1
|
Hwang SY, Seo Y, Park S, Kim SA, Moon I, Liu Y, Kim S, Pak ES, Jung S, Kim H, Jeon KH, Seo SH, Sung I, Lee H, Park SY, Na Y, Kim TI, Kwon Y. Targeting the HER2-ELF3-KRAS axis: a novel therapeutic strategy for KRAS G13D colorectal cancer. Mol Cancer 2025; 24:139. [PMID: 40340861 PMCID: PMC12063335 DOI: 10.1186/s12943-025-02343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/25/2025] [Indexed: 05/10/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers worldwide, with KRAS mutations playing a significant role in its tumorigenesis. Among the KRAS variants, the G13D mutation is associated with poor prognosis and distinctive biological behaviors. This study focuses on the role of HER2, a critical prognostic and predictive biomarker, in modulating the unique characteristics of KRASG13D-mutated CRCs. We identified a novel transcriptional regulatory network involving HER2, ELF3, and KRAS, with ELF3 acting as a key transcription factor (TF) that regulates KRAS expression under conditions of HER2 overexpression. Our findings reveal that this HER2-ELF3-KRAS axis is exclusively activated in KRASG13D, driving aggressive oncogenic features and conferring resistance to cetuximab (CTX) therapy. Through comprehensive analysis of gene expression profiles, we demonstrated that HER2 is a crucial therapeutic target specifically for KRASG13D CRCs. To explore this further, we introduced YK1, a small molecule inhibitor designed to disrupt the ELF3-MED23 interaction, leading to the transcriptional downregulation of HER2 and KRAS. This intervention significantly attenuated the HER2-ELF3-KRAS axis, sensitizing KRASG13D CRCs to CTX and reducing their tumorigenic potential by inhibiting the epithelial-to-mesenchymal transition process. Our study underscores the importance of HER2 as a key determinant in the unique biological characteristics of KRASG13D CRCs and highlights the therapeutic potential of targeting the HER2-ELF3-KRAS axis. By presenting YK1 as a novel pharmacological approach, we provide a promising strategy for developing tailored interventions for KRASG13D CRCs, contributing to the ongoing efforts in precision medicine for CRCs.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yoojeong Seo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seul-Ah Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Inhye Moon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yi Liu
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seojeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Eun Seon Pak
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sehyun Jung
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hyeyoon Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seung Hee Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Inyoung Sung
- BK21 FOUR Intelligence Computing, Seoul National University, Seoul, Republic of Korea
| | - Heetak Lee
- Center for Genome Engineering, Institute for Basic Science, 55, Expo-Ro, Yuseong-Gu, Daejeon, 34126, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Republic of Korea
| | - Tae Il Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonseiro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
2
|
Gu S, Liu Y, Huang Y, Lin W, Li K. Comparative efficacy and safety of targeted therapy and immunotherapy for HER2-positive breast cancer: a systematic review and network meta-analyses. Front Oncol 2024; 14:1331055. [PMID: 38634057 PMCID: PMC11021689 DOI: 10.3389/fonc.2024.1331055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background In recent years, novel therapies targeting specific molecular pathways and immunotherapies have exhibited promising outcomes for treating human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Our work aimed to assess the effectiveness and safety of these emerging treatment regimens for this disease. Material and methods We systematically searched databases including PubMed, Embase, Web of Science, and the Cochrane Central Register of Controlled Trials their inception to August 2023 to identify relevant randomized controlled trials (RCTs). The quality of eligible RCTs was evaluated with the Cochrane risk-of-bias tool, version 2 (RoB2). Investigated outcomes encompassed progression-free survival (PFS), overall survival (OS), disease-free survival (DFS), pathologic complete remission (pCR), and adverse events (AEs). They were expressed as hazard ratio (HR) with 95% conference intervals (CI) or risk ratio (RR) with 95% CI. Results Our analysis identified a total of 28 RCTs suitable for inclusion in the NMA. Regarding the PFS, all these treatment regimens exhibited comparable effectiveness. In terms of OS, Capecitabine+Trastuzumab, Lapatinib+Trastuzumab and Pyrotinib+Capecitabine exhibited better effect compared to other treatments. Regarding pCR and AEs, all these treatment regimens exhibited comparable effectiveness, especially Lapatinib+Trastuzumab and Pyrotinib+Capecitabine. Conclusion Our study highlights the prominent role of targeted therapies and immunotherapies in treating HER2-positive breast cancer. The efficacy of trastuzumab-containing regimens was superior to other treatment options, while maintaining a comparable safety profile. Based on these findings, trastuzumab-containing regimens emerge as a preferable and recommended choice in clinical practice for managing HER2-positive breast cancer. Systematic Review Registration PROSPERO, identifier CRD42023414348.
