1
|
Du Z, Liu H, Bai L, Yan D, Li H, Peng S, Cao J, Liu SB, Tang Z. A Radiosensitivity Prediction Model Developed Based on Weighted Correlation Network Analysis of Hypoxia Genes for Lower-Grade Glioma. Front Oncol 2022; 12:757686. [PMID: 35280808 PMCID: PMC8916576 DOI: 10.3389/fonc.2022.757686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeHypoxia is one of the basic characteristics of the physical microenvironment of solid tumors. The relationship between radiotherapy and hypoxia is complex. However, there is no radiosensitivity prediction model based on hypoxia genes. We attempted to construct a radiosensitivity prediction model developed based on hypoxia genes for lower-grade glioma (LGG) by using weighted correlation network analysis (WGCNA) and least absolute shrinkage and selection operator (Lasso).MethodsIn this research, radiotherapy-related module genes were selected after WGCNA. Then, Lasso was performed to select genes in patients who received radiotherapy. Finally, 12 genes (AGK, ETV4, PARD6A, PTP4A2, RIOK3, SIGMAR1, SLC34A2, SMURF1, STK33, TCEAL1, TFPI, and UROS) were included in the model. A radiosensitivity-related risk score model was established based on the overall rate of The Cancer Genome Atlas (TCGA) dataset in patients who received radiotherapy. The model was validated in TCGA dataset and two Chinese Glioma Genome Atlas (CGGA) datasets. A novel nomogram was developed to predict the overall survival of LGG patients.ResultsWe developed and verified a radiosensitivity-related risk score model based on hypoxia genes. The radiosensitivity-related risk score served as an independent prognostic indicator. This radiosensitivity-related risk score model has prognostic prediction ability. Moreover, a nomogram integrating risk score with age and tumor grade was established to perform better for predicting 1-, 3-, and 5-year survival rates.ConclusionsWe developed and validated a radiosensitivity prediction model that can be used by clinicians and researchers to predict patient survival rates and achieve personalized treatment of LGG.
Collapse
Affiliation(s)
- Zixuan Du
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Hanshan Liu
- Department of Medical Oncology, Jiangsu Provincial Corps Hospital, Chinese People’s Armed Police Forces, Yangzhou City, China
| | - Lu Bai
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Derui Yan
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Sun Peng
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - JianPing Cao
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| | - Zaixiang Tang
- Department of Biostatistics and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Zaixiang Tang, ; Song-Bai Liu,
| |
Collapse
|
2
|
Downregulated Expression of miRNA-130a-5p Aggravates Hepatoma Progression via Targeting PTP4A2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2021:4439505. [PMID: 34992672 PMCID: PMC8727122 DOI: 10.1155/2021/4439505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 01/10/2023]
Abstract
Background Hepatoma is a leading cause of death worldwide, with high metastasis and recurrence rates. The aberrant expression of miRNA-130a-5p is involved in the development and progression of various cancers. However, there are no studies investigating the role of miRNA-130a-5p in hepatoma. The present study is aimed at clarifying the functional role of miRNA-130a-5p in hepatoma progression. Methods The expression levels of miRNA-130a-5p in hepatoma tissues and cell lines were detected by qRT-PCR assays. Bioinformatic analysis, gain-/loss-of-function experiments, and luciferase activity assays were conducted to verify whether miRNA-130a-5p is targeted by protein tyrosine phosphatase 4A2 (PTP4A2). The functions of miRNA-130a-5p and PTP4A2 in hepatoma were determined by cell proliferation assays. Results The expression of miRNA-130a-5p was downregulated in hepatoma tissues and was related to poor prognosis. However, the expression level of PTP4A2 was contradictory to that of miRNA-130a-5p, and PTP4A2 upregulation could aggravate hepatoma progression. The ectopic overexpression of PTP4A2 promoted hepatoma cell proliferation in vitro, which could be reversed by miRNA-130a-5p. Conclusions Our study implies that miRNA-130a-5p, which is downregulated in hepatoma tissues, can suppress hepatoma cell proliferation via targeting PTP4A2.
