1
|
de Queiroz GN, Lima K, de Miranda LBL, Rego EM, Traina F, Machado-Neto JA. NT157 exhibits antineoplastic effects by targeting IRS and STAT3/5 signaling in multiple myeloma. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S112-S121. [PMID: 38523043 PMCID: PMC11726112 DOI: 10.1016/j.htct.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 03/26/2024] Open
Abstract
Multiple myeloma (MM) is a prevalent hematological malignancy with high recurrence and no definitive cure. The current study revisits the role of the IGF1/IGF1R axis in MM, introducing a novel inhibitor, NT157. The IGF1/IGF1R pathway is pivotal in MM, influencing cell survival, proliferation, and migration and impacting patient survival outcomes. NT157 targets intracellular proteins such as IRS and STAT proteins and demonstrates antineoplastic potential in hematological malignancies and solid tumors. In the present study, we assessed IGF1R signaling-related gene expression in MM patients and healthy donors, unveiling significant distinctions. MM cell lines displayed varying expression patterns of IGF1R-related proteins. A gene dependence analysis indicated the importance of targeting receptor and intracellular elements over autocrine IGF1. NT157 exhibited inhibitory effects on MM cell viability, clonal growth, cell cycle progression, and survival. Moreover, NT157 reduced IRS2 expression and STAT3, STAT5, and RPS6 activation and modulated oncogenes and tumor suppressors, fostering a tumor-suppressive molecular profile. In summary, our study demonstrates that the IGF1/IGF1R/IRS signaling axis is differentially activated in MM cells and the NT157's capacity to modulate crucial molecular targets, promoting antiproliferative effects and apoptosis in MM cells. NT157 may offer a multifaceted approach to enhance MM therapy.
Collapse
Affiliation(s)
- Gustavo Nery de Queiroz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Keli Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Department of Internal Medicine, Hematology Division, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil; Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil
| | - Fabiola Traina
- Center for Cell Based Therapy, São Paulo Research Foundation, Ribeirão Preto, SP, Brazil; Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
2
|
Chen L, Taniguchi H, Bagnicka E. Microproteomic-Based Analysis of the Goat Milk Protein Synthesis Network and Casein Production Evaluation. Foods 2024; 13:619. [PMID: 38397596 PMCID: PMC10887518 DOI: 10.3390/foods13040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Goat milk has been consumed by humans since ancient times and is highly nutritious. Its quality is mainly determined by its casein content. Milk protein synthesis is controlled by a complex network with many signal pathways. Therefore, the aim of our study is to clearly depict the signal pathways involved in milk protein synthesis in goat mammary epithelial cells (GMECs) using state-of-the-art microproteomic techniques and to identify the key genes involved in the signal pathway. The microproteomic analysis identified more than 2253 proteins, with 323 pathways annotated from the identified proteins. Knockdown of IRS1 expression significantly influenced goat casein composition (α, β, and κ); therefore, this study also examined the insulin receptor substrate 1 (IRS1) gene more closely. A total of 12 differential expression proteins (DEPs) were characterized as upregulated or downregulated in the IRS1-silenced sample compared to the negative control. The enrichment and signal pathways of these DEPs in GMECs were identified using GO annotation and KEGG, as well as KOG analysis. Our findings expand our understanding of the functional genes involved in milk protein synthesis in goats, paving the way for new approaches for modifying casein content for the dairy goat industry and milk product development.
