1
|
Mansor M, Budiman SN, Zainoodin AM, Khairunnisa MP, Yamanaka S, Jusoh NWC, Liza S. Candle Soot as a Novel Support for Nickel Nanoparticles in the Electrocatalytic Ethanol Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1042. [PMID: 38921918 PMCID: PMC11206670 DOI: 10.3390/nano14121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The enhancement of carbon-supported components is a crucial factor in augmenting the interplay between carbon-supported and metal-active components in the utilization of catalysts for direct ethanol fuel cells (DEFCs). Here, we propose a strategy for designing a catalyst by modifying candle soot (CS) and loading nickel onto ordered carbon soot. The present study aimed to investigate the effect of the Ni nanoparticles content on the electrocatalytic performance of Ni-CS, ultimately leading to the identification of a maximum composition. The presence of an excessive quantity of nickel particles leads to a decrease in the number of active sites within the material, resulting in sluggishness of the electron transfer pathway. The electrocatalyst composed of nickel and carbon support, with a nickel content of 20 wt%, has demonstrated a noteworthy current activity of 18.43 mA/cm2, which is three times that of the electrocatalyst with a higher nickel content of 25 wt%. For example, the 20 wt% Ni-CS electrocatalytic activity was found to be good, and it was approximately four times higher than that of 20 wt% Ni-CB (nickel-carbon black). Moreover, the chronoamperometry (CA) test demonstrated a reduction in current activity of merely 65.80% for a 20 wt% Ni-CS electrocatalyst, indicating electrochemical stability. In addition, this demonstrates the great potential of candle soot with Ni nanoparticles to be used as a catalyst in practical applications.
Collapse
Affiliation(s)
- Muliani Mansor
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | - Siti Noorleila Budiman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | | | - Mohd Paad Khairunnisa
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
- Department of Applied Science, Muroran Institute of Technology, Muroran 050-8585, Japan
- Tribology and Precision Machining i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| | - Shinya Yamanaka
- Department of Applied Science, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Nurfatehah Wahyuny Che Jusoh
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; (M.M.); (S.N.B.); (N.W.C.J.)
| | - Shahira Liza
- Tribology and Precision Machining i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia;
| |
Collapse
|
2
|
Electro-Catalytic Properties of Palladium and Palladium Alloy Electro-Catalysts Supported on Carbon Nanofibers for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Catalysts 2022. [DOI: 10.3390/catal12060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbon nanofibers (CNFs) supported by Pd and Pd-Sn electro-catalysts were prepared by the chemical reduction method using ethylene glycol as the reducing agent. Their physicochemical characteristics were studied using high resolution-transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and Bruanaer-Emmett-Teller (BET) analysis. FTIR revealed that oxygen, hydroxyl, carboxylic and carbonyl functional groups facilitated the dispersion of Pd and Sn nanoparticles. The doping of Pd with Sn to generate PdSn alloy was also confirmed by XPS data. The amorphous nature of CNFs was confirmed by XRD patterns which exhibited the Pd diffraction peaks. When Sn was added to Pd/CNFs, the diffraction peaks moved to lower angles. HRTEM images revealed that the CNFs with cylindrical shape-like morphology and also Pd-Sn nanoparticles dispersed on carbon support. The catalytic activity and stability towards alcohol electro-oxidation in alkaline medium at room temperature was evaluated using cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The obtained Pd-Sn/CNFs electro-catalyst exhibited a better electro-catalytic activity than Pd/CNFs and Pd/C electro-catalysts for both methanol and ethanol oxidation. The improvement of the electrochemical performance was associated with the synergistic effect via the addition of Sn which modified the Pd atom arrangement, thereby promoting oxidation through a dehydrogenation pathway. Furthermore, SnO2 generates abundant OH species which helps with increasing the rate of the oxidative removal of carbon monoxide (CO) intermediates from Pd sites.
Collapse
|
3
|
Electrochemical detection of CA125 using thionine and gold nanoparticles supported on heteroatom-doped graphene nanocomposites. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01966-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Sikeyi LL, Matthews T, Adekunle AS, Maxakato NW. Electro‐oxidation of Ethanol and Methanol on Pd/C, Pd/CNFs and Pd−Ru/CNFs Nanocatalysts in Alkaline Direct Alcohol Fuel Cell. ELECTROANAL 2020. [DOI: 10.1002/elan.202060260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ludwe L. Sikeyi
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Thabo Matthews
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| | - Abolanle S. Adekunle
- Department of chemistry Obafemi Awolowo University P.M.B. 13 Ile-Ife, Osun 220282 Nigeria
| | - Nobanathi W. Maxakato
- Department of Chemical Sciences University of Johannesburg Doornfontein 2028 South Africa
| |
Collapse
|
5
|
Xie A, Zhang Q, He H, Peng C. Facile synthesis of PdAg nanocatalysts on CeO 2/C composite supports as high-performance catalysts toward alkaline ethanol electro-oxidation. NEW J CHEM 2020. [DOI: 10.1039/d0nj03757e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PdAg nanocatalysts on CeO2/C supports were prepared using a facile, environment-friendly method and exhibited superior performance for ethanol electro-oxidation.
Collapse
Affiliation(s)
- Ayong Xie
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Qing Zhang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Huiqing He
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Cheng Peng
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| |
Collapse
|