1
|
Kumar G, Virmani T, Chhabra V, Virmani R, Pathak K, Akhtar MS, Hussain Asim M, Arshad S, Siddique F, Fonte P. Transforming cancer treatment: The potential of nanonutraceuticals. Int J Pharm 2024; 667:124919. [PMID: 39515676 DOI: 10.1016/j.ijpharm.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy in the management of cancer is constrained by limitations like off-target effects, poor bioavailability, and dose-dependent toxicity. Nutraceuticals have been explored as an innovative strategy to overcome chemotherapy drawbacks.However, the clinical utility of nutraceuticals is restricted due to their complex structures, less water solubility, reduced stability, decreased bioavailability and more obstacles in the gastrointestinal tract. Nanonutraceuticals are nanosized nutraceutical particles having enhanced solubility, improved bioavailability, stability, and targeted delivery to specific cells. Nutraceuticals can be co-delivered with other chemotherapeutic drugs in nanocarriers to elicit synergistic effects. The targeting of nutraceuticals against cancer cells can be enabled by coupling ligands with the nanocarriers, which direct to the overexpressed receptors found at the surface of the cancer cells. Transitioning a nanonutraceutical from pre-clinical research to clinical trials is a pivotal step. This focus on advancing their application holds great potential for impacting clinical research and improving the treatment landscape for cancer patients. This review focuses on the role of nutraceuticals for cancer treatment, various nanocarriers for the efficient delivery of nutraceuticals along with co-administration of nutraceuticals with chemotherapeutic drugs using nanocarriers. Also, emphasize the targeting of ligands coupled nanocarriers to the cancer cells along with patents and clinical trials for nanonutraceuticals.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India.
| | - Vaishnavi Chhabra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab 160062, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, Uttar Pradesh 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | | | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha 40100, Pakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
2
|
Leena Panigrahi L, Samal P, Ranjan Sahoo S, Sahoo B, Pradhan AK, Mahanta S, Rath SK, Arakha M. Nanoparticle-mediated diagnosis, treatment, and prevention of breast cancer. NANOSCALE ADVANCES 2024; 6:3699-3713. [PMID: 39050943 PMCID: PMC11265592 DOI: 10.1039/d3na00965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
By virtue of their advanced physicochemical properties, nanoparticles have attracted significant attention from researchers for application in diverse fields of medical science. Breast cancer, presenting a high risk of morbidity and mortality, frequently occurs in women and is considered a malignant tumor. Globally, breast cancer is considered the second leading cause of death. Accordingly, its poor prognosis, invasive metastasis, and relapse have motivated oncologists and nano-medical researchers to develop highly potent nanotherapies to cure this deadly disease. In this case, nanoparticles have emerged as responsive platforms for breast cancer management, providing new approaches to improve the diagnostic accuracy, deliver targeted therapies, and limit the progression of this disease. Recently, smart nano-carriers encapsulating drugs, ligands, and tracking probes have been developed for the specific therapy of breast cancers. Further, efforts have been devoted to developing various nano-systems with minimal toxicity. The aim of this review is to present a background on novel nanotheranostic methods that can be employed to diagnose and treat breast cancers and encourage readers to focus on the development of novel nanomedicine for breast cancers and other deadly diseases. In this context, we discuss different methods for the diagnosis, treatment, and prevention of breast cancers using different metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Pallavi Samal
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sameer Ranjan Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Banishree Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Arun Kumar Pradhan
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sailendra Mahanta
- School of Pharmacy, The Assam Kaziranga University Koraikhowa, NH-37 Jorhat Assam 785 006 India
| | - Sandip Kumar Rath
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta Georgia USA
| | - Manoranjan Arakha
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| |
Collapse
|
3
|