Collapse
Affiliation(s)
- Li Chen
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Emilia Bagnicka
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| |
Collapse
|
3
|
Huggins RJ, Greene GL. ERα/PR crosstalk is altered in the context of the ERα Y537S mutation and contributes to endocrine therapy-resistant tumor proliferation. NPJ Breast Cancer 2023; 9:96. [PMID: 38036546 PMCID: PMC10689488 DOI: 10.1038/s41523-023-00601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
The constitutively active ESR1 Y537S mutation is associated with endocrine therapy (ET) resistance and progression of metastatic breast cancer through its effects on estrogen receptor (ERα) gene regulatory functions. However, the complex relationship between ERα and the progesterone receptor (PR), known as ERα/PR crosstalk, has yet to be characterized in the context of the ERα Y537S mutation. Using proximity ligation assays, we identify an increased physical interaction of ERα and PR in the context of the ERα Y537S mutation, including in the nucleus where this interaction may translate to altered gene expression. As such, more than 30 genes were differentially expressed in both patient tumor and cell line data (MCF7 and/or T47D cells) in the context of the ERα Y537S mutation compared to ERα WT. Of these, IRS1 stood out as a gene of interest, and ERα and PR occupancy at chromatin binding sites along IRS1 were uniquely altered in the context of ERα Y537S. Furthermore, siRNA knockdown of IRS1 or treatment with the IRS1 inhibitor NT-157 had a significant anti-proliferative effect in ERα Y537S cell lines, implicating IRS1 as a potential therapeutic target for restoring treatment sensitivity to patients with breast cancers harboring ERα Y537S mutations.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Zhang X, Varma S, Yee D. Suppression of Insulin Receptor Substrate 1 Inhibits Breast Cancer Growth In Vitro and in Female Athymic Mice. Endocrinology 2023; 164:bqac214. [PMID: 36610717 PMCID: PMC10091499 DOI: 10.1210/endocr/bqac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023]
Abstract
Targeting the type I insulin-like growth factor receptor (IGF-IR) has not been successful in breast cancer. Data suggest the highly homologous insulin receptor (IR) may be an alternate growth stimulatory pathway used by cancer cells. Since both receptors phosphorylate the insulin receptor substrate 1 (IRS-1) protein as an immediate consequence of ligand binding, disruption of both receptors could be accomplished by suppression of IRS-1. IRS-1 gene deletion by CRISPR/Cas9 editing resulted in suppression of IGF-I, insulin, and estrogen-stimulated growth in hormone-dependent MCF-7L breast cancer cells. A doxycycline-inducible IRS-1 shRNA lentiviral construct was also used to infect MCF-7L breast cancer cells. IRS-1 shRNA downregulation resulted in decreased responses to IGF-I, insulin, and estradiol in monolayer and anchorage-independent growth assays. Decreased IRS-1 levels also suppressed estradiol-stimulated gene expression and estrogen receptor binding to DNA. Xenograft growth was also inhibited by induction of IRS-1 shRNA. These data show that IRS-1 is a critical regulator of endocrine responsive breast cancer. Efforts to target this adaptor protein could have broader growth inhibitory effects and receptor targeting.
Collapse
Affiliation(s)
- Xihong Zhang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sidhant Varma
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
NT157 exerts antineoplastic activity by targeting JNK and AXL signaling in lung cancer cells. Sci Rep 2022; 12:17092. [PMID: 36224313 PMCID: PMC9556623 DOI: 10.1038/s41598-022-21419-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/27/2022] [Indexed: 01/04/2023] Open
Abstract
Combination therapies or multi-targeted drugs have been pointed out as an option to prevent the emergence of resistant clones, which could make long-term treatment more effective and translate into better clinical outcomes for cancer patients. The NT157 compound is a synthetic tyrphostin that leads to long-term inhibition of IGF1R/IRS1-2-, STAT3- and AXL-mediated signaling pathways. Given the importance of these signaling pathways for the development and progression of lung cancer, this disease becomes an interesting model for generating preclinical evidence on the cellular and molecular mechanisms underlying the antineoplastic activity of NT157. In lung cancer cells, exposure to NT157 decreased, in a dose-dependent manner, cell viability, clonogenicity, cell cycle progression and migration, and induced apoptosis (p < 0.05). In the molecular scenario, NT157 reduced expression of IRS1 and AXL and phosphorylation of p38 MAPK, AKT, and 4EBP1. Besides, NT157 decreased expression of oncogenes BCL2, CCND1, MYB, and MYC and increased genes related to cellular stress and apoptosis, JUN, BBC3, CDKN1A, CDKN1B, FOS, and EGR1 (p < 0.05), favoring a tumor-suppressive cell signaling network in the context of lung cancer. Of note, JNK was identified as a key kinase for NT157-induced IRS1 and IRS2 phosphorylation, revealing a novel axis involved in the mechanism of action of the drug. NT157 also presented potentiating effects on EGFR inhibitors in lung cancer cells. In conclusion, our preclinical findings highlight NT157 as a putative prototype of a multitarget drug that may contribute to the antineoplastic arsenal against lung cancer.
