1
|
Wang L, Chaudhari K, Winters A, Sun Y, Berry R, Tang C, Yang SH, Liu R. Recurrent Transient Ischemic Attack Induces Neural Cytoskeleton Modification and Gliosis in an Experimental Model. Transl Stroke Res 2023; 14:740-751. [PMID: 35867329 DOI: 10.1007/s12975-022-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 01/28/2023]
Abstract
Transient ischemic attack (TIA) presents a high risk for subsequent stroke, Alzheimer's disease (AD), and related dementia (ADRD). However, the neuropathophysiology of TIA has been rarely studied. By evaluating recurrent TIA-induced neuropathological changes, our study aimed to explore the potential mechanisms underlying the contribution of TIA to ADRD. In the current study, we established a recurrent TIA model by three times 10-min middle cerebral artery occlusion within a week in rat. Neither permanent neurological deficit nor apoptosis was observed following recurrent TIA. No increase of AD-related biomarkers was indicated after TIA, including increase of tau hyperphosphorylation and β-site APP cleaving enzyme 1 (BACE1). Neuronal cytoskeleton modification and neuroinflammation was found at 1, 3, and 7 days after recurrent TIA, evidenced by the reduction of microtubule-associated protein 2 (MAP2), elevation of neurofilament-light chain (NFL), and increase of glial fibrillary acidic protein (GFAP)-positive astrocytes and ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia at the TIA-affected cerebral cortex and basal ganglion. Similar NFL, GFAP and Iba1 alteration was found in the white matter of corpus callosum. In summary, the current study demonstrated that recurrent TIA may trigger neuronal cytoskeleton change, astrogliosis, and microgliosis without induction of cell death at the acute and subacute stage. Our study indicates that TIA-induced neuronal cytoskeleton modification and neuroinflammation may be involved in the vascular contribution to cognitive impairment and dementia.
Collapse
Affiliation(s)
- Linshu Wang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Kiran Chaudhari
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Ali Winters
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Yuanhong Sun
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Raymond Berry
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Christina Tang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA
| | - Shao-Hua Yang
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| | - Ran Liu
- Departments of Pharmacology & Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
2
|
Sun N, Keep RF, Hua Y, Xi G. Critical Role of the Sphingolipid Pathway in Stroke: a Review of Current Utility and Potential Therapeutic Targets. Transl Stroke Res 2016; 7:420-38. [PMID: 27339463 DOI: 10.1007/s12975-016-0477-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a series of cell membrane-derived lipids which act as signaling molecules and play a critical role in cell death and survival, proliferation, recognition, and migration. Sphingosine-1-phosphate acts as a key signaling molecule and regulates lymphocyte trafficking, glial cell activation, vasoconstriction, endothelial barrier function, and neuronal death pathways which plays a critical role in numerous neurological conditions. Stroke is a second leading cause of death all over the world and effective therapies are still in great demand, including ischemic stroke and hemorrhagic stroke as well as poststroke repair. Significantly, sphingolipid activities change after stroke and correlate with stroke outcome, which has promoted efforts to testify whether the sphingolipid pathway could be a novel therapeutic target in stroke. The sphingolipid metabolic pathway, the connection between the pathway and stroke, as well as therapeutic interventions to manipulate the pathway to reduce stroke-induced brain injury are discussed in this review.
Collapse
Affiliation(s)
- Na Sun
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
3
|
Soejima Y, Hu Q, Krafft PR, Fujii M, Tang J, Zhang JH. Hyperbaric oxygen preconditioning attenuates hyperglycemia-enhanced hemorrhagic transformation by inhibiting matrix metalloproteinases in focal cerebral ischemia in rats. Exp Neurol 2013; 247:737-43. [PMID: 23537951 DOI: 10.1016/j.expneurol.2013.03.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
Hyperglycemia dramatically aggravates brain infarct and hemorrhagic transformation (HT) after ischemic stroke. Oxidative stress and matrix metalloproteinases (MMPs) play an important role in the pathophysiology of HT. Hyperbaric oxygen preconditioning (HBO-PC) has been proved to decrease oxidative stress and has been demonstrated to be neuroprotective in experimental stroke models. The present study determined whether HBO-PC would ameliorate HT by a pre-ischemic increase of reactive oxygen species (ROS) generation, and a suppression of MMP-2 and MMP-9 in hyperglycemic middle cerebral artery occlusion (MCAO) rats. Rats were pretreated with HBO (100% O₂, 2.5 atmosphere absolutes) 1 h daily for 5 days before MCAO. Acute hyperglycemia was induced by an injection of 50% dextrose. Neurological deficits, infarction volume and hemorrhagic volume were assessed 24 h and 7 days after ischemia. ROS scavenger n-acetyl cysteine (NAC), hypoxia-inducible factor-1α (HIF-1α), inhibitor 2-methoxyestradiol (2ME2) and activator cobalt chloride (CoCl₂), and MMP inhibitor SB-3CT were administrated for mechanism study. The activity of MMP-2 and MMP-9, and the expression HIF-1α were measured. HBO-PC improved neurological deficits, and reduced hemorrhagic volume; the expression of HIF-1α was significantly decreased, and the activity of MMP-2 and MMP-9 was reduced by HBO-PC compared with vehicle group. Our results suggested that HBO-PC attenuated HT via decreasing HIF-1α and its downstream MMP-2 and MMP-9 in hyperglycemic MCAO rats.
Collapse
Affiliation(s)
- Yoshiteru Soejima
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | | | | | | | |
Collapse
|