Mundekkad D, Cho WC. Applications of Curcumin and Its Nanoforms in the Treatment of Cancer. Pharmaceutics 2023; 15:2223. [PMID: 37765192 PMCID: PMC10536212 DOI: 10.3390/pharmaceutics15092223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the diverse medicinal and pharmacokinetic properties of turmeric, it is well-known in the therapeutic, pharmaceutic, nutraceutical, cosmetic, and dietary industries. It gained importance due to its multitude of properties, such as wound-healing, anti-inflammatory, anti-oxidant, anti-microbial, cytoprotective, anti-aging, anti-cancer, and immunomodulatory effects. Even though the natural healing effect of turmeric has been known to Indians as early as 2500 BCE, the global demand for turmeric has increased only recently. A major reason for the beneficiary activities of turmeric is the presence of the yellow-colored polyphenolic compound called curcumin. Many studies have been carried out on the various properties of curcumin and its derivatives. Despite its low bioavailability, curcumin has been effectively used for the treatment of many diseases, such as cardiovascular and neurological diseases, diabetes, arthritis, and cancer. The advent of nanobiotechnology has further opened wide opportunities to explore and expand the use of curcumin in the medical field. Nanoformulations using curcumin and its derivatives helped to design new treatment modalities, specifically in cancer, because of the better bioavailability and solubility of nanocurcumin when compared to natural curcumin. This review deals with the various applications of curcumin nanoparticles in cancer therapy and broadly tries to understand how it affect the immunological status of the cancer cell.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Department of Biotechnology, Nehru Arts and Science College, Thirumalayampalayam, Coimbatore 641105, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
4
|
Pandey M, Singh AK, Pandey PC. Synthesis and in vitro antibacterial behavior of curcumin-conjugated gold nanoparticles. J Mater Chem B 2023; 11:3014-3026. [PMID: 36938847 DOI: 10.1039/d2tb02256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Owing to the rise in multidrug-resistant bacterial diseases and the dwindling supply of newer antibiotics, it is crucial to discover newer compounds or modify current compounds for more effective antimicrobial therapies. According to reports, more than 80% of bacterial infections have been linked to bacterial biofilms. In addition to having antimicrobial properties, the hydrophobic polyphenol curcumin (Cur) also inhibits quorum sensing. The application of curcumin was constrained by its weak aqueous solubility and quick degradation. Over the past years, nanotechnology-based biomaterials with multi-functional characteristics have been engineered with high interest. The present study focused on the development of nano-biomaterials with excellent testifiers for bacterial infection in vitro. In this study, water dispersibility and stability of curcumin were improved through conjugation with gold nanoparticles. The successful synthesis of curcumin-conjugated gold nanoparticles (Cur-AuNPs) was confirmed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and UV-vis absorbance spectroscopy. Transmission electron microscopy (TEM) revealed an average particle size of about 10-13 nm. The antibacterial characteristics in terms of the minimum inhibitory concentration (MIC) of Cur-AuNP treatments were found to be lowest than those with AuNPs and Cur treatments. The quantitative analysis revealed the superior antibacterial characteristics of Cur-AuNP-treated bacterial cells compared to the untreated samples. In addition, curcumin-conjugated AuNPs, produced more reactive oxygen species and increased the membrane permeability. Besides, the biocompatibility of Cur-AuNPs was also assessed quantitatively and qualitatively. Statistical analyses revealed the augmented MG-63 cell proliferation in Cur-AuNPs compared to those with Cur and AuNPs treatments. Overall, Cur-AuNPs exhibited enhanced antibacterial, and antibiofilm characteristics and cytocompatibility.
Collapse
Affiliation(s)
- Maneesha Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Ashish Kumar Singh
- Model Rural Health Research Unit, Datia; Indian Council of Medical Research-National Institute of Research in Tribal Health (ICMR-NIRTH), Jabalpur-482003, India
| | - P C Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
5
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Kolathupalayam Shanmugam B, Rajendran N, Arumugam K, Rangaraj S, Subramani K, Srinivasan S, Nayagam L, Aicher WK, Venkatachalam R. Curcumin loaded gold nanoparticles-chitosan/sodium alginate nanocomposite for nanotheranostic applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 34:875-892. [PMID: 36576144 DOI: 10.1080/09205063.2022.2151819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A solvent casting technique was used for the preparation of biomimetic nanocomposites scaffolds at three various concentrations of Curcumin loaded gold nanoparticles (Cur-AuNPs-1, 1.5, and 2 ml) as filler materials with chitosan-sodium alginate composite. The physico-chemical properties of prepared Cu-Au NPs and biomimetic nanocomposites were analyzed using various characterization techniques. In vitro biocompatibility of biomimetic nanocomposites are determined using simulated body fluid for biomineralization property, HAp formation and phosphate buffer saline (PBS) for swelling property, protein adsorption. Antibacterial activity of Cur-Au NPs and their nanocomposites carried out against Escherichia coli (E. coli) and Staphylococcus aureus. In vitro cytotoxicity of Cur-AuNPs is identified against UC-6 and MDA-MB 231 cell lines. The use of above studies and activity of Cur-AuNPs with contain biomimetic nanocomposites can adoptable for nanotheranostics.