Collapse
|
6
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
7
|
Zhang M, Li Z, Liu X. MiR-98-5p/IGF2 Axis Influence Herceptin Sensitivity through IGF1R/HER2 Heterodimer Formation and AKT/mTOR Signal Pathway in HER2 Positive Breast Cancer. Asian Pac J Cancer Prev 2021; 22:3693-3703. [PMID: 34837929 PMCID: PMC9068184 DOI: 10.31557/apjcp.2021.22.11.3693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIM IGF1R and HER2 are both members of the growth factor receptor family which is known to play a different role in breast cancer. However, correlation between IGF1R and HER2 has created a controversial situation that need to be fully delineated in development of Herceptin resistance. The aim of this study was to investigate the mechanism of Herceptin resistance through the IGF1R pathway in HER2 positive breast cancer. MATERIALS AND METHODS Clinical data were obtained from TCGA database and archived documents from The First Affiliated Hospital of Bengbu Medical College. Western blot and immunohistochemistry were used to detect proteins and their phosphorylation. Cell transfection were constructed using shRNA lentivirus vectors. RNAs were analyzed by RT-qPCR. Proteins in serum were analyzed by ELISA assay. Cell proliferation was analyzed by MTS method. Luciferase report experiment was conducted to verify RNA's inter-reaction. RESULTS Western blot showed IGF2 protein was significantly increased in Herceptin resistant SKBR3-R cells (P<0.01), and IGF1R/HER2 heterodimer level was significantly increased (P<0.01). Luciferase reporter assay verified miR-98-5p could bind to 3 'UTR of IGF2 mRNA. When miR-98-5p was upregulated, the expression level of IGF2 was decreased(P<0.01), the cell invasive ability was reduced(P<0.01), and ultimately, Herceptin resistant cells regained their sensitivity to Herceptin. In clinical research, we found that decreased miR-98-5p level or increased IGF2 level significantly associated with poor treatment response and poor overall survival (OS), poor recurrence free survival (RFS) and poor distant metastasis-free survival (DMFS) in HER2-positive breast cancer. CONCLUSION MiR-98-5p and IGF2 might potential candidates for predicting Herceptin sensitivity and provides a new way to overcome Herceptin resistance in clinic.
Collapse
|
8
|
Truong TH, Benner EA, Hagen KM, Temiz NA, Kerkvliet CP, Wang Y, Cortes-Sanchez E, Yang CH, Trousdell MC, Pengo T, Guillen KP, Welm BE, Dos Santos CO, Telang S, Lange CA, Ostrander JH. PELP1/SRC-3-dependent regulation of metabolic PFKFB kinases drives therapy resistant ER + breast cancer. Oncogene 2021; 40:4384-4397. [PMID: 34103681 PMCID: PMC8238912 DOI: 10.1038/s41388-021-01871-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023]
Abstract
Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.
Collapse
Affiliation(s)
- Thu H Truong
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | | | - Kyla M Hagen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ying Wang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Emilio Cortes-Sanchez
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chieh-Hsiang Yang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, USA
| | - Katrin P Guillen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Bryan E Welm
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah, Salt Lake City, UT, USA
| | | | - Sucheta Telang
- James Graham Brown Cancer Center, Department of Medicine (Division of Medical Oncology and Hematology), University of Louisville, Louisville, KY, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Julie H Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Disrupting Insulin and IGF Receptor Function in Cancer. Int J Mol Sci 2021; 22:ijms22020555. [PMID: 33429867 PMCID: PMC7827299 DOI: 10.3390/ijms22020555] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin and insulin-like growth factor (IGF) system plays an important role in regulating normal cell proliferation and survival. However, the IGF system is also implicated in many malignancies, including breast cancer. Preclinical studies indicate several IGF blocking approaches, such as monoclonal antibodies and tyrosine kinase inhibitors, have promising therapeutic potential for treating diseases. Uniformly, phase III clinical trials have not shown the benefit of blocking IGF signaling compared to standard of care arms. Clinical and laboratory data argue that targeting Type I IGF receptor (IGF1R) alone may be insufficient to disrupt this pathway as the insulin receptor (IR) may also be a relevant cancer target. Here, we review the well-studied role of the IGF system in regulating malignancies, the limitations on the current strategies of blocking the IGF system in cancer, and the potential future directions for targeting the IGF system.