Collapse
|
3
|
Chen H, Gu B, Zhao X, Zhao Y, Huo S, Liu X, Lu H. Circular RNA hsa_circ_0007364 increases cervical cancer progression through activating methionine adenosyltransferase II alpha (MAT2A) expression by restraining microRNA-101-5p. Bioengineered 2020; 11:1269-1279. [PMID: 33138667 PMCID: PMC8291787 DOI: 10.1080/21655979.2020.1832343] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggested that circular RNAs (circRNAs) play critical roles in cervical cancer (CC) progression. However, the roles and molecular mechanisms of hsa_circ_0007364 in the tumorigenesis of CC remain unclear. In the present study, we used bioinformatics analysis and a series of experimental analysis to characterize a novel circRNA, hsa_circ_0007364 was up-regulated and associated with advanced clinical features in CC patients. Hsa_circ_0007364 inhibition notably suppressed the proliferation and invasion abilities of CC cells in vitro and reduced tumor growth in vivo. Moreover, hsa_circ_0007364 was uncovered to sponge miR-101-5p. Additionally, methionine adenosyltransferase II alpha (MAT2A) was verified as a target gene of miR-101-5p, and its downregulation reversed the inhibitory effects of hsa_circ_0007364 knockdown on CC progression. Therefore, we suggested that hsa_circ_0007364 might serve as an oncogenic circRNA in CC progression by regulating the miR-101-5p/MAT2A axis, which provides a potential therapeutic target to the treatment. Research highlights hsa_circ_0007364 was upregulated in CC hsa_circ_0007364 promoted CC cell progression hsa_circ_0007364/miR-101-5p/MAT2A axis in CC.
Collapse
Affiliation(s)
- Hongfei Chen
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Bin Gu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xiang Zhao
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yupeng Zhao
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Shuning Huo
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xiang Liu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| | - Huihong Lu
- Department of Anesthesia, Shanghai East Hospital, Tongji University School of Medicine , Shanghai, China
| |
Collapse
|
4
|
Du X, Zhang Y, Li X, Li Q, Wu C, Chen G, Guo X, Weng Y, Wang Z. PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Cell Biosci 2019; 9:96. [PMID: 31798830 PMCID: PMC6884919 DOI: 10.1186/s13578-019-0358-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/21/2019] [Indexed: 12/02/2022] Open
Abstract
High levels of ROS cause oxidative stress, which plays a critical role in cell death. As a ROS effector protein, PRL2 senses ROS and controls phagocyte bactericidal activity during infection. Here we report PRL2 regulates oxidative stress induced cell death. PRL2 senses oxidative stress via highly reactive cysteine residues at 46 and 101. The oxidation of PRL2 causes protein degradation and supports pro-survival PDK1/AKT signal which in turn to protect cells against oxidative stress. As a result, PRL2 levels have a high correlation with oxidative stress induced cell death. In vivo experiments showed PRL2 deficient cells survive better in inflammatory oxidative environment and resist to ionizing radiation. Our finding suggests PRL2 serves as a negative regulator in cell adaptation to oxidative stress. Therefore, PRL2 could be targeted to modulate cell viability in inflammation or irradiation associated therapy.
Collapse
Affiliation(s)
- Xinyue Du
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Yang Zhang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Xiao Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Qi Li
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Chenyun Wu
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - Guangjie Chen
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| | - XiaoKui Guo
- 3Institute for Global Health, Shanghai Jiao Tong University School of Medicine-Chinese Center for Tropical Diseases Research, Shanghai, 200025 People's Republic of China
| | - Yongqiang Weng
- 2Department of General Surgery, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 People's Republic of China
| | - Zhaojun Wang
- 1Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Rm 709 Bldg 5, 280 S. Chongqing Rd, Shanghai, 200025 People's Republic of China
| |
Collapse
|
5
|
Sereff SB, Daniels MW, Wittliff JL. Relationships of protein biomarkers of the urokinase plasminogen activator system with expression of their cognate genes in primary breast carcinomas. J Clin Lab Anal 2019; 33:e22982. [PMID: 31359505 PMCID: PMC6868412 DOI: 10.1002/jcla.22982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 01/20/2023] Open
Abstract
Background uPA, its receptor uPAR, and inhibitors PAI‐1 and PAI‐2 play key roles in membrane remodeling/invasion and in predicting response to chemotherapy. We identified novel relationships of these biomarkers with ER/PR that indicate clinical utility for assessing breast carcinoma outcomes. Methods Retrospective studies were performed with de‐identified results of (a) uPA, uPAR, and PAI‐1; (b) estrogen (ER) and progestin receptor (PR); and (c) clinical outcomes. Relative expression of 22 000 genes from microarray of RNA from LCM‐procured breast cancer cells was used with R Studio version 3.4.1. Results Primary ER/PR status was related to uPA, uPAR, or PAI‐1 levels. ER− or PR− cancers expressed elevated uPA, uPAR, and PAI2 mRNA compared to ER+ or PR+ cells. Inverse relationships between ER/PR protein and expression of uPA, uPAR, and PAI‐2 were observed, whereas HER2 status was unrelated. qPCR analyses showed RERG and NQO‐1 expressions were elevated in uPA− lesions, while CD34 and EDG‐1 were elevated in uPAR− cancers. ERBB4 was overexpressed in PAI‐1+ carcinomas. Cox regression analyses revealed relationships of ER/PR status and uPA system members with regard to clinical outcomes of breast cancer. Conclusions uPA, uPAR, PAI1, or PAI2 expression was increased in either ER− or PR− cancers similar to that of protein content in ER−/PR− carcinomas, suggesting sex hormones regulate the uPA system in breast cancer. Results revealed protein content of uPA system members was related to ER/PR status of primary lesions. Use of LCM‐procured carcinoma cells uncovered relationships between expression of known cancer−associated genes and protein content of uPA system members. Collectively, results indicate evaluation of ER and PR protein of primary breast cancers combined with analyses of uPA, uPAR, and PAI‐1 protein content improves assessment of clinical outcomes.
