1
|
Gu Z, Heng Y, Fan R, Luo J, Ju L. Single-cell RNA sequencing reveals cellular and molecular heterogeneity in extensive-stage small cell lung cancer with different chemotherapy responses. Cancer Cell Int 2025; 25:157. [PMID: 40259334 PMCID: PMC12013103 DOI: 10.1186/s12935-025-03785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/08/2025] [Indexed: 04/23/2025] Open
Abstract
Despite its rapid growth and early metastasis, small cell lung cancer (SCLC) is more chemosensitive than other lung cancers. However, some patients with extensive-stage SCLC (ES-SCLC) do not respond to first-line chemotherapy, resulting in poorer prognoses due to inter- and intratumoral heterogeneity. In this study, we conducted single-cell RNA sequencing of 9 treatment-naive ES-SCLC samples. Based on comprehensive imaging evidence collected before and after two cycles of first-line chemotherapy and sample types, the 9 samples were categorized into three groups: progressive disease with the pleural effusion sample (PD_PE group, n = 1), progressive disease with the primary tumor samples (PD_TU group, n = 2), and partial response with the primary tumor samples (PR_TU group, n = 6). Based on transcriptomic landscape and cell type composition, the PD samples represent a multicellular ecosystem distinct from PR samples. The immune response, along with the elevated expression of immune-related genes such as LTF, SLPI, SPARC and IGLV1-51, might correlate with a poor first-line chemotherapy response in ES-SCLC. We also observed that T cells, particularly effector T cells, were more abundant in PD_TU group, with TNFA signaling via NFκB being significantly enriched. The PD_TU group was strongly enriched with macrophages and tumor-associated macrophages (TAMs), and angiogenesis in TAMs was highly enriched. Immunomodulatory fibroblasts were highly abundant in PD_TU group, and the pathways of epithelial-mesenchymal transition and angiogenesis were upregulated. This study offers the first comprehensive insights into the cellular and molecular heterogeneity in treatment-naive patients with ES-SCLC with different chemotherapy responses.
Collapse
Affiliation(s)
- Zhan Gu
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Fan
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lixia Ju
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Norouzkhani N, Norouzi S, Faramarzi M, Bahari A, Shirvani JS, Eslami S, Tabesh H. Developing and evaluating a gamified self-management application for inflammatory bowel disease using the ADDIE model and Sukr framework. BMC Med Inform Decis Mak 2025; 25:11. [PMID: 39780171 PMCID: PMC11715334 DOI: 10.1186/s12911-024-02842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The prevalence and chronic nature of Inflammatory Bowel Diseases (IBD) is a significant global concern. As the essential part of treatments approach, patient adherence to treatment protocols and self-management practices are crucial to = IBD management. Healthcare initiatives focused on chronic conditions are strongly needed to consider various aspects of gamification and how it can positively affect self-management. AIM The current cognitive study aims to develop a mobile application to integrate the ADDIE (Analysis, Design, Development, Implementation, and Evaluation) instructional design model and elaborate on a gamification design based on the reputable Sukr Wheel framework. METHODS The current study uses the ADDIE approach to integrate behavior change strategies derived from the self-management theory using the Sukr Wheel gamification (My IBD Buddy) framework on the Android platform. RESULTS The final evaluation was conducted over 14 days. User satisfaction comprised 22 participants aged 20 to 64, all diagnosed with inflammatory bowel diseases. System usability was measured on a scale ranging from 50 to 100. The average usability score for the entire user group was 80.68, indicating a "good" level of satisfaction among the program users based on the ranking scale. CONCLUSION "My IBD Buddy" mobile application, equipped with gamification for IBD patients, enhances self-efficacy and self-management.
Collapse
Affiliation(s)
- Narges Norouzkhani
- Medical Informatics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran
| | - Somaye Norouzi
- Student Research Committee, Faculty of Management and Medical Information Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahbobeh Faramarzi
- Population, Family and Spiritual Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Bahari
- Internal Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran
| | - Javad Shokri Shirvani
- Internal Medicine Department, Babol University of Medical Sciences, Babol, 47176-47754, Iran
| | - Saeid Eslami
- Medical Informatics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran
| | - Hamed Tabesh
- Medical Informatics Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 13944-91388, Iran.
