1
|
Cadena AJ, Rincon F. Hypothermia and temperature modulation for intracerebral hemorrhage (ICH): pathophysiology and translational applications. Front Neurosci 2024; 18:1289705. [PMID: 38440392 PMCID: PMC10910040 DOI: 10.3389/fnins.2024.1289705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Background Intracerebral hemorrhage (ICH) still poses a substantial challenge in clinical medicine because of the high morbidity and mortality rate that characterizes it. This review article expands into the complex pathophysiological processes underlying primary and secondary neuronal death following ICH. It explores the potential of therapeutic hypothermia as an intervention to mitigate these devastating effects. Methods A comprehensive literature review to gather relevant studies published between 2000 and 2023. Discussion Primary brain injury results from mechanical damage caused by the hematoma, leading to increased intracranial pressure and subsequent structural disruption. Secondary brain injury encompasses a cascade of events, including inflammation, oxidative stress, blood-brain barrier breakdown, cytotoxicity, and neuronal death. Initial surgical trials failed to demonstrate significant benefits, prompting a shift toward molecular mechanisms driving secondary brain injury as potential therapeutic targets. With promising preclinical outcomes, hypothermia has garnered attention, but clinical trials have yet to establish its definitive effectiveness. Localized hypothermia strategies are gaining interest due to their potential to minimize systemic complications and improve outcomes. Ongoing and forthcoming clinical trials seek to clarify the role of hypothermia in ICH management. Conclusion Therapeutic hypothermia offers a potential avenue for intervention by targeting the secondary injury mechanisms. The ongoing pursuit of optimized cooling protocols, localized cooling strategies, and rigorous clinical trials is crucial to unlocking the potential of hypothermia as a therapeutic tool for managing ICH and improving patient outcomes.
Collapse
Affiliation(s)
- Angel J. Cadena
- Department of Neurology, Columbia University, New York, NY, United States
| | - Fred Rincon
- Department of Neurology, Division of Neurocritical Care, Cooper University, Camden, NJ, United States
| |
Collapse
|
2
|
He Q, Zhou Y, Liu C, Chen Z, Wen R, Wu Y, Xie Z, Cheng Y, Cheng S. Prediction of Hematoma Expansion in Patients With Intracerebral Hemorrhage Using Thromboelastography With Platelet Mapping: A Prospective Observational Study. Front Neurol 2021; 12:746024. [PMID: 34721271 PMCID: PMC8553958 DOI: 10.3389/fneur.2021.746024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023] Open
Abstract
Background and Purpose: The purpose of the study was to evaluate the usefulness of thromboelastography with platelet mapping (TEG-PM) for predicting hematoma expansion (HE) and poor functional outcome in patients with intracerebral hemorrhage (ICH). Methods: Patients with primary ICH who underwent baseline computed tomography (CT) and TEG-PM within 6 h after symptom onset were enrolled in the observational cohort study. We performed univariate and multivariate logistic regression models to assess the association of admission platelet function with HE and functional outcome. In addition, a receiver operating characteristic (ROC) curve analysis investigated the accuracy of platelet function in predicting HE. A mediation analysis was undertaken to determine causal associations among platelet function, HE, and outcome. Results: Of 142 patients, 37 (26.1%) suffered HE. Multivariate logistic regression identified arachidonic acid (AA) and adenosine diphosphate (ADP) inhibition as significant independent predictors of HE. The area under the ROC curves was 0.727 for AA inhibition and 0.721 for ADP inhibition. Optimal threshold for AA inhibition was 41.75% (75.7% sensitivity; 67.6% specificity) and ADP inhibition was 65.8% (73.0% sensitivity; 66.7% specificity). AA and ADP inhibition were also associated with worse 3-month outcomes after adjusting for age, admission Glasgow Coma Scale score, intraventricular hemorrhage, baseline hematoma volume, and hemoglobin. The mediation analysis showed that the effect of higher platelet inhibition with poor outcomes was mediated through HE. Conclusions: These findings suggest that the reduced platelet response to ADP and AA independently predict HE and poor outcome in patients with ICH. Platelet function may represent a modifiable target of ICH treatment.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhongqiu Chen
- Department of Information Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
He Q, Zhou Y, Wang F, Li B, Cheng Y, Xie ZY. Blood Type O Predicts Hematoma Expansion in Patients with Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2019; 28:2311-2317. [PMID: 31171459 DOI: 10.1016/j.jstrokecerebrovasdis.2019.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Hematoma expansion after acute spontaneous intracerebral hemorrhage (ICH) is well established to result in poor prognosis. Recent studies have demonstrated that the ABO blood type system has potential implications on hemostatic properties. The purpose of this study was to explore the potential association of blood type O with hematoma expansion in patients with ICH and validate the usefulness in predicting early hematoma expansion. METHODS We retrospectively enrolled consecutive patients with ICH who underwent baseline computed tomographic (CT) scan within 6 hours after onset of symptoms. The follow-up CT scan was available within 48 hours after the baseline CT scan. Hematoma expansion was defined as total volume increase more than 33% or more than 6 mL. We performed univariate and multivariate logistic regression analyses to investigate the relationship between the different types of blood (type O versus other types) and hematoma expansion. RESULTS A total of 210 patients were included in the study. Among them, 72 patients (34.3%) carried blood type O. Hematoma expansion was more common in patients with blood type O (41.7%) than those with other blood types (18.1%; P < .001). Furthermore, the time to baseline CT scan, blood type O, and admission Glasgow Coma Scale score were demonstrated to be independent predictors of hematoma expansion in multivariate logistic regression analysis model. The sensitivity, specificity, positive, and negative predictive values of blood type O for predicting hematoma expansion were 54.5%, 72.9%, 41.6%, and 81.9%, respectively. CONCLUSIONS Our findings suggest that blood type O represents an independent predictor of hematoma expansion after ICH. Hemostasis seems to be involved in expansion and may represent an important treatment target.
