1
|
Chaudhary P, Magotra A, Alex R, Bangar YC, Sindhu P, Rose MK, Garg AR. Dairy Cattle Reproduction, Production, and Disease Resistance in the Omics Era: Genome-Wide Selection Signatures Identify Candidate Genes in Sahiwal Cattle. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2025; 29:191-205. [PMID: 40256796 DOI: 10.1089/omi.2024.0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Climate emergency and ecological sustainability call for new ways of thinking livestock health, including the dairy cattle. This study unpacks the genetic diversity and selection sweeps of Sahiwal cattle in relation to adaptability, production, and disease resistance. Using nucleotide diversity (π) calculated from 10 kb windows across the genome with VCFtools, 716 regions of genetic diversity were identified across 29 chromosomes, and importantly, with chromosome 15 showing the highest density. A total of 92 quantitative trait loci (QTL) linked genes were analyzed, with chromosome 1 harboring the highest number. Trait association analysis using the Cattle QTL database showed that 14 genes were linked to production traits, 10 to reproduction traits, and 8 to disease susceptibility. Notable genes included CSMD2 and EFNA1, which influence milk production traits such as fat percentage and yield, and PCBP3 and SGCD, which affect reproductive traits. Additionally, the genes TBXAS1 and ASTN2 were associated with disease traits such as bovine respiratory disease and sole ulcers. Selection sweeps, identified using Tajima's D, revealed 728 sweeps across the genome, with chromosomes 6 and 8 showing the highest frequencies. These sweeps indicate regions under strong selective pressure, likely due to the breed's adaptation to arid environments and specific trait selection. The present study highlights how genetic diversity and selection sweeps contribute to Sahiwal cattle's adaptability, production efficiency, and disease resistance. The insights reported here provide a foundation for livestock health and targeted breeding strategies in the case of Sahiwal cattle under diverse ecological conditions such as tropical climate.
Collapse
Affiliation(s)
- Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
- Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-Jammu), Jammu, India
| | - Rani Alex
- ICAR-National Dairy Research Institute, Karnal, India
| | - Yogesh C Bangar
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pushpa Sindhu
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Manoj K Rose
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Asha R Garg
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
2
|
Rege J, Bandulik S, Nanba K, Kosmann C, Blinder AR, Plain A, Vats P, Kumar-Sinha C, Lerario AM, Else T, Yamazaki Y, Satoh F, Sasano H, Giordano TJ, Williams TA, Reincke M, Turcu AF, Udager AM, Warth R, Rainey WE. Somatic SLC30A1 mutations altering zinc transporter ZnT1 cause aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2023; 55:1623-1631. [PMID: 37709865 PMCID: PMC12051258 DOI: 10.1038/s41588-023-01498-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Primary aldosteronism (PA) is the most common form of endocrine hypertension and is characterized by inappropriately elevated aldosterone production via a renin-independent mechanism. Driver somatic mutations for aldosterone excess have been found in approximately 90% of aldosterone-producing adenomas (APAs). Other causes of lateralized adrenal PA include aldosterone-producing nodules (APNs). Using next-generation sequencing, we identified recurrent in-frame deletions in SLC30A1 in four APAs and one APN (p.L51_A57del, n = 3; p.L49_L55del, n = 2). SLC30A1 encodes the ubiquitous zinc efflux transporter ZnT1 (zinc transporter 1). The identified SLC30A1 variants are situated close to the zinc-binding site (His43 and Asp47) in transmembrane domain II and probably cause abnormal ion transport. Cases of PA with SLC30A1 mutations showed male dominance and demonstrated increased aldosterone and 18-oxocortisol concentrations. Functional studies of the SLC30A151_57del variant in a doxycycline-inducible adrenal cell system revealed pathological Na+ influx. An aberrant Na+ current led to depolarization of the resting membrane potential and, thus, to the opening of voltage-gated calcium (Ca2+) channels. This resulted in an increase in cytosolic Ca2+ activity, which stimulated CYP11B2 mRNA expression and aldosterone production. Collectively, these data implicate zinc transporter alterations as a dominant driver of aldosterone excess in PA.
Collapse
Affiliation(s)
- Juilee Rege
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sascha Bandulik
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Kazutaka Nanba
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Carla Kosmann
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Amy R Blinder
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Allein Plain
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - Pankaj Vats
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Chandan Kumar-Sinha
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Antonio M Lerario
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yuto Yamazaki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumitoshi Satoh
- Division of Clinical Hypertension, Endocrinology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Tracy Ann Williams
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Adina F Turcu
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Aaron M Udager
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Richard Warth
- Medical Cell Biology, University of Regensburg, Regensburg, Germany
| | - William E Rainey
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
- Division of Metabolism, Endocrine, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Renin-independent aldosterone production from one or both affected adrenal(s), a condition known as primary aldosteronism (PA), is a common cause of secondary hypertension. In this review, we aimed to summarize recent findings regarding pathophysiology of bilateral forms of PA, including sporadic bilateral hyperaldosteronism (BHA) and rare familial hyperaldosteronism. RECENT FINDINGS The presence of subcapsular aldosterone synthase (CYP11B2)-expressing aldosterone-producing micronodules, also called aldosterone-producing cell clusters, appears to be a common histologic feature of adrenals with sporadic BHA. Aldosterone-producing micronodules frequently harbor aldosterone-driver somatic mutations. Other potential factors leading to sporadic BHA include rare disease-predisposing germline variants, circulating angiotensin II type 1 receptor autoantibodies, and paracrine activation of aldosterone production by adrenal mast cells. The application of whole exome sequencing has also identified new genes that cause inherited familial forms of PA. SUMMARY Research over the past 10 years has significantly improved our understanding of the molecular pathogenesis of bilateral PA. Based on the improved understanding of BHA, future studies should have the ability to develop more personalized treatment options and advanced diagnostic tools for patients with PA.