| |
Collapse
|
3
|
Gurumurthy G, Kisiel F, Gurumurthy S, Gurumurthy J. Role of thrombopoietin receptor agonists in chemotherapy-induced thrombocytopenia: A meta-analysis. J Oncol Pharm Pract 2025; 31:4-11. [PMID: 38155484 PMCID: PMC11771093 DOI: 10.1177/10781552231219003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Chemotherapy-induced thrombocytopenia (CIT) is a significant challenge in cancer treatment, often leading to dose reductions and reduced number of cycles. The limited effectiveness of platelet transfusions in managing CIT highlights the need for alternative treatments. Thrombopoietin receptor agonists (TPO-RA), including romiplostim, eltrombopag and avatrombopag, have shown potential in increasing platelet counts in CIT patients, necessitating a comprehensive analysis of their efficacy. METHODS This meta-analysis followed the Preferred Reporting Items for Systemic Reviews and Meta-analysis guidelines, searching Ovid databases up to 5 October 2023. The primary metric of interest was platelet count changes post-TPO-RA administration in CIT patients. RESULTS From the initial 867 studies obtained, 7 studies were selected based on the inclusion criteria. The analysis included 348 patients. A significant association was found between TPO-RA administration and platelet count increase, with a combined-effect increase of 69.52 ± 2.24 × 109/l. Subgroup analysis based on Romiplostim use suggested an increase of approximately 70.11 ± 39.07 × 109/l, while non-Romiplostim TPO-RAs showcased an increase of about 68.09 ± 82.58 × 109/l. CONCLUSIONS The meta-analysis demonstrates the effectiveness of TPO-RAs in managing CIT. Further research comparing platelet increases across standardised TPO-RA regimens is recommended to refine treatment strategies. This analysis provides valuable insights for clinicians in tailoring CIT treatment using TPO-RAs.
Collapse
Affiliation(s)
- Gerard Gurumurthy
- School of Medical Sciences, The University of Manchester, Manchester, UK
| | - Filip Kisiel
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Samantha Gurumurthy
- School of Infectious Disease and Immunity, Imperial College London, London, UK
| | - Juditha Gurumurthy
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Dong J, Li Y, Jin Z, Wu Z, Cai M, Pan G, Ye W, Zhou W, Li Z, Tian S, Chen ZS, Qin JJ. Synthesis and evaluation of novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors for overcoming MDR in cancer. Bioorg Med Chem 2024; 114:117944. [PMID: 39418747 DOI: 10.1016/j.bmc.2024.117944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The emergence of multidrug resistance (MDR) in malignant tumors is one of the major threats encountered currently by many chemotherapeutic agents. Among the various mechanisms involved in drug resistance, P-glycoprotein (P-gp, ABCB1), a member of the ABC transporter family that significantly increases the efflux of various anticancer drugs from tumor cells, and the metabolic enzyme CYP1B1 are widely considered to be two critical targets for overcoming MDR. Unfortunately, no MDR modulator has been approved by the FDA to date. In this study, based on pharmacophore hybridization, bioisosteric and fragment-growing strategies, we designed and synthesized 11 novel tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates as dual ABCB1/CYP1B1 inhibitors. Among them, the preferred compound A10 exhibited the best MDR reversal activity (IC50 = 0.25 μM, RF = 44.4) in SW620/AD300 cells, being comparable to one of the most potent third-generation P-gp inhibitors WK-X-34. In parallel, this dual ABCB1/CYP1B1 inhibitory effect drives compound A10 exhibiting prominent drug resistance reversal activity to doxorubicin (IC50 = 4.7 μM, RF = 13.7) in ABCB1/CYP1B1-overexpressing DOX-SW620/AD300-1B1 resistant cells, which is more potent than that of the CYP1B1 inhibitor ANF. Furthermore, although compound A2 possessed moderate ABCB1/CYP1B1 inhibitory activity, it showed considerable antiproliferative activity towards drug-resistant SW620/AD300 and MKN45-DDP-R cells, which may be partly related to the increase of PUMA expression to promote the apoptosis of the drug-resistant MKN45-DDP-R cells as confirmed by proteomics and western blot assay. These results indicated that the tetrahydroisoquinoline-benzo[h]chromen-4-one conjugates may provide a fundamental scaffold reference for further discovery of MDR reversal agents.
Collapse
Affiliation(s)
- Jinyun Dong
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| | - YuLong Li
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zhiyuan Jin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Zumei Wu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Maohua Cai
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangzhao Pan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Zheshen Li
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Sichao Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
5
|
Pallathadka H, Hsu CY, Obaid Saleh R, Renuka Jyothi S, Kumar A, Yumashev A, Sinha A, Hussein Zwamel A, Abed Jawad M, Alsaadi SB. Specific small interfering RNAs (siRNAs) for targeting the metastasis, immune responses, and drug resistance of colorectal cancer cells (CRC). Int Immunopharmacol 2024; 140:112730. [PMID: 39083927 DOI: 10.1016/j.intimp.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.
Collapse
Affiliation(s)
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique college, the Islamic University of Babylon, Babylon, Iraq.