Collapse
Affiliation(s)
- Qiuguang He
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Zhou
- Department of Critical Care Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Li
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Yi Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Liang T, Chen Q, Li Q, Li R, Tang J, Hu R, Zhong J, Ge H, Liu X, Hua F. 5-HT1a activation in PO/AH area induces therapeutic hypothermia in a rat model of intracerebral hemorrhage. Oncotarget 2017; 8:73613-73626. [PMID: 29088731 PMCID: PMC5650286 DOI: 10.18632/oncotarget.20280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
Therapeutic hypothermia is widely applied as a neuroprotective measure on intracerebral hemorrhage (ICH). However, several clinical trials regarding physical hypothermia encountered successive failures because of its side-effects in recent years. Increasing evidences indicate that chemical hypothermia that targets hypothalamic 5-HT1a has potential to down-regulate temperature set point without major side-effects. Thus, this study examined the efficacy and safety of 5-HT1a stimulation in PO/AH area for treating ICH rats. First, the relationship between head temperature and clinical outcomes was investigated in ICH patients and rat models, respectively. Second, the expression and distribution of 5-HT1a receptor in PO/AH area was explored by using whole-cell patch and confocal microscopy. In the meantime, the whole-cell patch was subsequently applied to investigate the involvement of 5-HT1a receptors in temperature regulation. Third, we compared the efficacy between traditional PH and 5-HT1a activation-induced hypothermia for ICH rats. Our data showed that more severe perihematomal edema (PHE) and neurological deficits was associated with increased head temperature following ICH. 5-HT1a receptor was located on warm-sensitive neurons in PO/AH area and 8-OH-DPAT (5-HT1a receptor agonist) significantly enhanced the firing rate of warm-sensitive neurons. 8-OH-DPAT treatment provided a steadier reduction in brain temperature without a withdrawal rebound, which also exhibited a superior neuroprotective effect on ICH-induced neurological dysfunction, white matter injury and BBB damage compared with physical hypothermia. These findings suggest that chemical hypothermia targeting 5-HT1a receptor in PO/AH area could act as a novel therapeutic manner against ICH, which may provide a breakthrough for therapeutic hypothermia.