Collapse
Affiliation(s)
- Seth B Sereff
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky.,Institute for Molecular Diversity & Drug Design, University of Louisville, Louisville, Kentucky
| | - Michael W Daniels
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky.,Department of Biostatistics, University of Colorado at Aurora, Aurora, Colorado
| | - James L Wittliff
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, Kentucky.,Institute for Molecular Diversity & Drug Design, University of Louisville, Louisville, Kentucky
| |
Collapse
|
6
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
7
|
Tsunashima R, Naoi Y, Shimazu K, Kagara N, Shimoda M, Tanei T, Miyake T, Kim SJ, Noguchi S. Construction of a novel multi-gene assay (42-gene classifier) for prediction of late recurrence in ER-positive breast cancer patients. Breast Cancer Res Treat 2018; 171:33-41. [PMID: 29728801 DOI: 10.1007/s10549-018-4812-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
PURPOSE Prediction models for late (> 5 years) recurrence in ER-positive breast cancer need to be developed for the accurate selection of patients for extended hormonal therapy. We attempted to develop such a prediction model focusing on the differences in gene expression between breast cancers with early and late recurrence. METHODS For the training set, 779 ER-positive breast cancers treated with tamoxifen alone for 5 years were selected from the databases (GSE6532, GSE12093, GSE17705, and GSE26971). For the validation set, 221 ER-positive breast cancers treated with adjuvant hormonal therapy for 5 years with or without chemotherapy at our hospital were included. Gene expression was assayed by DNA microarray analysis (Affymetrix U133 plus 2.0). RESULTS With the 42 genes differentially expressed in early and late recurrence breast cancers in the training set, a prediction model (42GC) for late recurrence was constructed. The patients classified by 42GC into the late recurrence-like group showed a significantly (P = 0.006) higher late recurrence rate as expected but a significantly (P = 1.62 × E-13) lower rate for early recurrence than non-late recurrence-like group. These observations were confirmed for the validation set, i.e., P = 0.020 for late recurrence and P = 5.70 × E-5 for early recurrence. CONCLUSION We developed a unique prediction model (42GC) for late recurrence by focusing on the biological differences between breast cancers with early and late recurrence. Interestingly, patients in the late recurrence-like group by 42GC were at low risk for early recurrence.
Collapse
Affiliation(s)
- Ryo Tsunashima
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Yasuto Naoi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan.
| | - Kenzo Shimazu
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Naofumi Kagara
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Masashi Shimoda
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomonori Tanei
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Tomohiro Miyake
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Seung Jin Kim
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| | - Shinzaburo Noguchi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamadaoka, Suita-shi, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Gao Y, Zhang M, Zheng Z, He Y, Zhu Y, Cheng Q, Rong J, Weng H, Chen C, Xu Y, Yun M, Zhang J, Ye S. Over-expression of protein tyrosine phosphatase 4A2 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Oncotarget 2017; 8:77527-77539. [PMID: 29100406 PMCID: PMC5649923 DOI: 10.18632/oncotarget.20550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Protein tyrosine phosphatase 4A2 (PTP4A2) has been implicated as an oncogenic protein in several human cancers. However, the level of PTP4A2 expression and its prognostic significance in nasopharyngeal carcinoma (NPC) remains unknown. In this study, Western blotting (WB), quantitative real-time PCR (qT-PCR) and immunohischemistry (IHC) was applied to evaluated the expression levels of PTP4A2 in NPC cell lines and tumor tissues combining two independent cohorts. Receiver-operator curve (ROC) analysis was used to assessed the optimal cut-off score in training cohort (266 cases). This cut-off score was subjected to determine the association of PTP4A2 expression with patients’ clinical characteristics and survival outcome in the validation cohort (201 cases) and the overall population (467 cases). We found that PTP4A2 were significantly overexpressed in NPC cell lines compared with normal nasopharyngeal epithelial cell. Moreover, overexpression of PTP4A2 was positively correlated with advanced T classification (P<0.001) and TNM stages (P<0.001). And higher PTP4A2 expression was an independent prognostic factor for adverse overall survival (P<0.05) and poor disease-free survival (P<0.05). Our results demonstrated that the overexpression of PTP4A2 was closely associated with poor survival outcome in patients with NPC and may represent a novel prognostic biomarker and therapeutic target for this disease.