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq.
| |
Collapse
|
6
|
Hemati M, Rivaz M, Khademian Z. Lymphedema self-management mobile application with nurse support for post breast cancer surgery survivors: description of the design process and prototype evaluation. BMC Cancer 2024; 24:973. [PMID: 39118042 PMCID: PMC11308577 DOI: 10.1186/s12885-024-12744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Self-management is the key to control breast cancer related lymphedema (BCRL). This study aimed to develop a mobile application with nurse support for lymphedema self-management and evaluate its usability from the patients' points of view. METHODS This applied developmental study was conducted on 87 women in a lymphedema clinic, Shiraz, Iran, May-November 2023. The study included three phases: development, distribution of the application and usability evaluation. In the development phase, the researchers developed application using the Java programming language. In distribution phase, the application was installed on the participants' phones. For usability evaluation, 87 patients completed the user satisfaction questionnaire after three months access to the application. Data was analyzed using descriptive and analytical statistics using SPSS software 22. P-value less than 0.05 was considered significant. RESULTS We designed a self-management application specific to BCRL that included ten unique modules mainly related to patient education, interaction with peers and nurse, self-management support, and settings. The application mean usability score was 7.72 ± 1.08. The usability dimensions of "screen" (8.06 ± 1.02) and "terminology and systems information" (7.29 ± 1.62) received the highest and lowest mean scores, respectively. CONCLUSION The application has new features to meet more patients' needs compared to what other existing lymphedema self-management applications already have addressed. The findings showed that the participants rated the application usability at the "good" level that is similar to some previous studies. Considering the unique nature of the application and its favorable usability, we recommend its use for BCRL self-management.
Collapse
Affiliation(s)
- Mehrvash Hemati
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhgan Rivaz
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khademian
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Mongkolpathumrat P, Pikwong F, Phutiyothin C, Srisopar O, Chouyratchakarn W, Unnajak S, Nernpermpisooth N, Kumphune S. The secretory leukocyte protease inhibitor (SLPI) in pathophysiology of non-communicable diseases: Evidence from experimental studies to clinical applications. Heliyon 2024; 10:e24550. [PMID: 38312697 PMCID: PMC10835312 DOI: 10.1016/j.heliyon.2024.e24550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Non-communicable diseases (NCDs) are a worldwide health issue because of their prevalence, negative impacts on human welfare, and economic costs. Protease enzymes play important roles in viral and NCD diseases. Slowing disease progression by inhibiting proteases using small-molecule inhibitors or endogenous inhibitory peptides appears to be crucial. Secretory leukocyte protease inhibitor (SLPI), an inflammatory serine protease inhibitor, maintains protease/antiprotease balance. SLPI is produced by host defense effector cells during inflammation to prevent proteolytic enzyme-induced tissue damage. The etiology of noncommunicable illnesses is linked to SLPI's immunomodulatory and tissue regeneration roles. Disease phases are associated with SLPI levels and activity changes in regional tissue and circulation. SLPI has been extensively evaluated in inflammation, but rarely in NCDs. Unfortunately, the thorough evaluation of SLPI's pathophysiological functions in NCDs in multiple research models has not been published elsewhere. In this review, data from PubMed from 2014 to 2023 was collected, analysed, and categorized into in vitro, in vivo, and clinical studies. According to the review, serine protease inhibitor (SLPI) activity control is linked to non-communicable diseases (NCDs) and other illnesses. Overexpression of the SLPI gene and protein may be a viable diagnostic and therapeutic target for non-communicable diseases (NCDs). SLPI is also cytoprotective, making it a unique treatment. These findings suggest that future research should focus on these pathways using advanced methods, reliable biomarkers, and therapy approaches to assess susceptibility and illness progression. Implications from this review will help pave the way for a new therapeutic target and diagnosis marker for non-communicable diseases.