Collapse
Affiliation(s)
- Suyu Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuting Liu
- Department of Eighth Internal Medicine, Shenyang Traditional Chinese Medicine Hospital, Shenyang, China
| | - Yufan Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Wenzheng Lin
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ke Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Mikuličić S, Shamun M, Massenberg A, Franke AL, Freitag K, Döring T, Strunk J, Tenzer S, Lang T, Florin L. ErbB2/HER2 receptor tyrosine kinase regulates human papillomavirus promoter activity. Front Immunol 2024; 15:1335302. [PMID: 38370412 PMCID: PMC10869470 DOI: 10.3389/fimmu.2024.1335302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Human papillomaviruses (HPVs) are a major cause of cancer. While surgical intervention remains effective for a majority of HPV-caused cancers, the urgent need for medical treatments targeting HPV-infected cells persists. The pivotal early genes E6 and E7, which are under the control of the viral genome's long control region (LCR), play a crucial role in infection and HPV-induced oncogenesis, as well as immune evasion. In this study, proteomic analysis of endosomes uncovered the co-internalization of ErbB2 receptor tyrosine kinase, also called HER2/neu, with HPV16 particles from the plasma membrane. Although ErbB2 overexpression has been associated with cervical cancer, its influence on HPV infection stages was previously unknown. Therefore, we investigated the role of ErbB2 in HPV infection, focusing on HPV16. Through siRNA-mediated knockdown and pharmacological inhibition studies, we found that HPV16 entry is independent of ErbB2. Instead, our signal transduction and promoter assays unveiled a concentration- and activation-dependent regulatory role of ErbB2 on the HPV16 LCR by supporting viral promoter activity. We also found that ErbB2's nuclear localization signal was not essential for LCR activity, but rather the cellular ErbB2 protein level and activation status that were inhibited by tucatinib and CP-724714. These ErbB2-specific tyrosine kinase inhibitors as well as ErbB2 depletion significantly influenced the downstream Akt and ERK signaling pathways and LCR activity. Experiments encompassing low-risk HPV11 and high-risk HPV18 LCRs uncovered, beyond HPV16, the importance of ErbB2 in the general regulation of the HPV early promoter. Expanding our investigation to directly assess the impact of ErbB2 on viral gene expression, quantitative analysis of E6 and E7 transcript levels in HPV16 and HPV18 transformed cell lines unveiled a noteworthy decrease in oncogene expression following ErbB2 depletion, concomitant with the downregulation of Akt and ERK signaling pathways. In light of these findings, we propose that ErbB2 holds promise as potential target for treating HPV infections and HPV-associated malignancies by silencing viral gene expression.
Collapse
Affiliation(s)
- Snježana Mikuličić
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Merha Shamun
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Annika Massenberg
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Anna-Lena Franke
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Tatjana Döring
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Strunk
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Rheinland-Pfalz, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Mainz, Rheinland-Pfalz, Germany
| | - Thorsten Lang
- University of Bonn, Faculty of Mathematics and Natural Sciences, Life & Medical Sciences (LIMES) Institute, Bonn, Rheinland-Pfalz, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
5
|
Lena AM, Foffi E, Agostini M, Mancini M, Annicchiarico-Petruzzelli M, Aberdam D, Velletri T, Shi Y, Melino G, Wang Y, Candi E. TAp63 regulates bone remodeling by modulating the expression of TNFRSF11B/Osteoprotegerin. Cell Cycle 2021; 20:2428-2441. [PMID: 34763601 DOI: 10.1080/15384101.2021.1985772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABBREVIATIONS MSC, mesenchymal stem cells; OPG, osteoprotegerin; RUNX2, Run-trelated transcription factor 2.