Collapse
Affiliation(s)
- Ying Gao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Mengping Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Zhousan Zheng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ying He
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Yujia Zhu
- Departments of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Quanyong Cheng
- Department of Private Surgery Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Jian Rong
- Department of Extracorporeal Circulation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Huiwen Weng
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Cui Chen
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Yi Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Miao Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Department of Ultrasound, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jiaxing Zhang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China.,Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China
| | - Sheng Ye
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
9
|
Daniels MW, Brock GN, Wittliff JL. Clinical outcomes linked to expression of gene subsets for protein hormones and their cognate receptors from LCM-procured breast carcinoma cells. Breast Cancer Res Treat 2016; 161:245-258. [PMID: 27858316 DOI: 10.1007/s10549-016-4049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/05/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Certain peptide hormones and/or their cognate receptors influencing normal cellular pathways also have been detected in breast cancers. The hypothesis is that gene subsets of these regulatory molecules predict risk of breast carcinoma recurrence in patients with primary disease. METHODS Gene expression levels of 61 hormones and 81 receptors were determined by microarray with LCM-procured carcinoma cells of 247 de-identified biopsies. Univariable and multivariable Cox regressions were determined using expression levels of each hormone/receptor gene, individually or as a pair. RESULTS Molecular signatures for ER+/PR+, ER-/PR-, and ER- carcinoma cells deciphered by LASSO were externally validated at HRs (CI) of 2.8 (1.84-4.4), 1.53 (1.01-2.3), and 1.72 (1.15-2.56), respectively. Using LCM-procured breast carcinoma cells, a 16-gene molecular signature was derived for ER+/PR+ biopsies, whereas a 10-gene signature was deciphered for ER-/PR- cancers. Four genes, POMC, CALCR, AVPR1A, and GH1, of this 10-gene signature were identified in a 6-gene molecular signature for ER- specimens. CONCLUSIONS Applying these signatures, Kaplan-Meier plots definitively identified a cohort of patients with either ER-/PR- or ER- carcinomas that exhibited low risk of recurrence. In contrast, the ER+/PR+ signature identified a cohort of patients with high risk of breast cancer recurrence. Each of the three molecular signatures predicted clinical outcomes of breast cancer patients with greater accuracy than observed with either single-gene analysis or by ER/PR protein content alone. Collectively, our results suggest that gene expression profiles of breast carcinomas with suspected poor prognosis (ER-/PR-) have identified a subset of patients with decreased risk of recurrence.
Collapse
Affiliation(s)
- Michael W Daniels
- Department of Biochemistry & Molecular Genetics, Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, KY, 40202, USA.,Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY, 40202, USA
| | - Guy N Brock
- Department of Bioinformatics & Biostatistics, University of Louisville, Louisville, KY, 40202, USA
| | - James L Wittliff
- Department of Biochemistry & Molecular Genetics, Institute for Molecular Diversity and Drug Design, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
10
|
Chen Y, Cao D, Gao J, Yuan Z. Discovering Pair-wise Synergies in Microarray Data. Sci Rep 2016; 6:30672. [PMID: 27470995 PMCID: PMC4965793 DOI: 10.1038/srep30672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database.