Collapse
Affiliation(s)
- Podsawee Mongkolpathumrat
- Cardiovascular and Thoracic Technology Program, Chulabhorn International College of Medicine (CICM), Thammasat University (Rangsit Center), Pathumthani 12120, Thailand
| | - Faprathan Pikwong
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chayanisa Phutiyothin
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Onnicha Srisopar
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Wannapat Chouyratchakarn
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Sasimanas Unnajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900 Thailand
| | - Nitirut Nernpermpisooth
- Department of Cardio-Thoracic Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Sarawut Kumphune
- Biomedical Engineering and Innovation Research Center, Chiang Mai University, Mueang Chiang Mai District, Chiang Mai, 50200 Thailand
- Biomedical Engineering Institute (BMEI), Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
8
|
Zhang X, Liu SS, Ma J, Qu W. Secretory leukocyte protease inhibitor (SLPI) in cancer pathophysiology: Mechanisms of action and clinical implications. Pathol Res Pract 2023; 248:154633. [PMID: 37356220 DOI: 10.1016/j.prp.2023.154633] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Cancer is a multifaceted disorder frequently linked to the dysregulation of several biological processes. The SLPI is a multifunctional protein involved in the modulation of immunological response and the inhibition of protease activities. SLPI acts as an inhibitor of proteases, exerts antibacterial properties, and suppresses the transcription of proinflammatory genes through the nuclear factor-kappa B (NF-κB) pathway. The role of this protein as a regulatory agent has been implicated in various types of cancer. Recent research has revealed that SLPI upregulation in cancer cells enhances the metastatic capacity of epithelial malignancies, indicating the deleterious effects of this protein. Furthermore, SLPI interacts intricately with other cancer-promoting factors, including matrix metalloproteinase-2 (MMP-2), MMP-9, the NF-κB and Akt pathways, and the p53-upregulated modulator of apoptosis (PUMA). This review provides an overview of the role of SLPI in cancer pathophysiology, emphasizing its expression in cancer cells and tissues, its potential as a prognostic biomarker, and its therapeutic promise as a target in cancer treatment. The mechanisms of SLPI action in cancer, including its anti-inflammatory effects, regulation of cell proliferation and angiogenesis, and modulation of the tumor microenvironment, have been investigated. The clinical implications of SLPI in cancer have been discussed, including its potential as a diagnostic and prognostic biomarker, its role in chemoresistance, and its therapeutic potential in several types of cancer, such as hepatocellular carcinoma (HCC), colorectal cancer (CRC), pancreatic cancer, head and neck squamous cell carcinoma (HNSCC), ovarian cancer (OvCa), prostate cancer (PC), gastric cancer (GC), breast cancer, and other cancers. In addition, we emphasized the significance of SLPI in cancer, which offers fresh perspectives on potential targets for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shan Shan Liu
- Department of General Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Wei Qu
- Department of General Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
9
|
Smothers AR, Henderson JR, O'Connell JJ, Stenbeck JM, Dean D, Booth BW. Optimization of tumor-treating field therapy for triple-negative breast cancer cells in vitro via frequency modulation. Cancer Cell Int 2023; 23:110. [PMID: 37287008 DOI: 10.1186/s12935-023-02959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Currently, tumor-treating field (TTField) therapy utilizes a single "optimal" frequency of electric fields to achieve maximal cell death in a targeted population of cells. However, because of differences in cell size, shape, and ploidy during mitosis, optimal electric field characteristics for universal maximal cell death may not exist. This study investigated the anti-mitotic effects of modulating electric field frequency as opposed to utilizing uniform electric fields. METHODS We developed and validated a custom device that delivers a wide variety of electric field and treatment parameters including frequency modulation. We investigated the efficacy of frequency modulating tumor-treating fields on triple-negative breast cancer cells compared to human breast epithelial cells. RESULTS We show that frequency-modulated (FM) TTFields are as selective at treating triple-negative breast cancer (TNBC) as uniform TTFields while having a greater efficacy for combating TNBC cell growth. TTField treatment at a mean frequency of 150 kHz with a frequency range of ± 10 kHz induced apoptosis in a greater number of TNBC cells after 24 h as compared to unmodulated treatment which led to further decreased cell viability after 48 h. Furthermore, all TNBC cells died after 72 h of FM treatment while cells that received unmodulated treatment were able to recover to cell number equivalent to the control. CONCLUSION TTFields were highly efficacious against TNBC growth, FM TTFields showed minimal effects on epithelial cells similar to unmodulated treatment.
Collapse
Affiliation(s)
- Austin R Smothers
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | - John J O'Connell
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC, USA
- Clemson University School of Health Research, Clemson, SC, USA
- University of South Carolina School of Medicine-Greenville, Greenville, SC, USA
| | | | - Delphine Dean
- Center for Innovative Medical Devices and Sensors (REDDI Lab), Clemson University, Clemson, SC, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
10
|
Bhattacharya S, Prajapati BG, Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit Rev Oncol Hematol 2023; 185:103961. [PMID: 36921781 DOI: 10.1016/j.critrevonc.2023.103961] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Stimuli-responsive nanocarriers have the potential to revolutionize cancer treatment by allowing precise delivery of drugs to the site of disease. The use of polymeric nanocarriers with surfaces that respond to triggers such as pH, light, temperature, and redox potential enables targeted drug distribution. pH is a particularly useful tool, as the lower pH in tumour microenvironments can trigger changes in drug release. Recent advances in the development of pH-responsive polymer nanoparticles have shown great promise for improved in vivo drug delivery, reduced negative drug responses, and more precise drug distribution. A deeper understanding of these nanocarriers will allow us to overcome the challenges of targeted cancer treatment and create a better drug delivery system.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, 22 Kherva, 384012, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|