Collapse
Affiliation(s)
| | - Nidhusha Rajendran
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Karthik Arumugam
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Suriyaprabha Rangaraj
- Department of Biotechnology, Sona College of Arts and Science, Salem, Tamil Nadu, India
| | - Karthik Subramani
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Surendhiran Srinivasan
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India
| | - Lenin Nayagam
- Department of Physics, Sethu Institute of Technology, Viruthunagar, Tamil Nadu, India
| | | | - Rajendran Venkatachalam
- Centre for Nano Science and Technology, K. S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, India.,Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, India
| |
Collapse
|
7
|
Electrochemical Sensors Based on Au Nanoparticles Decorated Pyrene-Reduced Graphene Oxide for Hydrazine, 4-Nitrophenol and Hg 2+ Detection in Water. Molecules 2022; 27:molecules27238490. [PMID: 36500583 PMCID: PMC9738402 DOI: 10.3390/molecules27238490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Monitoring hazardous chemical compounds such as hydrazine (N2H4), 4-nitrophenol (4-NP) and Hg2+ in natural water resources is a crucial issue due to their toxic effects on human health and catastrophic impact on the environment. Electrochemical nanostructured platforms integrating hybrid nanocomposites based on graphene derivatives and inorganic nanoparticles (NPs) are of great interest for such a purpose. In this work, disposable screen-printed carbon electrodes (SPCEs) have been modified with a hybrid nanocomposite formed by reduced graphene oxide (RGO), functionalized by 1-pyrene carboxylic acid (PCA), and decorated by colloidal Au NPs. These hybrid platforms have been tested for the electrocatalytic detection of N2H4 and 4-NP by differential pulse voltammetry and have been modified with an electropolymerized film of Hg2+ ions imprinted polycurcumin for the electroanalytical detection of Hg2+ by DPV. LODs, lower and in line with the lowest ones reported for state-of-the-art electrochemical sensors, integrating similar Au-graphene < nanocomposites, have been estimated. Additionally, good repeatability, reproducibility, and storage stability have been assessed, as well as a high selectivity in the presence of a 100-fold higher concentration of interfering species. The applicability of the proposed platforms for the detection of the compounds in real complex matrices, such as tap and river water samples, has been effectively demonstrated.
Collapse
|
8
|
Buchveitz Pires J, Martins Fonseca L, Jéssica Siebeneichler T, Lopes Crizel R, Nardo dos Santos F, Cristina dos Santos Hackbart H, Hüttner Kringel D, Dillenburg Meinhart A, da Rosa Zavareze E, Renato Guerra Dias A. Curcumin encapsulation in capsules and fibers of potato starch by electrospraying and electrospinning: thermal resistance and antioxidant activity. Food Res Int 2022; 162:112111. [DOI: 10.1016/j.foodres.2022.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
9
|
Venkatas J, Daniels A, Singh M. The Potential of Curcumin-Capped Nanoparticle Synthesis in Cancer Therapy: A Green Synthesis Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3201. [PMID: 36144994 PMCID: PMC9502936 DOI: 10.3390/nano12183201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cancer nanotherapeutics is an important field of research which utilizes nanomaterials as an approach to cancer therapy. Nano-mediated therapeutic delivery systems overcome the adverse side effects of traditional cancer treatment methods. Nanoparticles (NPs) are considered excellent tumor-targeting vehicles due to their compact and variable size, large surface area, ability to load several genes and drugs, and mediation of increased therapeutic payload uptake. Despite the rapid development of nanotechnology, there is growing concern regarding the possible long-term side effects of NPs on the environment and human health. Green chemistry using plant materials, such as curcumin, is a sustainable alternative to conventional reduction methods and confers dual reducing and capping properties. Curcumin is a bioactive compound isolated from the rhizome of the Curcuma longa plant, which exhibits various medicinal properties. Curcumin-capped NPs exhibit increased solubility, bioavailability, therapeutic indices, and antitumor properties. This review highlights the potential and antitumor properties of economical, simple, and eco-friendly curcumin-synthesized and capped NPs for the localized delivery of therapeutic genes and drugs to the cancer tumor microenvironment with fewer adverse side effects.