Collapse
|
10
|
Scopim-Ribeiro R, Machado-Neto JA, Eide CA, Coelho-Silva JL, Fenerich BA, Fernandes JC, Scheucher PS, Savage Stevens SL, de Melo Campos P, Olalla Saad ST, de Carvalho Palma L, de Figueiredo-Pontes LL, Simões BP, Rego EM, Tognon CE, Druker BJ, Traina F. NT157, an IGF1R-IRS1/2 inhibitor, exhibits antineoplastic effects in pre-clinical models of chronic myeloid leukemia. Invest New Drugs 2021; 39:736-746. [PMID: 33403501 DOI: 10.1007/s10637-020-01028-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
Chronic myeloid leukemia (CML) is successfully treated with BCR-ABL1 tyrosine kinase inhibitors, but a significant percentage of patients develop resistance. Insulin receptor substrate 1 (IRS1) has been shown to constitutively associate with BCR-ABL1, and IRS1-specific silencing leads to antineoplastic effects in CML cell lines. Here, we characterized the efficacy of NT157, a pharmacological inhibitor of IGF1R-IRS1/2, in CML cells and observed significantly reduced cell viability and proliferation, accompanied by induction of apoptosis. In human K562 cells and in murine Ba/F3 cells, engineered to express either wild-type BCR-ABL1 or the imatinib-resistant BCR-ABL1T315I mutant, NT157 inhibited BCR-ABL1, IGF1R, IRS1/2, PI3K/AKT/mTOR, and STAT3/5 signaling, increased CDKN1A, FOS and JUN tumor suppressor gene expression, and reduced MYC and BCL2 oncogenes. NT157 significantly reduced colony formation of human primary CML cells with minimal effect on normal hematopoietic cells. Exposure of primary CML cells harboring BCR-ABL1T315I to NT157 resulted in increased apoptosis, reduced cell proliferation and decreased phospho-CRKL levels. In conclusion, NT157 has antineoplastic effects on BCR-ABL1 leukemogenesis, independent of T315I mutational status.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Drug Resistance, Neoplasm/drug effects
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic
- Humans
- Imatinib Mesylate/pharmacology
- Insulin Receptor Substrate Proteins/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Mice
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Pyrogallol/analogs & derivatives
- Pyrogallol/pharmacology
- Pyrogallol/therapeutic use
- Receptor, IGF Type 1/antagonists & inhibitors
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
Collapse
Affiliation(s)
- Renata Scopim-Ribeiro
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - João Agostinho Machado-Neto
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Juan Luiz Coelho-Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Bruna Alves Fenerich
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | | | - Paula de Melo Campos
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Sara T Olalla Saad
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro UNICAMP, Campinas, São Paulo, Brazil
| | - Leonardo de Carvalho Palma
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Belinda Pinto Simões
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Magalhães Rego
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil
- Hematology Division, LIM31, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Fabiola Traina
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirante 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
11
|
Insulin receptor substrate-1 (IRS-1) mediates progesterone receptor-driven stemness and endocrine resistance in oestrogen receptor+ breast cancer. Br J Cancer 2021; 124:217-227. [PMID: 33144693 PMCID: PMC7782753 DOI: 10.1038/s41416-020-01094-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/06/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progesterone receptors (PR) are potent modifiers of endocrine responses. In aberrant signalling cancer contexts, phosphorylation events dramatically alter steroid hormone receptor action. METHODS The transcriptomes of primary tumours and metastases in mice harbouring ER+ breast cancer patient-derived xenografts (PDXs) were analysed following single-cell RNAseq. In vitro assays were employed to delineate mechanisms of endocrine resistance and stemness. RESULTS A 16-gene phospho-Ser294 PR (p-PR) signature predicted poor outcome in ER+ breast cancer. Relative to primary PDX tumours, metastatic lesions expressed abundant p-PR and exhibited an activated PR gene programme with elevated expression of PGR and IRS-1. Breast cancer models of activated PR lost the expression of IGF1R and acquired insulin hypersensitivity with tamoxifen insensitivity. Activated p-PR+ breast cancer cells formed increased tumourspheres with enlarged ALDH+ and CD24-/CD44 populations. E2 induced PR/IRS-1 interaction and exchange of IGF1Rβ for IRS-1 in p-PR-containing transcriptional complexes. Inhibition of IRS-1 or IR and inducible IRS-1 knockdown reduced tumourspheres. Endocrine-resistant models of luminal B breast cancer induced p-PR in 3D cultures and required PR and IRS-1 for tumoursphere formation. CONCLUSIONS Phospho-PR-B cooperates with IRS-1 to promote outgrowth of endocrine-resistant and stem-like breast cancer cells. Targeting phospho-PR/IRS-1 crosstalk may block the emergence of endocrine resistance.
Collapse
|
12
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Abstract
The insulin-like growth factors (IGFs; IGF1/IGF2), known for their regulation of cell and organismal growth and development, are evolutionarily conserved ligands with equivalent peptides present in flies (
D. melanogaster), worms (
C. elegans) among others. Two receptor tyrosine kinases, the IGF1 receptor and the insulin receptor mediate the actions of these ligands with a family of IGF binding proteins serving as selective inhibitors of IGF1/2. This treatise reviews recent findings on IGF signaling in cancer biology and central nervous system function. This includes overexpression of IGF1 receptors in enhancing tumorigenesis, acquired resistance and contributions to metastasis in multiple cancer types. There is accumulating evidence that insulin resistance, a hallmark of type 2 diabetes, occurs in the central nervous system, independent of systemic insulin resistance and characterized by reduced insulin and IGF1 receptor signaling, and may contribute to dementias including Alzheimer’s Disease and cognitive impairment. Controversy over the role(s) of IGF signaling in cancer and whether its inhibition would be of benefit, still persist and extend to IGF1’s role in longevity and central nervous system function.
Collapse
Affiliation(s)
- Steven A Rosenzweig
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|