Collapse
Affiliation(s)
- Yuan Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Dan Cao
- Orient Science &Technology College of Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jun Gao
- College of Resources &Environment, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zheming Yuan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China.,Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha, Hunan, 410128, China
| |
Collapse
|
11
|
Interaction between smoking history and gene expression levels impacts survival of breast cancer patients. Breast Cancer Res Treat 2015. [DOI: 10.1007/s10549-015-3507-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Zhao D, Guo L, Neves H, Yuen HF, Zhang SD, McCrudden CM, Wen Q, Zhang J, Zeng Q, Kwok HF, Lin Y. The prognostic significance of protein tyrosine phosphatase 4A2 in breast cancer. Onco Targets Ther 2015. [PMID: 26203261 PMCID: PMC4508076 DOI: 10.2147/ott.s85899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although PTP4A3 has been shown to be a very important factor in promoting cancer progression, the role of its close family member PTP4A2 is still largely unknown. Recent reports have shown contradicting results on the role of PTP4A2 in breast cancer progression. Considering this, we aimed to investigate the prognostic value of PTP4A2 in five independent breast cancer data sets (minimum 198 patients per cohort, totaling 1,124 patients) in the Gene Expression Omnibus Database. We found that high expression of PTP4A2 was a favorable prognostic marker in all five independent breast cancer data sets, as well as in the combined cohort, with a hazard ratio of 0.68 (95% confidence interval =0.56–0.83; P<0.001). Low PTP4A2 expression was associated with estrogen receptor-negative tumors and tumors with higher histological grading; furthermore, low expression was inversely correlated with the expression of genes involved in proliferation, including MKI67 and the MCM gene family encoding the minichromosome maintenance proteins. These findings suggest that PTP4A2 may play a role in breast cancer progression by dysregulating cell proliferation. PTP4A2 expression was positively correlated with ESR1, the gene encoding estrogen receptor-alpha, and inversely correlated with EGFR expression, suggesting that PTP4A2 may be involved in these two important oncogenic pathways. Together, our results suggest that expression of PTP4A2 is a favorable prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Duanzheng Zhao
- College of Continuing Education, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People's Republic of China
| | - Libin Guo
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Henrique Neves
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Administrative Region, People's Republic of China
| | - Hiu-Fung Yuen
- Institute of Molecular and Cell Biology, Biopolis Drive, Proteos, Singapore
| | - Shu-Dong Zhang
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | | | - Qing Wen
- Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Jin Zhang
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Biopolis Drive, Proteos, Singapore
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Administrative Region, People's Republic of China ; Center for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK ; School of Pharmacy, Queen's University of Belfast, Belfast, UK
| | - Yao Lin
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
13
|
Nilsson EM, Fainberg HP, Choong SS, Giles TC, Sells J, May S, Stansfield FJ, Allen WR, Emes RD, Mostyn A, Mongan NP, Yon L. Molecular characterization of adipose tissue in the African elephant (Loxodonta africana). PLoS One 2014; 9:e91717. [PMID: 24633017 PMCID: PMC3954733 DOI: 10.1371/journal.pone.0091717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/14/2014] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue (AT) is a dynamic and flexible organ with regulatory roles in physiological functions including metabolism, reproduction and inflammation; secreted adipokines, including leptin, and fatty acids facilitate many of these roles. The African elephant (Loxodonta africana) is experiencing serious challenges to optimal reproduction in captivity. The physiological and molecular basis of this impaired fertility remains unknown. AT production of leptin is a crucial molecular link between nutritional status, adiposity and fertility in many species. We propose that leptin has a similar function in the African elephant. African elephant visceral and subcutaneous adipose tissue (AT) was obtained from both sexes and a range of ages including females with known pregnancy status. RNA was extracted and histological sections created and analyzed by microarray, PCR and immunohistochemistry respectively. Gas-chromatography was used to determine the fatty acid composition of AT. Microarray expression profiling was used to compare gene expression profiles of AT from pre-pubertal versus reproductively competent adult African elephants. This study demonstrates, for the first time, leptin mRNA and protein expression in African elephant AT. The derived protein sequence of the elephant leptin protein was exploited to determine its relationship within the class I helical cytokine superfamily, which indicates that elephant leptin is most closely related to the leptin orthologs of Oryctolagus cuniculus (European rabbit), Lepus oiostolus (woolly hare), and members of the Ochotonidae (Pika). Immunohistological analysis identified considerable leptin staining within the cytoplasm of adipocytes. Significant differences in fatty acid profiles between pregnant and non-pregnant animals were revealed, most notably a reduction in both linoleic and α linoleic acid in pregnant animals. This report forms the basis for future studies to address the effect of nutrient composition and body condition on reproduction in captive and wild elephants.
Collapse
Affiliation(s)
- Emeli M. Nilsson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Hernan P. Fainberg
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Siew S. Choong
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Thomas C. Giles
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, United Kingdom
| | - James Sells
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Sean May
- The Nottingham Arabidopsis Stock Centre, Division of Plant Sciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Fiona J. Stansfield
- The Elephant Research and Conservation Unit, Savé Valley Conservancy, Harare, Zimbabwe
| | - William R. Allen
- The Paul Mellon Laboratory, “Brunswick,” Woodditton Road, Newmarket, Suffolk, United Kingdom
| | - Richard D. Emes
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
- Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, United Kingdom
| | - Alison Mostyn
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Nigel P. Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| | - Lisa Yon
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|