Collapse
Affiliation(s)
- Kazutaka Nanba
- Department of Endocrinology and Metabolism, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Progress on Genetic Basis of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9111708. [PMID: 34829937 PMCID: PMC8615950 DOI: 10.3390/biomedicines9111708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/23/2022] Open
Abstract
Primary aldosteronism (PA) is a heterogeneous group of disorders caused by the autonomous overproduction of aldosterone with simultaneous suppression of plasma renin activity (PRA). It is considered to be the most common endocrine cause of secondary arterial hypertension (HT) and is associated with a high rate of cardiovascular complications. PA is most often caused by a bilateral adrenal hyperplasia (BAH) or aldosterone-producing adenoma (APA); rarer causes of PA include genetic disorders of steroidogenesis (familial hyperaldosteronism (FA) type I, II, III and IV), aldosterone-producing adrenocortical carcinoma, and ectopic aldosterone-producing tumors. Over the last few years, significant progress has been made towards understanding the genetic basis of PA, classifying it as a channelopathy. Recently, a growing body of clinical evidence suggests that mutations in ion channels appear to be the major cause of aldosterone-producing adenomas, and several mutations within the ion channel encoding genes have been identified. Somatic mutations in four genes (KCNJ5, ATP1A1, ATP2B3 and CACNA1D) have been identified in nearly 60% of the sporadic APAs, while germline mutations in KCNJ5 and CACNA1H have been reported in different subtypes of familial hyperaldosteronism. These new insights into the molecular mechanisms underlying PA may be associated with potential implications for diagnosis and therapy.
Collapse
|
5
|
Update on Genetics of Primary Aldosteronism. Biomedicines 2021; 9:biomedicines9040409. [PMID: 33920271 PMCID: PMC8069207 DOI: 10.3390/biomedicines9040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Primary aldosteronism (PA) is the most common form of secondary hypertension, with a prevalence of 5–10% among patients with hypertension. PA is mainly classified into two subtypes: aldosterone-producing adenoma (APA) and bilateral idiopathic hyperaldosteronism. Recent developments in genetic analysis have facilitated the discovery of mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, CACNA1H, CLCN2, and CTNNB1 in sporadic or familial forms of PA in the last decade. These findings have greatly advanced our understanding of the mechanism of excess aldosterone synthesis, particularly in APA. Most of the causative genes encode ion channels or pumps, and their mutations lead to depolarization of the cell membrane due to impairment of ion transport. Depolarization activates voltage-gated Ca2+ channels and intracellular calcium signaling and promotes the transcription of aldosterone synthase, resulting in overproduction of aldosterone. In this article, we review recent findings on the genetic and molecular mechanisms of PA.
Collapse
|
6
|
Juhlin CC, Bertherat J, Giordano TJ, Hammer GD, Sasano H, Mete O. What Did We Learn from the Molecular Biology of Adrenal Cortical Neoplasia? From Histopathology to Translational Genomics. Endocr Pathol 2021; 32:102-133. [PMID: 33534120 DOI: 10.1007/s12022-021-09667-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Approximately one-tenth of the general population exhibit adrenal cortical nodules, and the incidence has increased. Afflicted patients display a multifaceted symptomatology-sometimes with rather spectacular features. Given the general infrequency as well as the specific clinical, histological, and molecular considerations characterizing these lesions, adrenal cortical tumors should be investigated by endocrine pathologists in high-volume tertiary centers. Even so, to distinguish specific forms of benign adrenal cortical lesions as well as to pinpoint malignant cases with the highest risk of poor outcome is often challenging using conventional histology alone, and molecular genetics and translational biomarkers are therefore gaining increased attention as a possible discriminator in this context. In general, our understanding of adrenal cortical tumorigenesis has increased tremendously the last decade, not least due to the development of next-generation sequencing techniques. Comprehensive analyses have helped establish the link between benign aldosterone-producing adrenal cortical proliferations and ion channel mutations, as well as mutations in the protein kinase A (PKA) signaling pathway coupled to cortisol-producing adrenal cortical lesions. Moreover, molecular classifications of adrenal cortical tumors have facilitated the distinction of benign from malignant forms, as well as the prognostication of the individual patients with verified adrenal cortical carcinoma, enabling high-resolution diagnostics that is not entirely possible by histology alone. Therefore, combinations of histology, immunohistochemistry, and next-generation multi-omic analyses are all needed in an integrated fashion to properly distinguish malignancy in some cases. Despite significant progress made in the field, current clinical and pathological challenges include the preoperative distinction of non-metastatic low-grade adrenal cortical carcinoma confined to the adrenal gland, adoption of individualized therapeutic algorithms aligned with molecular and histopathologic risk stratification tools, and histological confirmation of functional adrenal cortical disease in the context of multifocal adrenal cortical proliferations. We herein review the histological, genetic, and epigenetic landscapes of benign and malignant adrenal cortical neoplasia from a modern surgical endocrine pathology perspective and highlight key mechanisms of value for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jérôme Bertherat
- Université de Paris, Institut Cochin, Inserm U1016, CNRS UMR8104, 75014, Paris, France
- Department of Endocrinology and National Reference Center for Rare Adrenal Disorders, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 75014, Paris, France
| | - Thomas J Giordano
- Department of Pathology and Internal Medicine, University of Michigan, MI, Ann Arbor, USA
| | - Gary D Hammer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|