Collapse
Affiliation(s)
- Tan Liang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rongwei Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Zhong
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hongfei Ge
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Hua
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
5
|
Wang Z, Zhou F, Dou Y, Tian X, Liu C, Li H, Shen H, Chen G. Melatonin Alleviates Intracerebral Hemorrhage-Induced Secondary Brain Injury in Rats via Suppressing Apoptosis, Inflammation, Oxidative Stress, DNA Damage, and Mitochondria Injury. Transl Stroke Res 2017; 9:74-91. [PMID: 28766251 PMCID: PMC5750335 DOI: 10.1007/s12975-017-0559-x] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a cerebrovascular disease with high mortality and morbidity, and the effective treatment is still lacking. We designed this study to investigate the therapeutic effects and mechanisms of melatonin on the secondary brain injury (SBI) after ICH. An in vivo ICH model was induced via autologous whole blood injection into the right basal ganglia in Sprague-Dawley (SD) rats. Primary rat cortical neurons were treated with oxygen hemoglobin (OxyHb) as an in vitro ICH model. The results of the in vivo study showed that melatonin alleviated severe brain edema and behavior disorders induced by ICH. Indicators of blood-brain barrier (BBB) integrity, DNA damage, inflammation, oxidative stress, apoptosis, and mitochondria damage showed a significant increase after ICH, while melatonin reduced their levels. Meanwhile, melatonin promoted further increasing of expression levels of antioxidant indicators induced by ICH. Microscopically, TUNEL and Nissl staining showed that melatonin reduced the numbers of ICH-induced apoptotic cells. Inflammation and DNA damage indicators exhibited an identical pattern compared to those above. Additionally, the in vitro study demonstrated that melatonin reduced the apoptotic neurons induced by OxyHb and protected the mitochondrial membrane potential. Collectively, our investigation showed that melatonin ameliorated ICH-induced SBI by impacting apoptosis, inflammation, oxidative stress, DNA damage, brain edema, and BBB damage and reducing mitochondrial membrane permeability transition pore opening, and melatonin may be a potential therapeutic agent of ICH.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Feng Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Yang Dou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Xiaodi Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Chenglin Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
6
|
Righy C, Bozza MT, Oliveira MF, Bozza FA. Molecular, Cellular and Clinical Aspects of Intracerebral Hemorrhage: Are the Enemies Within? Curr Neuropharmacol 2016; 14:392-402. [PMID: 26714583 PMCID: PMC4876594 DOI: 10.2174/1570159x14666151230110058] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 11/28/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a disease with high incidence and mortality rates. In addition to the mass lesions that result from hemorrhagic stroke, substances such as the blood-derived products (BDP) (hemoglobin (Hb), heme and iron) induce a potent inflammatory response and exert direct toxic effects on neurons, astrocytes, and microglia. In the present review, we discuss the mechanisms of brain injury secondary to hemorrhagic stroke, focusing on the involvement of BDP as major players of cellular redox imbalance, inflammation, and glutamate excitotoxicity. Potential natural mechanisms of protection against free Hb and heme such as haptoglobin and hemopexin, respectively, are highlighted. We finally discuss the experimental and clinical trials targeting free iron and heme scavenging as well as inflammation, as potential new therapies to minimize the devastating effects of hemorrhagic stroke on brain structure and function.
Collapse
Affiliation(s)
- Cássia Righy
- Avenida Brasil 4.365, Manguinhos, Rio de Janeiro-RJ, CEP 21.040-900, Pavilhão Gaspar Viana.
| | | | | | | |
Collapse
|
7
|
Abstract
Stroke is a leading cause of adult disability in the United States. However, limited number of molecularly targeted therapy exists for stroke. Recent studies have shown that Li-pocalin-2 (LCN2) is an acute phase protein mediating neuroinflammation after ischemic and hemorrhagic strokes. This review is an attempt to summarize some LCN2-related research findings and discuss its role in stroke.
Collapse
Affiliation(s)
- Wen-Hai Chou
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44224, USA
| | - Guona Wang
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44224, USA
| | - Varun Kumar
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44224, USA
| | - Yi-Chinn Weng
- Department of Biological Sciences, School of Biomedical Sciences, Kent State University, Kent, OH 44224, USA
| |
Collapse
|
8
|
Hatakeyama T, Okauchi M, Hua Y, Keep RF, Xi G. Deferoxamine reduces neuronal death and hematoma lysis after intracerebral hemorrhage in aged rats. Transl Stroke Res 2014; 4:546-53. [PMID: 24187595 DOI: 10.1007/s12975-013-0270-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracerebral hemorrhage (ICH) is primarily a disease of the elderly. Deferoxamine (DFX), an iron chelator, reduces long-term neurological deficits and brain atrophy after ICH in aged rats. In the present study, we investigated whether DFX can reduce acute ICH-induced neuronal death and whether it affects the endogenous response to ICH (ferritin upregulation and hematoma resolution) in aged rats. Male Fischer 344 rats (18 months old) had an intracaudate injection of 100 μL autologous whole blood into the right basal ganglia and were treated with DFX (100 mg/kg) or vehicle 2 hours post-ICH and then every 12 hours up to 7 days. Rats were euthanized 1, 3, or 7 days later for neuronal death, ferritin and hematoma size measurements. Plasma ferritin levels and behavioral outcome following ICH were also examined. DFX treatment significantly reduced ICH-induced neuronal death and neurological deficits. DFX also suppressed ferritin upregulation in the ipsilateral basal ganglia after ICH and hematoma lysis (hematoma volume at day 7: 13.2±4.9 vs. 3.8±1.2 mm3 in vehicle-treated group, p<0.01). However, effects of DFX on plasma ferritin levels after ICH did not reach significance. In conclusion, DFX reduces neuronal death and neurological deficits after ICH in aged rats. It also affects the endogenous response to ICH.