Collapse
|
10
|
Hafez Ghoran S, Calcaterra A, Abbasi M, Taktaz F, Nieselt K, Babaei E. Curcumin-Based Nanoformulations: A Promising Adjuvant towards Cancer Treatment. Molecules 2022; 27:molecules27165236. [PMID: 36014474 PMCID: PMC9414608 DOI: 10.3390/molecules27165236] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Throughout the United States, cancer remains the second leading cause of death. Traditional treatments induce significant medical toxic effects and unpleasant adverse reactions, making them inappropriate for long-term use. Consequently, anticancer-drug resistance and relapse are frequent in certain situations. Thus, there is an urgent necessity to find effective antitumor medications that are specific and have few adverse consequences. Curcumin is a polyphenol derivative found in the turmeric plant (Curcuma longa L.), and provides chemopreventive, antitumor, chemo-, and radio-sensitizing properties. In this paper, we summarize the new nano-based formulations of polyphenolic curcumin because of the growing interest in its application against cancers and tumors. According to recent studies, the use of nanoparticles can overcome the hydrophobic nature of curcumin, as well as improving its stability and cellular bioavailability in vitro and in vivo. Several strategies for nanocurcumin production have been developed, each with its own set of advantages and unique features. Because the majority of the curcumin-based nanoformulation evidence is still in the conceptual stage, there are still numerous issues impeding the provision of nanocurcumin as a possible therapeutic option. To support the science, further work is necessary to develop curcumin as a viable anti-cancer adjuvant. In this review, we cover the various curcumin nanoformulations and nanocurcumin implications for therapeutic uses for cancer, as well as the current state of clinical studies and patents. We further address the knowledge gaps and future research orientations required to develop curcumin as a feasible treatment candidate.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 16666-63111, Iran
- Medicinal Plant Breeding and Development Research Institute, University of Kurdistan, Sanandaj 66177-15175, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza–University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 71336-54361, Iran
| | - Fatemeh Taktaz
- Department of Biology, Faculty of Sciences, University of Hakim Sabzevari, Sabzevar 96179-76487, Iran
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Kay Nieselt
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Esmaeil Babaei
- Interfaculty Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz 51666-16471, Iran
- Correspondence: (S.H.G.); or (E.B.); Tel.: +98-9144425047 (S.H.G.); Tel.: +98-4133392686 (E.B.)
| |
Collapse
|
11
|
Liu C, Jiang F, Xing Z, Fan L, Li Y, Wang S, Ling J, Ouyang XK. Efficient Delivery of Curcumin by Alginate Oligosaccharide Coated Aminated Mesoporous Silica Nanoparticles and In Vitro Anticancer Activity against Colon Cancer Cells. Pharmaceutics 2022; 14:1166. [PMID: 35745738 PMCID: PMC9229531 DOI: 10.3390/pharmaceutics14061166] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
We designed and synthesized aminated mesoporous silica (MSN-NH2), and functionally grafted alginate oligosaccharides (AOS) on its surface to get MSN-NH2-AOS nanoparticles as a delivery vehicle for the fat-soluble model drug curcumin (Cur). Dynamic light scattering, thermogravimetric analysis, and X-ray photoelectron spectroscopy were used to characterize the structure and performance of MSN-NH2-AOS. The nano-MSN-NH2-AOS preparation process was optimized, and the drug loading and encapsulation efficiencies of nano-MSN-NH2-AOS were investigated. The encapsulation efficiency of the MSN-NH2-Cur-AOS nanoparticles was up to 91.24 ± 1.23%. The pH-sensitive AOS coating made the total release rate of Cur only 28.9 ± 1.6% under neutral conditions and 67.5 ± 1% under acidic conditions. According to the results of in vitro anti-tumor studies conducted by MTT and cellular uptake assays, the MSN-NH2-Cur-AOS nanoparticles were more easily absorbed by colon cancer cells than free Cur, achieving a high tumor cell targeting efficiency. Moreover, when the concentration of Cur reached 50 μg/mL, MSN-NH2-Cur-AOS nanoparticles showed strong cytotoxicity against tumor cells, indicating that MSN-NH2-AOS might be a promising tool as a novel fat-soluble anticancer drug carrier.