Collapse
Affiliation(s)
- Anna Maria Lena
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Erica Foffi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | | | | | | | - Tania Velletri
- Cogentech Società Benefit Srl, Parco Scientifico E Tecnologico Della Sicilia, Catania, Italy
| | - Yufang Shi
- Cas Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Ying Wang
- Cas Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Via dei Monti di Creta, Rome, IT
| |
Collapse
|
6
|
Bi Y, Gong L, Liu P, Xiong X, Zhao Y. Nuclear ErbB2 represses DEPTOR transcription to inhibit autophagy in breast cancer cells. Cell Death Dis 2021; 12:397. [PMID: 33854045 PMCID: PMC8047043 DOI: 10.1038/s41419-021-03686-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 01/21/2023]
Abstract
ErbB2, a classical receptor tyrosine kinase, is frequently overexpressed in breast cancer cells. Although the role of ErbB2 in the transmission of extracellular signals to intracellular matrix has been widely studied, the functions of nuclear ErbB2 remain largely elusive. Here, we report a novel function of nuclear ErbB2 in repressing the transcription of DEPTOR, a direct inhibitor of mTOR. Nuclear ErbB2 directly binds to the consensus binding sequence in the DEPTOR promoter to repress its transcription. The kinase activity of ErbB2 is required for its nuclear translocation and transcriptional repression of DEPTOR. Moreover, the repressed DEPTOR by nuclear ErbB2 inhibits the induction of autophagy by activating mTORC1. Thus, our study reveals a novel mechanism for autophagy regulation by functional ErbB2, which translocates to the nucleus and acts as a transcriptional regulator to suppress DEPTOR transcription, leading to activation of the PI3K/AKT/mTOR pathway to inhibit autophagy.
Collapse
Affiliation(s)
- Yanli Bi
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Longyuan Gong
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengyuan Liu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China. .,Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Lakshmi S, Renjitha J, B Sasidhar S, Priya S. Epoxyazadiradione induced apoptosis/anoikis in triple-negative breast cancer cells, MDA-MB-231, by modulating diverse cellular effects. J Biochem Mol Toxicol 2021; 35:1-17. [PMID: 33684251 DOI: 10.1002/jbt.22756] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive forms of its kind, which accounts for 15-20% of all breast cancers. As this cancer form lacks hormone receptors, targeted chemotherapy remains the best treatment option. Apoptosis and anoikis (detachment-induced cell death) induction by small molecules can prevent TNBC metastasis to a greater extent. Epoxyazadiradione (EAD) is a limonoid from the neem plant with an anticancer property. Here, we demonstrate that EAD induced mitochondria-mediated apoptosis and anoikis in TNBC cells (MDA-MB-231). Apart from this, it promotes antimigration, inhibition of colony formation, downregulation of MMP-9 and fibronectin, induction of G2/M phase arrest with downregulation of cyclin A2/cdk2, interference in cellular metabolism, and inhibition of nuclear factor kappa-B (NF-kB) nuclear translocation. Moreover, a significant reduction is observed in the expression of EGFR on the plasma membrane and nucleus upon treatment with EAD. Among the diverse cellular effects, anoikis induction, metabolic interference, and downregulation of membrane/nuclear EGFR expression by EAD are reported here for the first time. To summarize, EAD targets multiple cellular events to induce growth arrest in TNBC, and hence can be developed into the best antineoplastic agent in the future.