Collapse
Affiliation(s)
- Tetsuhiro Hatakeyama
- Department of Neurosurgery, University of Michigan, USA ; Department of Neurological Surgery, Kagawa University, Japan
| | | | | | | | | |
Collapse
|
9
|
Intracerebral hemorrhage: a multimodality approach to improving outcome. Transl Stroke Res 2014; 5:313-5. [PMID: 24764218 DOI: 10.1007/s12975-014-0344-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 01/26/2023]
|
10
|
Bipyridine, an iron chelator, does not lessen intracerebral iron-induced damage or improve outcome after intracerebral hemorrhagic stroke in rats. Transl Stroke Res 2013; 4:719-28. [PMID: 24323426 DOI: 10.1007/s12975-013-0272-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/18/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
Iron chelators, such as the intracellular ferrous chelator 2,2'-bipyridine, are a potential means of ameliorating iron-induced injury after intracerebral hemorrhage (ICH). We evaluated bipyridine against the collagenase and whole-blood ICH models and a simplified model of iron-induced damage involving a striatal injection of FeCl2 in adult rats. First, we assessed whether bipyridine (25 mg/kg beginning 12 h post-ICH and every 12 h for 3 days) would attenuate non-heme iron levels in the brain and lessen behavioral impairments (neurological deficit scale, corner turn test, and horizontal ladder) 7 days after collagenase-induced ICH. Second, we evaluated bipyridine (20 mg/kg beginning 6 h post-ICH and then every 24 h) on edema 3 days after collagenase infusion. Body temperature was continually recorded in a subset of these rats beginning 24 h prior to ICH until euthanasia. Third, bipyridine was administered (as per experiment 2) after whole-blood infusion to examine tissue loss, neuronal degeneration, and behavioral impairments at 7 days post-stroke, as well as body temperature for 3 days post-stroke. Finally, we evaluated whether bipyridine (25 mg/kg given 2 h prior to surgery and then every 12 h for 3 days) lessens tissue loss, neuronal death, and behavioral deficits after striatal FeCl2 injection. Bipyridine caused a significant hypothermic effect (maximum drop to 34.6 °C for 2-5 h after each injection) in both ICH models; however, in all experiments bipyridine-treated rats were indistinguishable from vehicle controls on all other measures (e.g., tissue loss, behavioral impairments, etc.). These results do not support the use of bipyridine against ICH.
Collapse
|
11
|
Dong M, Xi G, Keep RF, Hua Y. Role of iron in brain lipocalin 2 upregulation after intracerebral hemorrhage in rats. Brain Res 2013; 1505:86-92. [PMID: 23416150 DOI: 10.1016/j.brainres.2013.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 12/14/2022]
Abstract
Brain iron overload has a detrimental role in brain injury after intracerebral hemorrhage (ICH). Lipocalin 2 (LCN2), a siderophore-binding protein, is involved in cellular iron transport. The present study investigated changes in LCN2 expression after ICH and the role of iron in those changes. Male Sprague-Dawley rats had an intracaudate injection of autologous blood (ICH) or iron. Control rats received a needle insertion or saline injection. Some ICH animals were treated with either vehicle or deferoxamine, an iron chelator. Brain LCN2 expression was determined by Western blot analysis and immunohistochemistry. Real-time PCR was also used to confirm brain LCN2 mRNA expression. The number of LCN2 positive cells was markedly increased in the ipsilateral basal ganglia and cortex after ICH and most LCN2 positive cells were astrocytes. Western blots showed that brain LCN2 levels were higher at days 1, 3 and 7 in the ipsilateral hemisphere after ICH (70 to 80 fold higher than contralateral hemisphere or sham-operated rats at 3 days), and declined to lower levels at day 14. Iron, but not saline injection also caused brain LCN2 upregulation (a more than 100-fold increase). In addition, systemic treatment of deferoxamine reduced ICH-induced LCN2 upregulation (p<0.05). These results suggest that iron has a role in brain LCN2 upregulation following ICH. LCN2 upregulation after ICH may be part of the response to clear iron released from the hematoma during clot resolution.
Collapse
Affiliation(s)
- Ming Dong
- Deparment of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
12
|
Intracerebral hemorrhage: mechanisms and therapies. Transl Stroke Res 2012; 3:1-3. [PMID: 24323857 DOI: 10.1007/s12975-012-0189-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
|