Collapse
Affiliation(s)
- Chennan Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Fangyuan Jiang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Zifeng Xing
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Lihong Fan
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Yuan Li
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Shaoning Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China;
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (C.L.); (F.J.); (Z.X.); (L.F.); (Y.L.)
| |
Collapse
|
12
|
Maleki Dizaj S, Alipour M, Dalir Abdolahinia E, Ahmadian E, Eftekhari A, Forouhandeh H, Rahbar Saadat Y, Sharifi S, Zununi Vahed S. Curcumin nanoformulations: Beneficial nanomedicine against cancer. Phytother Res 2022; 36:1156-1181. [PMID: 35129230 DOI: 10.1002/ptr.7389] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/19/2022]
Abstract
Curcumin is a phytochemical achieved from the plant turmeric. It is extensively utilized for the treatment of several types of diseases such as cancers. Nevertheless, its efficiency has been limited because of rapid metabolism, low bioavailability, poor water solubility, and systemic elimination. Scientists have tried to solve these problems by exploring novel drug delivery systems such as lipid-based nanoparticles (NPs) (e.g., solid lipid NPs, nanostructured lipid carriers, and liposomes), polymeric NPs, micelles, nanogels, cyclodextrin, gold, and mesoporous silica NPs. Among these, liposomes have been the most expansively studied. This review mainly focuses on the different curcumin nanoformulations and their use in cancer therapy in vitro, in vivo, and clinical studies. Despite the development of curcumin-containing NPs for the treatment of cancer, potentially serious side effects, including interactions with other drugs, some toxicity aspects of NPs may occur that require more high-quality investigations to firmly establish the clinical efficacy.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Health innovation and acceleration center, Tabriz University of Medical Sciences, Tabriz, Iran.,Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
| | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
13
|
Queiros Campos J, Boulares M, Raboisson-Michel M, Verger-Dubois G, García Fernández JM, Godeau G, Kuzhir P. Improved Magneto-Microfluidic Separation of Nanoparticles through Formation of the β-Cyclodextrin-Curcumin Inclusion Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14345-14359. [PMID: 34855402 DOI: 10.1021/acs.langmuir.1c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular adsorption to the nanoparticle surface may switch the colloidal interactions from repulsive to attractive and promote nanoparticle agglomeration. If the nanoparticles are magnetic, then their agglomerates exhibit a much stronger response to external magnetic fields than individual nanoparticles. Coupling between adsorption, agglomeration, and magnetism allows a synergy between the high specific area of nanoparticles (∼100 m2/g) and their easy guidance or separation by magnetic fields. This yet poorly explored concept is believed to overcome severe restrictions for several biomedical applications of magnetic nanoparticles related to their poor magnetic remote control. In this paper, we test this concept using curcumin (CUR) binding (adsorption) to β-cyclodextrin (βCD)-coated iron oxide nanoparticles (IONP). CUR adsorption is governed by host-guest hydrophobic interactions with βCD through the formation of 1:1 and, possibly, 2:1 βCD:CUR inclusion complexes on the IONP surface. A 2:1 stoichiometry is supposed to promote IONP primary agglomeration, facilitating the formation of the secondary needle-like agglomerates under external magnetic fields and their magneto-microfluidic separation. The efficiency of these field-induced processes increases with CUR concentration and βCD surface density, while their relatively short timescale (<5 min) is compatible with magnetic drug delivery application.
