/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Many vaccines have been produced during the COVID-19 pandemic. Currently, an increasing number of vaccines have reached an expiration date without being used. Therefore, expired vaccines (EXVAX) based on virus-like particles (VLP) recombinant SARS-CoV2-S protein can be repurposed for biosensing application and provide a use, even though they are past their expiration date for vaccination. In the current study, we applied EXVAX based on VLP for gold sensor chip modification to use such surface for specific antibody detection from diluted human serum. For this purpose, we used total internal reflection ellipsometry for real-time kinetics measurement and mathematical modelling for the calculation of affinity constants. Moreover, we cross-validated the results obtained with a widely applied ELISA method. EXVAX was tested and compared with commercially available recombinant S proteins analogues that are commonly used for immunosensing. The results suggest that the EXVAX functionalisation is thermodynamically favoured. The interaction analysis of polyclonal antibodies from human serums shows that the EXVAX SARS-CoV2-S proteins retain their biological activity more than one year after the expiration date as the calculated values of the affinity constant fall in a nM range of (10-11 > KD > 10-9), suggesting a high affinity interaction and thus could be used for biosensing and meet sustainable development goal.
Collapse
Affiliation(s)
- Vincentas Maciulis
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania
| | - Asta Lučiūnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio ave. 7, Vilnius, Lithuania
| | - Mantvydas Usvaltas
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania
| | - Silvija Juciute
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko Str. 24, 03225, Vilnius, Lithuania
| | - Ieva Plikusiene
- State Research Institute Center for Physical and Technological Sciences, Sauletekio ave. 3, Vilnius, Lithuania; Pharmacy and Pharmacology Center, Faculty of Medicine, Vilnius University, Ciurlionio str. 21, Vilnius, Lithuania.
| |
Collapse
|
2
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Bayat R, Bingül Reçber Z, Bekmezci M, Nas MS, Calimli MH, Demirbas O, Akin M, Şen F. Synthesis and application of AuNi@AC nano adsorbents for the removal of Maxilon Blue 5G azo dye from aquatic mediums. Food Chem Toxicol 2022; 167:113303. [PMID: 35850400 DOI: 10.1016/j.fct.2022.113303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
In this research, gold-nicel supported on activated carbon (AC) nanoadsorbent (AuNi@AC) synthesized by following a series of physicochemical procedures was prepared for the removal of Maxilon Blue 5G (MB) which is a cationic textile dye. Experimental studies based on parameters specifically pH, contact time, nano catalytic adsorbent particle, initial MB dye concentration and temperature effect were conducted in aqueous solutions in a batch system. AuNi@AC nanoadsorbents (NAs) reached the equilibrium in 30 min under optimum conditions in adsorption of the dye. The pseudo-first, second-order, and intra-particle diffusion models were tested to evaluate a the experimental results. Adsorption kinetics were found to be represented by the pseudo-second-order model, and the maximum adsorption capacity (qmax.) was calculated to be 542.90 mg/g (or 2.041 mmol/g). The synthesized magnetic AuNi@AC nanoadsorbent showed a high-efficiency reusability effect of about 64% after five reuse runs. Also, thermodynamic function parameters such as activation energy (Ea), Gibbs free energy (ΔG *), and entropy (ΔS *) were investigated in the sorption study. After all evaluation of data, it was concluded that the novel AuNi@AC nanoadsorbent could be considered as an effective support material for the removal of various organic pollutants in aquation solution especially for the removal of MB.
Collapse
Affiliation(s)
- Ramazan Bayat
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Züleyha Bingül Reçber
- Faculty of Engineering, Environmental Engineering Department, Igdir University, Igdir, Turkey
| | - Muhammed Bekmezci
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Mehmet Salih Nas
- Faculty of Engineering, Environmental Engineering Department, Igdir University, Igdir, Turkey; Research Laboratory and Application Center (ALUM), Igdir University, Igdir, Turkey.
| | - Mehmet Harbi Calimli
- Tuzluca Vocational School, Igdir University, Igdir, Turkey; Research Laboratory and Application Center (ALUM), Igdir University, Igdir, Turkey.
| | - Ozkan Demirbas
- Department of Chemistry, Faculty of Science and Literature, University of Balikesir, Balikesir, Turkey
| | - Merve Akin
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Kutahya, Turkey
| | - Fatih Şen
- Faculty of Science, Department of Biochemistry, Dumlupınar University, Kütahya, Turkey.
| |
Collapse
|
4
|
Aida B, Sihem T, Ines B, Hatem L. Biochemical variability and functional properties of cowpea landraces grown in Hoggar: the Algerian arid region. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Gebretsadik H, Gebrekidan A, Demlie L. Removal of heavy metals from aqueous solutions using Eucalyptus Camaldulensis: An alternate low cost adsorbent. ACTA ACUST UNITED AC 2020. [DOI: 10.1080/23312009.2020.1720892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hirut Gebretsadik
- Tigray Regional State, Bureau of Agriculture, Mekelle Soil Research Center, QC &QA Head, Mekelle, Tigray, Ethiopia
| | - Abraha Gebrekidan
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| | - Libargachew Demlie
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| |
Collapse
|