Collapse
Affiliation(s)
- Sreerenjini Lakshmi
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jalaja Renjitha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Somappa B Sasidhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Sulochana Priya
- Biochemistry Section, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Hua G, Bergon A, Cauchy P, Kahn-Perlès B, Bertucci F, Birnbaum D, Benkirane-Jessel N, Imbert J. ERBB2b mRNA isoform encodes a nuclear variant of the ERBB2 oncogene in breast cancer. J Cell Biochem 2020; 121:4870-4886. [PMID: 32628295 DOI: 10.1002/jcb.29762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/05/2020] [Indexed: 11/10/2022]
Abstract
The presence of nuclear ERBB2 receptor-type tyrosine kinase is one of the causes of the resistance to membrane ERBB2-targeted therapy in breast cancers. It has been previously reported that this nuclear location arises through at least two different mechanisms: proteolytic shedding of the extracellular domain of the full-length receptor and translation of the messenger RNA (mRNA)-encoding ERBB2 from internal initiation codons. Here, we report a new mechanism and function where a significant portion of nuclear ERBB2 results from the translation of the variant ERBB2 mRNA under the transcriptional control of a distal promoter that is actively used in breast cancer cells. We show that both membrane ERBB2a and nuclear ERBB2b isoforms are prevalently expressed in breast cancer cell lines and carcinoma samples. The ERBB2b isoform, which is translated from mRNA variant 2, can directly translocate into the nucleus due to the lack of the signal peptide which is required for an intermediate membrane location. Small interfering RNA-mediated gene silencing showed that ERBB2b can repress ERBB2a expression, encoded by variant 1, whereas ERBB2a activates ERBB2b. Nuclear ERBB2 binding to its own promoter was revealed by chromatin immunoprecipitation assay. Altogether, our results provide new insights into the origin and function of nuclear ERBB2 where it can participate at the same time in a positive or a negative feedback autoregulatory loop, dependent on which of its promoters this bona fide transcription factor is acting. They also provide a new understanding for the resistance to therapies targeting the membrane-anchored ERBB2 in breast cancer.
Collapse
Affiliation(s)
- Guoqiang Hua
- INSERM UMR1090 TAGC, Aix-Marseille University, Marseille, France
- INSERM UMR1260, RNM, FMTS, Strasbourg, France
- Faculté de Chirurgie Dentaire de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Aurélie Bergon
- INSERM UMR1090 TAGC, Aix-Marseille University, Marseille, France
| | - Pierre Cauchy
- INSERM UMR1090 TAGC, Aix-Marseille University, Marseille, France
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | | | - François Bertucci
- Laboratoire d'Oncologie Prédictive, CRCM, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Daniel Birnbaum
- Laboratoire d'Oncologie Prédictive, CRCM, CNRS UMR 7258, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Nadia Benkirane-Jessel
- INSERM UMR1260, RNM, FMTS, Strasbourg, France
- Faculté de Chirurgie Dentaire de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Jean Imbert
- INSERM UMR1090 TAGC, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Specific Roles of HSP27 S15 Phosphorylation Augmenting the Nuclear Function of HER2 to Promote Trastuzumab Resistance. Cancers (Basel) 2020; 12:cancers12061540. [PMID: 32545363 PMCID: PMC7352409 DOI: 10.3390/cancers12061540] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Trastuzumab (TZMB) is widely used as first line therapy for breast cancer (BC) patients overexpressing human epidermal growth factor receptor 2 (HER2). Despite its clinical benefits, many patients suffer from primary or secondary resistance to this drug within one year. As diverse molecular mechanisms occur contemporaneously during the resistance development, we focused on elucidating the role of heat shock protein 27 (HSP27) in TZMB-resistance, as this protein simultaneously regulates the function of diverse client molecules that are involved in the resistance mechanism. By extensively utilizing TZMB-refractory breast cancer cell lines transduced with diverse phosphovariants of HSP27, our study newly revealed that specific phosphorylation of HSP27 at S15 promoted its S78 phosphorylation and served as key mediator to promote direct interactions that increase the stability of HER2 and protein kinase B (AKT). This phosphorylation promoted nuclear translocation of HER2, enhancing the distinct nuclear function of HER2 that promoted AKT activation and cyclin D1 expression. Co-administration of TZMB and a functional inhibitor of HSP27, J2, significantly reduced the S15/78 phosphorylation of HSP27, which downregulated HER2 and its downstream signals, sensitizing TZMB-refractory cell, and JIMT1-xenograft mouse models to TZMB. Collectively, p-HSP27S15 could serve as a valuable predictive marker and also a therapeutic target for TZMB-resistance.
Collapse
|