Collapse
Affiliation(s)
- J Queiros Campos
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - M Boulares
- University of Carthage, Faculty of Sciences of Bizerte, Centre des Recherches et des Technologies des Eaux (CERTE) Technopole de Borj-Cédria, Route touristique de Soliman BPn° 273, Soliman 8020, Tunisia
| | - M Raboisson-Michel
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - G Verger-Dubois
- Axlepios Biomedical, 1st Avenue, 5th Street, Carros 06510, France
| | - J M García Fernández
- Instituto de Investigaciones Qumicas, CSIC and Universidad de Sevilla, Av. Amrico Vespucio 49, Isla de la Cartuja, Sevilla 41092, Spain
| | - G Godeau
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| | - P Kuzhir
- University Côte d'Azur, CNRS UMR 7010, Institute of Physics of Nice (INPHYNI) - Parc Valrose, Nice 06108, France
| |
Collapse
|
14
|
Yixuan L, Qaria MA, Sivasamy S, Jianzhong S, Daochen Z. Curcumin production and bioavailability: A comprehensive review of curcumin extraction, synthesis, biotransformation and delivery systems. INDUSTRIAL CROPS AND PRODUCTS 2021; 172:114050. [DOI: 10.1016/j.indcrop.2021.114050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
15
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
16
|
Tabanelli R, Brogi S, Calderone V. Improving Curcumin Bioavailability: Current Strategies and Future Perspectives. Pharmaceutics 2021; 13:1715. [PMID: 34684008 PMCID: PMC8540263 DOI: 10.3390/pharmaceutics13101715] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Curcumin possesses a plethora of interesting pharmacological effects. Unfortunately, it is also characterized by problematic drug delivery and scarce bioavailability, representing the main problem related to the use of this compound. Poor absorption, fast metabolism, and rapid systemic clearance are the most important factors contributing to low curcumin levels in plasma and tissues. Accordingly, to overcome these issues, numerous strategies have been proposed and are investigated in this article. Due to advances in the drug delivery field, we describe here the most promising strategies for increasing curcumin bioavailability, including the use of adjuvant, complexed/encapsulated curcumin, specific curcumin formulations, and curcumin nanoparticles. We analyze current strategies, already available in the market, and the most advanced technologies that can offer a future perspective for effective curcumin formulations. We focus the attention on the effectiveness of curcumin-based formulations in clinical trials, providing a comprehensive summary. Clinical trial results, employing various delivery methods for curcumin, showed that improved bioavailability corresponds to increased therapeutic efficacy. Furthermore, advances in the field of nanoparticles hold great promise for developing curcumin-based complexes as effective therapeutic agents. Summarizing, suitable delivery methods for this polyphenol will ensure the possibility of using curcumin-derived formulations in clinical practice as preventive and disease-modifying therapeutics.
Collapse
Affiliation(s)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy; (R.T.); (V.C.)
| | | |
Collapse
|
17
|
Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, Maishu SP, Akter R, Rahman MH, Karthika C, Murad W, Qusty N, Qusti S, Alshammari EM, Batiha GES, Altalbawy FMA, Albooq MIM, Alamri BM. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules 2021; 26:4998. [PMID: 34443593 PMCID: PMC8402133 DOI: 10.3390/molecules26164998] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Curcuma longa is very well-known medicinal plant not only in the Asian hemisphere but also known across the globe for its therapeutic and medicinal benefits. The active moiety of Curcuma longa is curcumin and has gained importance in various treatments of various disorders such as antibacterial, antiprotozoal, cancer, obesity, diabetics and wound healing applications. Several techniques had been exploited as reported by researchers for increasing the therapeutic potential and its pharmacological activity. Here, the dictum is the new room for the development of physicochemical, as well as biological, studies for the efficacy in target specificity. Here, we discussed nanoformulation techniques, which lend support to upgrade the characters to the curcumin such as enhancing bioavailability, increasing solubility, modifying metabolisms, and target specificity, prolonged circulation, enhanced permeation. Our manuscript tried to seek the attention of the researcher by framing some solutions of some existing troubleshoots of this bioactive component for enhanced applications and making the formulations feasible at an industrial production scale. This manuscript focuses on recent inventions as well, which can further be implemented at the community level.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Protity Shuvra Dey
- Department of Food Science & Nutrition Management, J.D. Birla Institute, Kolkata 700020, India;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Tanima Bhattacharya
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China;
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Md. Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Korea
| | - Chenmala Karthika
- Department of Pharmaceutics, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Naeem Qusty
- Biochemistry Department, Faculty of Science, King Abdul Aziz University, Jeddah 80200, Saudi Arabia;
| | - Safaa Qusti
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Eida M. Alshammari
- Department of Medical Laboratories, Faculty of Applied Medical Sciences, Umma Al-Qura University, Mecca P.O. Box 715, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Farag M. A. Altalbawy
- National institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt;
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Mona I. M. Albooq
- Department of Biology, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia;
| | - Badrieah M. Alamri
- Department of Biology, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
18
|
Comparative study between Phragmites australis root and rhizome extracts for mediating gold nanoparticles synthesis and their medical and environmental applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Medici S, Peana M, Coradduzza D, Zoroddu MA. Gold nanoparticles and cancer: detection, diagnosis and therapy. Semin Cancer Biol 2021; 76:27-37. [DOI: 10.1016/j.semcancer.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
|
20
|
Kabir MT, Rahman MH, Akter R, Behl T, Kaushik D, Mittal V, Pandey P, Akhtar MF, Saleem A, Albadrani GM, Kamel M, Khalifa SA, El-Seedi HR, Abdel-Daim MM. Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules 2021; 11:392. [PMID: 33800000 PMCID: PMC8001478 DOI: 10.3390/biom11030392] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is a major burden of disease globally. Each year, tens of millions of people are diagnosed with cancer worldwide, and more than half of the patients eventually die from it. Significant advances have been noticed in cancer treatment, but the mortality and incidence rates of cancers are still high. Thus, there is a growing research interest in developing more effective and less toxic cancer treatment approaches. Curcumin (CUR), the major active component of turmeric (Curcuma longa L.), has gained great research interest as an antioxidant, anticancer, and anti-inflammatory agent. This natural compound shows its anticancer effect through several pathways including interfering with multiple cellular mechanisms and inhibiting/inducing the generation of multiple cytokines, enzymes, or growth factors including IκB kinase β (IκKβ), tumor necrosis factor-alpha (TNF-α), signal transducer, and activator of transcription 3 (STAT3), cyclooxygenase II (COX-2), protein kinase D1 (PKD1), nuclear factor-kappa B (NF-κB), epidermal growth factor, and mitogen-activated protein kinase (MAPK). Interestingly, the anticancer activity of CUR has been limited primarily due to its poor water solubility, which can lead to low chemical stability, low oral bioavailability, and low cellular uptake. Delivering drugs at a controlled rate, slow delivery, and targeted delivery are other very attractive methods and have been pursued vigorously. Multiple CUR nanoformulations have also been developed so far to ameliorate solubility and bioavailability of CUR and to provide protection to CUR against hydrolysis inactivation. In this review, we have summarized the anticancer activity of CUR against several cancers, for example, gastrointestinal, head and neck, brain, pancreatic, colorectal, breast, and prostate cancers. In addition, we have also focused on the findings obtained from multiple experimental and clinical studies regarding the anticancer effect of CUR in animal models, human subjects, and cancer cell lines.
Collapse
Affiliation(s)
- Md. Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh;
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India; (D.K.); (V.M.)
| | - Parijat Pandey
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak 124001, India;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54000, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Shaden A.M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23 Uppsala, Sweden;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
21
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
22
|
Yang B, Dong Y, Wang F, Zhang Y. Nanoformulations to Enhance the Bioavailability and Physiological Functions of Polyphenols. Molecules 2020; 25:E4613. [PMID: 33050462 PMCID: PMC7587200 DOI: 10.3390/molecules25204613] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are micronutrients that are widely present in human daily diets. Numerous studies have demonstrated their potential as antioxidants and anti-inflammatory agents, and for cancer prevention, heart protection and the treatment of neurodegenerative diseases. However, due to their vulnerability to environmental conditions and low bioavailability, their application in the food and medical fields is greatly limited. Nanoformulations, as excellent drug delivery systems, can overcome these limitations and maximize the pharmacological effects of polyphenols. In this review, we summarize the biological activities of polyphenols, together with systems for their delivery, including phospholipid complexes, lipid-based nanoparticles, protein-based nanoparticles, niosomes, polymers, micelles, emulsions and metal nanoparticles. The application of polyphenol nanoparticles in food and medicine is also discussed. Although loading into nanoparticles solves the main limitation to application of polyphenolic compounds, there are some concerns about their toxicological safety after entry into the human body. It is therefore necessary to conduct toxicity studies and residue analysis on the carrier.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (B.Y.); (Y.D.); (F.W.)
| |
Collapse
|
23
|
Alphandéry E. Natural Metallic Nanoparticles for Application in Nano-Oncology. Int J Mol Sci 2020; 21:E4412. [PMID: 32575884 PMCID: PMC7352233 DOI: 10.3390/ijms21124412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023] Open
Abstract
Here, the various types of naturally synthesized metallic nanoparticles, which are essentially composed of Ce, Ag, Au, Pt, Pd, Cu, Ni, Se, Fe, or their oxides, are presented, based on a literature analysis. The synthesis methods used to obtain them most often involve the reduction of metallic ions by biological materials or organisms, i.e., essentially plant extracts, yeasts, fungus, and bacteria. The anti-tumor activity of these nanoparticles has been demonstrated on different cancer lines. They rely on various mechanisms of action, such as the release of chemotherapeutic drugs under a pH variation, nanoparticle excitation by radiation, or apoptotic tumor cell death. Among these natural metallic nanoparticles, one type, which consists of iron oxide nanoparticles produced by magnetotactic bacteria called magnetosomes, has been purified to remove endotoxins and abide by pharmacological regulations. It has been tested in vivo for anti-tumor efficacy. For that, purified and stabilized magnetosomes were injected in intracranial mouse glioblastoma tumors and repeatedly heated under the application of an alternating magnetic field, leading to the full disappearance of these tumors. As a whole, the results presented in the literature form a strong basis for pursuing the efforts towards the use of natural metallic nanoparticles for cancer treatment first pre-clinically and then clinically.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD, IMPMC, 75005 Paris, France; ; Tel.: +33-632-697-020
- Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France
- Institute of Anatomy, UZH University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
24
|
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A Promising Candidate for Therapeutic Applications. Front Pharmacol 2020; 11:487. [PMID: 32425772 PMCID: PMC7206872 DOI: 10.3389/fphar.2020.00487] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Curcuma longa is an important medicinal plant and a spice in Asia. Curcumin (diferuloylmethane) is a hydrophobic bioactive ingredient found in a rhizome of the C. longa. It has drawn immense attention in recent years for its variety of biological and pharmacological action. However, its low water solubility, poor bioavailability, and rapid metabolism represent major drawbacks for its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of curcumin and overcome its drawbacks by efficient delivery systems, particularly nanoencapsulation. Research efforts so far and data from the available literature have shown a satisfactory potential of nanorange formulations of curcumin (Nanocurcumin), it increases all the biological and pharmacological benefits of curcumin, which was not significantly possible earlier. For the synthesis of nanocurcumin, an array of techniques has been developed and each technique has its own advantages and individual characteristics. The two most popular and effective techniques are ionic gelation and antisolvent precipitation. So far, many curcumin nanoformulations have been developed to enhance curcumin delivery, thereby overcoming the low therapeutic effects. However, most of the nanoformulation of curcumin remained at the concept level evidence, thus, several questions and challenges still exist to recommend the nanocurcumin as a promising candidate for therapeutic applications. In this review, we discuss the different curcumin nanoformulation and nanocurcumin implications for different therapeutic applications as well as the status of ongoing clinical trials and patents. We also discuss the research gap and future research directions needed to propose curcumin as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea
| | - Natesan Senthil
- Department of Plant Molecular Biology and Bioinformatics, Center for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Taesun Min
- Faculty of Biotechnology, College of Applied Life Science, Sustainable Agriculture Research Institute (SARI) and Jeju International Animal Research Center (JIA), Jeju National University, Jeju, South Korea
| |
Collapse
|
25
|
Phytofabrication of Nanoparticles as Novel Drugs for Anticancer Applications. Molecules 2019; 24:molecules24234246. [PMID: 31766544 PMCID: PMC6930546 DOI: 10.3390/molecules24234246] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/05/2023] Open
Abstract
Cancer is one of the foremost causes of death globally and also the major stumbling block of increasing life expectancy. Although the primary treatment of surgical resection, chemotherapy, and radiotherapy have greatly reduced the mortality of cancer, the survival rate is still low because of the metastasis of tumor, a range of adverse drug reactions, and drug resistance. For all this, it is relevant to mention that a growing amount of research has shown the anticarcinogenic effect of phytochemicals which can modulate the molecular pathways and cellular events include apoptosis, cell proliferation, migration, and invasion. However, their pharmacological potential is hindered by their low water solubility, low stability, poor absorption, and rapid metabolism. In this scenario, the development of nanotechnology has created novel formulations to maximize the potential use of phytochemicals in anticancer treatment. Nanocarriers can enhance the solubility and stability of phytochemicals, prolong their half-life in blood and even achieve site-targeting delivery. This review summarizes the advances in utilizing nanoparticles in cancer therapy. In particular, we introduce several applications of nanoparticles combined with apigenin, resveratrol, curcumin, epigallocatechin-3-gallate, 6-gingerol, and quercetin in cancer treatment.
Collapse
|